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Abstract: This study presents the pioneering development of Finite Pointset Method (FPM) for dual-phase lag 
(DPL) equation in bioheat transfer. The paper explores its mathematical formulation, possible practical 
applications, and concludes with a numerical example comparing FPM results to analytical solutions, 
demonstrating the method’s accuracy and versatility. To solve DPL equation, this paper proposes FPM, a 
meshless numerical technique that eliminates the need for structured meshes. FPM employs scattered nodes 
and weighted least-squares approximation, making it particularly effective for complex geometries and 
irregular boundaries. Its Lagrangian formulation simplifies the enforcement of boundary conditions compared 
to traditional methods. DPL heat conduction model is a key advancement in heat transfer analysis, addressing 
limitations of classical models like Fourier’s law in handling rapid heat flux and non-equilibrium conditions. 
By incorporating time delays for both heat flux response and temperature gradient establishment, DPL offers 
a more accurate depiction of thermal processes in systems with thermal inertia. Its applications extend from 
biological heat transfer in thermal therapies to micro- and nanotechnology, advanced materials science, and 
aerospace engineering. 
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1. Introduction 

Dual-Phase Lag (DPL) heat conduction model represents a significant advancement in the field of heat 
transfer, particularly in contexts where classical models, such as Fourier’s law, fail to capture the complex 
dynamics of thermal processes. DPL model addresses scenarios involving rapid heat fluxes and non-
equilibrium conditions, where the assumptions of instantaneous heat propagation inherent in traditional 
models are no longer valid. Unlike Fourier’s law, which assumes an immediate relationship between the 
temperature gradient and heat flux, DPL model incorporates two distinct time delays: one for the response 
of the heat flux to a temperature gradient (the heat flux phase lag), and another for the establishment of the 
temperature gradient in response to external heating (the temperature gradient phase lag). These phase lags 
provide a more realistic representation of heat conduction in materials and systems where thermal inertia 
and delayed thermal responses play critical roles (Majchrzak and Turchan, 2015). 

The applicability of DPL model spans various domains beyond the conventional study of heat conduction. 
In biological systems, it is employed to simulate heat transfer in tissues subjected to thermal therapies, 
accounting for the complex thermal behavior of living matter. In micro- and nanotechnology, where classical 
models break down due to size effects and non-local heat transport phenomena, DPL model provides a 
framework for accurate thermal analysis. Additionally, it finds utility in materials science, particularly in the 
investigation of advanced composite materials and structures with unique thermal properties, as well as in 
aerospace engineering for analyzing heat transfer under extreme environmental conditions. 

To solve described DPL equation the Finite Point Method (FPM) here is proposed by the author of this 
article.  FPM stands out as a genuinely meshless approach, as it does not necessitate the creation of 
structured or base meshes, unlike traditional techniques such as the Finite Element Method (FEM) or the 
Finite Difference Method (FDM), which are typically used to solve partial differential equations or to 
interpolate field variables (Kuhnert, 1999). Instead, FPM relies on a collection of scattered nodes distributed 
throughout the problem domain and its boundaries. By employing the weighted least-squares technique, it 
effectively constructs accurate approximations (Reséndiz-Flores and Saucedo-Zendejo, 2015). Its 
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Lagrangian formulation makes it particularly well-suited for handling problems involving highly complex 
geometries and irregular boundaries. Additionally, its strong form simplifies the enforcement of boundary 
conditions compared to other numerical methods. Due to these advantages, FPM has been successfully 
applied to various fields, including fluid mechanics (Tiwari and Kuhnert, 2001), heat transfer (Wawreńczuk 
et al., 2007), linear elasticity (Saucedo-Zendejo and Reséndiz-Flores, 2020), piezoelectric phenomena 
(Saucedo-Zendejo et al., 2024), and biharmonic equations relevant to thin plate bending or viscous fluid 
flow, among others.  

This paper presents, for the first time in the scientific literature, the development and application of the 
FPM to the DPL equation, according to the authors' knowledge. It aims to explore the mathematical 
formulation of FPM to the application to DPL in a case of bioheat transfer and to discuss its practical 
applications in this field. Paper is concluded by numerical example of calculations, where comparison with 
analytical solution can be seen.  

2. Dual-phase lag equation 

The mathematical formulation of the DPL model introduces two characteristic parameters: the heat flux 
phase lag and the temperature gradient phase lag. By tuning these parameters, the model can bridge the gap 
between classical Fourier conduction and more complex models, such as the Cattaneo-Vernotte and 
hyperbolic heat conduction models. As such, DPL model serves as a versatile and powerful tool for studying 
heat conduction across a wide range of applications and has the following form (Majchrzak and Turchan, 
2015): 
 c ρ  �∂ T(x, t)

∂ t
  +  τq 

∂2 T(x, t)
∂ t2

�   =  λ  ∇2 T(x,  t)  +  λ τT 
∂ ∇2 T(x, t)

∂ t
  +  Q(x,  t)  +  τq 

∂ Q(x, t)
∂ t

  (1) 

where c is the specific heat, ρ is the density, λ is the thermal conductivity, T is the temperature, t is the time 
and Q(x,t) is the source term due to metabolism and blood perfusion. In equation (1) τq is the relaxation time 
and τT is the thermalization time, τq is the phase-lag in establishing the heat flux and associated conduction 
through the medium and τT is the phase-lag in establishing the temperature gradient across the medium. 

The source term Q(x,t) can be written in the following form (Majchrzak and Turchan, 2015): 
 𝑄𝑄(𝑥𝑥,𝑦𝑦) = 𝐺𝐺𝐵𝐵𝑐𝑐𝐵𝐵[𝑇𝑇𝐵𝐵 − 𝑇𝑇(𝑥𝑥,𝑦𝑦)] + 𝑄𝑄𝑚𝑚 (2) 

where GB is the blood perfusion rate, cB is the specific heat of blood, TB is the blood temperature and Qm is 
the metabolic heat source.  

It should be emphasized that for τT = 0 DPL (1) reduces to the Cattaneo–Vernotte equation, while for τq = 
τT = 0 it reduces to the Pennes one and this equation contains a second order time derivative and higher 
order mixed derivative in both time and space. 

The mathematical model to be complete must be supplemented by the adequate boundary-initial conditions 
that are formulated to DPL (Majchrzak and Turchan, 2015). 

3. The Finite Pointset Method  

Let D be given domain with a particular boundary in the 2D space and suppose that the set of points x1, x2, 
…, xn is distributed with corresponding function values T(x1), T(x2), …, T(xn). The problem is to find an 
approximate value of function T at some arbitrary location x. For this purpose, let us define the 
approximation of T(xj) using the Taylor series expansion around x (Kuhnert, 1999): 

 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑥𝑥𝑗𝑗� = 𝑇𝑇(𝑥𝑥) +∑ 𝑇𝑇𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥𝑗𝑗𝑘𝑘 + 1
2

2
𝑘𝑘=1 ∑ 𝑇𝑇𝑘𝑘𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥𝑗𝑗𝑘𝑘𝑥𝑥𝑗𝑗𝑘𝑘2

𝑘𝑘,𝑘𝑘=1  (3) 

The values that are not known T(x), Tk(x), Tkl(x) (k = 1, 2, l = 1, 2) are obtained from a weighted least 
squares method achieved by minimizing the quadratic expression while considering all neighbor points (np-
number of neighbor points): 
 𝐽𝐽 = ∑ 𝑤𝑤𝑗𝑗(𝑀𝑀𝑀𝑀 − 𝑏𝑏)2𝑛𝑛𝑎𝑎

𝑗𝑗=1  (4) 

where 

 𝑤𝑤𝑗𝑗 = 𝑤𝑤�𝑥𝑥𝑗𝑗, 𝑥𝑥� = �exp �−𝛽𝛽�𝑥𝑥𝑗𝑗 − 𝑥𝑥�2/ℎ2�
0, otherwise

, �𝑥𝑥𝑗𝑗 − 𝑥𝑥� ≤ ℎ (5) 
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where β  is a positive constant. The size of h defines a set of neighbor points around x. After some 
mathematical operations, the minimization of the function J results formally in: 

 𝑀𝑀 = (𝑀𝑀𝑇𝑇𝑊𝑊𝑀𝑀)−1(𝑀𝑀𝑇𝑇𝑊𝑊)𝑏𝑏 (6) 

and 

 𝑊𝑊 = �

𝑤𝑤(𝑥𝑥1,𝑥𝑥) 0 ⋯ 0
0 𝑤𝑤(𝑥𝑥2,𝑥𝑥) 0 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑤𝑤�𝑥𝑥𝑛𝑛𝑎𝑎,𝑥𝑥�

� (7) 

In this point we assume that x belongs to the interior part of D. Moreover the matrix M, the unknown vector 
a and the vector b for a 2D case are defined as follows: 

 𝑀𝑀 =

⎝

⎜
⎜
⎜
⎛

1 𝑑𝑑𝑥𝑥11 𝑑𝑑𝑥𝑥12
1
2

(𝑑𝑑𝑥𝑥11)2 𝑑𝑑𝑥𝑥11𝑑𝑑𝑥𝑥12
1
2

(𝑑𝑑𝑥𝑥12)2

1 𝑑𝑑𝑥𝑥21 𝑑𝑑𝑥𝑥22
1
2

(𝑑𝑑𝑥𝑥21)2 𝑑𝑑𝑥𝑥21𝑑𝑑𝑥𝑥22
1
2

(𝑑𝑑𝑥𝑥22)2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑑𝑑𝑥𝑥𝑛𝑛𝑎𝑎1 𝑑𝑑𝑥𝑥𝑛𝑛𝑎𝑎2

1
2
�𝑑𝑑𝑥𝑥𝑛𝑛𝑎𝑎1 �2 𝑑𝑑𝑥𝑥𝑛𝑛𝑎𝑎1 𝑑𝑑𝑥𝑥𝑛𝑛𝑎𝑎2

1
2
�𝑑𝑑𝑥𝑥𝑛𝑛𝑎𝑎2 �2

𝐴𝐴1 0 0 𝐴𝐴2 0 𝐴𝐴2 ⎠

⎟
⎟
⎟
⎞

 (8) 

 𝑀𝑀 = [𝑇𝑇(𝑥𝑥),𝑇𝑇1(𝑥𝑥),𝑇𝑇2(𝑥𝑥),𝑇𝑇11(𝑥𝑥),𝑇𝑇12(𝑥𝑥),𝑇𝑇22(𝑥𝑥)]𝑡𝑡 (9) 

 𝑏𝑏 = �𝑇𝑇𝜏𝜏+1(𝑥𝑥1),𝑇𝑇𝜏𝜏+1(𝑥𝑥2), … ,𝑇𝑇𝜏𝜏+1�𝑥𝑥𝑛𝑛𝑎𝑎�,𝐴𝐴3�
𝑡𝑡 (10) 

where  
 𝐴𝐴1 = 𝑐𝑐𝑐𝑐�∆𝑡𝑡 + 𝜏𝜏𝑞𝑞� (11) 

 𝐴𝐴2 = −𝜆𝜆∆𝑡𝑡(∆𝑡𝑡 + 𝜏𝜏𝑇𝑇) (12) 

    𝐴𝐴3 = 𝑇𝑇𝜏𝜏(𝑥𝑥)𝑐𝑐𝑐𝑐�∆𝑡𝑡 + 2𝜏𝜏𝑞𝑞� − 𝑐𝑐𝑐𝑐𝜏𝜏𝑞𝑞𝑇𝑇𝜏𝜏−1(𝑥𝑥)− 𝜆𝜆∆𝑡𝑡𝜏𝜏𝑇𝑇∇2𝑇𝑇𝜏𝜏 + 𝑄𝑄𝜏𝜏(𝑥𝑥)∆𝑡𝑡2 + 𝜏𝜏𝑞𝑞∆𝑡𝑡�𝑄𝑄𝜏𝜏+1(𝑥𝑥) − 𝑄𝑄𝜏𝜏(𝑥𝑥)� (13) 

FPM operates as an iterative technique where the vector a  in equation (9) is recomputed over each particle 
till the chosen stopping criterion is satisfied. 

It is worth mentioning that if point x belongs to the edge of D and satisfies the second type of boundary 
condition, one extra row must be added in matrix (8): �0, �1 + 𝜏𝜏𝑇𝑇

𝑑𝑑𝑡𝑡
� 𝑛𝑛𝑎𝑎 , �1 + 𝜏𝜏𝑇𝑇

𝑑𝑑𝑡𝑡
� 𝑛𝑛𝑦𝑦, 0,0,0�  and one extra 

element in vector (10): −𝑞𝑞𝑏𝑏
𝜆𝜆

+ 𝜏𝜏𝑇𝑇
𝑑𝑑𝑡𝑡

(𝑇𝑇1𝜏𝜏𝑛𝑛1 + 𝑇𝑇2𝜏𝜏𝑛𝑛2), because we have one equation more. Time moment is 
denoted as 𝜏𝜏. 

4. Numerical examples  

In order to verify the accuracy of FPM the following example of boundary-initial problem has been solved. 
First, the distribution of the temperature in 1D domain is determined by the following equation (Majchrzak 
and Turchan, 2015): 

  𝜕𝜕 𝑇𝑇(𝑎𝑎, 𝑡𝑡)
𝜕𝜕 𝑡𝑡

  +   �100 + 1
𝜋𝜋2
�   𝜕𝜕

2 𝑇𝑇(𝑎𝑎, 𝑡𝑡)
𝜕𝜕 𝑡𝑡2

  =    𝜕𝜕
2 𝑇𝑇(𝑎𝑎, 𝑡𝑡)
𝜕𝜕 𝑎𝑎2

  +   �10−6 + 1
𝜋𝜋2
�   𝜕𝜕

3 𝑇𝑇(𝑎𝑎, 𝑡𝑡)
𝜕𝜕 𝑡𝑡𝜕𝜕 𝑎𝑎2

  (14) 

This equation is supplemented by the boundary conditions: T(0,t) = T(L,t) = 0 and initial conditions: 
𝑇𝑇(𝑥𝑥, 0) = 𝑠𝑠𝑠𝑠𝑛𝑛(104𝜋𝜋𝑥𝑥), 𝜕𝜕 𝑇𝑇(𝑎𝑎, 𝑡𝑡)

𝜕𝜕 𝑡𝑡
= −𝜋𝜋2𝑠𝑠𝑠𝑠𝑛𝑛(104𝜋𝜋𝑥𝑥) for 𝑡𝑡 = 0. 

Moreover, analytical solution of this problem is of the form: 

 𝑇𝑇(𝑥𝑥,  𝑡𝑡) = 𝑒𝑒𝑥𝑥𝑒𝑒(−𝜋𝜋2𝑡𝑡)𝑠𝑠𝑠𝑠𝑛𝑛(104𝜋𝜋𝑥𝑥)  (15) 

The solution (15) is the same in a case of square domain in 2D for which the Dirichlet conditions are 
assumed on two opposite edges, while for the remaining two boundaries no-flux conditions are taken into 
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account. This task has been solved under the assumptions that:  geometry of the 2D area is L x L for L = 
10-4, time step dt =0.01, lattice step dx = dy = 10-5 and β = 6. 

In Fig. 1 and 2 the comparison of numerical and analytical solutions for 1D and 2D problem is shown. For 
the 2D problem, points representing the axis of symmetry of the area were taken to present the results. A 
good agreement between both solutions with the maximum relative error 0.4% for 1D and 2% for 2D is 
visible. 

  
Fig. 1:Comparison in 1D domain for t = 0.1. Fig. 2: Comparison in 2D domain for  t= 0.1. 

5. Conclusions  

FPM can be effectively applied to the problems based on dual-phase lag equation. It easily accommodates 
time-dependent variations in temperature and can capture the evolution of temperature profiles over time, 
making it suitable for simulating dynamic heat transfer scenarios. Analysed numerical technique is well-
suited for solving complex problems involving heat transfer in biological tissues what will be next step in 
author’s investigations. Additional advantage of this method is very simple boundary condition way of 
application, even those more complicated suited for DPL models. This fact creates possibility of its future 
application to three-phase equation. The accuracy of FPM method is considered as very good, as could be 
observed in Fig. 1 and 2 where comparison with the analytical solution is presented.  
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