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Abstract: This paper investigates various approaches for approximating the stationary aeroelastic response
characteristics under near-resonance conditions, with a focus on the lock-in regime. A reduced form of the
Fokker–Planck equation—derived via stochastic averaging—is used to represent the long-term behavior. Com-
parative analysis is performed between traditional finite element solutions and refined semi-analytical tech-
niques based on a Galerkin-type expansion of an analytical solution available for exact resonance conditions.
Although full verification via Monte Carlo simulations is constrained due to the elusive nature of the general-
ized partial amplitudes inherent in the reduced FPE framework, indicative comparisons reveal an unexpectedly
analogy across methods. These results highlight both the practical value and the limitations of different mod-
eling strategies in the probabilistic assessment of nonlinear systems.
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1. Introduction

The dynamic behavior of slender engineering structures—particularly in aeroelastic applications—is often
driven by a combination of periodic and random excitations. To capture such complex responses, simplified
nonlinear models, such as a single-degree-of-freedom van der Pol-type oscillator, are frequently used. A
central task in this analysis is determining the stationary probability distribution of the system’s response,
which typically involves solving the Fokker–Planck equation (FPE). This paper is part of ongoing research
and builds on the concept of stationary partial amplitudes introduced by Náprstek et al. (2021), derived
from the Itô solution of a stochastic van der Pol oscillator. That work focused on stationary responses in the
lock-in region and presented an analytical solution to the reduced FPE in the case of exact resonance.

An extension of this approach across the full lock-in domain, using Galerkin approximations with polyno-
mial basis functions, was later proposed in (Náprstek and Fischer, 2024). However, the accuracy of this
method remains uncertain due to numerical issues in integrating higher-order polynomial corrections. In-
dependent validation of the theoretical framework is difficult, primarily due to the abstract nature of the
generalized averaged amplitudes. Nonetheless, an earlier attempt to compare numerical simulations with
these amplitudes was reported by Fischer and Náprstek (2020). Though precise matching was challenging,
the overall response amplitude showed visually good agreement.

This contribution introduces two new elements. First, it shows that the reduced FPE can be effectively solved
using a standard FEM solver. Second, it carries out a time-domain stochastic simulation of the original van
der Pol system, estimating the mean partial amplitudes from the sine and cosine components of the dominant
Fourier mode.

2. Mathematical Model

This paper presents an extension and comparative evaluation of previously published results. Due to space
limitations and editorial constraints on similarity, the reader is referred to (Náprstek et al., 2021; Náprstek
and Fischer, 2024) for details of the mathematical model.
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The physical system under consideration is described by a SDOF van der Pol-type oscillator:

ü− (η − νu2)u̇+ ω2
0u = Pω2 cosωt+ hξ(t) , (1)

where: u, v = u̇ are the displacement [m] and velocity [ms−1]; η, ν are the parameters of the linear and
quadratic damping, respectively [s−1, s−1m−2]; ω0, ω are the eigen-frequency of the linear SDOF system
and frequency of the vortex shedding [s−1]; f(t) represents external excitation: f(t) = Pω2 cosωt +
hξ(t); Pω2 and ξ(t) are the amplitude of the harmonic excitation force [ms−2] and the broadband Gaussian
random process [1 ]; and h is the multiplicative constant [ms−2].

To facilitate the application of the stochastic averaging method (Roberts and Spanos, 1986; Bernard, 2003),
the displacement and velocity are expressed using a first harmonic approximation as follows:

u(t) = ac cosωt+ as sinωt , v(t) = −acω sinωt+ asω cosωt , where ȧc cosωt+ ȧs sinωt = 0 . (2)

By employing the harmonic balance technique along with stochastic averaging in the sense of Itô calculus,
the FPE can be derived for the probability density function (PDF) p(ac, as) of the slowly varying, stochas-
tically averaged amplitudes. Approximation and estimation of these random quantities and their PDF is the
main subject of this contribution.

3. Numerical Solution

The numerical analysis of the system is based on two complementary approaches: direct time-domain
simulation of the original van der Pol (VDP) system, and numerical solution of the FPE, subjected to
either zero or zero-flux boundary conditions at infinity. In the stationary regime—an essential condition
for applying stochastic averaging—the time derivative in the FPE vanishes, resulting in a reduced form of
the FPE. This reduced equation can be solved analytically or semi-analytically in several specific scenarios,
as demonstrated by Lin and Cai (1988). In the case of exact resonance, ∆ = (ω2

0 − ω2)/(2ω) = 0, the
closed-form solution p0(ac, as) was derived by Náprstek et al. (2021).

All approaches are illustrated using comparable plots for direct visual comparison. Each figure contains
four plot pairs arranged in a 2 × 2 grid. Each pair includes a contour plot of the joint PDF p(ac, as) (left)
and corresponding marginal probability density curves (right), computed for several fixed values of as (left
column) or ac (right column). The top row presents results for exact resonance, while the bottom row
corresponds to a significantly detuned case, ∆ = 0.125, which lies just inside the lock-in region boundary.
The following parameter values are used : η = 1

2 , ν = 1
4 , ω0 = 1, P = 1, S = 2.

3.1. Exact Solution in the Resonance and its Galerkin-type Extension

In the stationary case, implied by the usage of stochastic averaging, the cross-probabitiliy of partial ampli-
tudes is governed by the reduced FPE with zero boundary conditions at the infinity.

Fig. 1: Analytical solution for ∆ = 0 (top row) and Galerkin approximation for ∆ = 0.125 (bottom row).
Left column: marginal densities for fixed values ac = {2, 3, 4}; right column: dtto for as = {−3

2 , 0,
3
2}.
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Fig. 2: FEM solution for the resonant case (top row) and for ∆ = 0.125 (bottom row). Left column:
marginal densities for fixed values ac = {2, 3, 4}; right column: dtto for as = {−3

2 , 0,
3
2}..

To extend the solution to cases with nonzero detuning, a Galerkin-type expansion is employed. The un-
known joint PDF is approximated as

p(ac, as) = p0(ac, as)
∑M,k

k,l=0
qkl · ak−l

c · als , (3)

where p0(ac, as) is a weight function taken as the exact solution for ∆ = 0, and the coefficients qkl represent
higher-order corrections.

Figure 1 illustrates this method: the top row shows the analytical stationary solution for ∆ = 0 (i.e.,
M = 0), while the bottom row shows the result for ∆ = 0.125 using a correction up to M = 5 polynomial
terms. This correction level corresponds to the inclusion of five stochastic moments, as interpreted in the
framework of (Náprstek and Fischer, 2024).

3.2. Finite Element-Based Solution

Unlike the specialized solvers required for high-dimensional problems (see e.g., Král and Náprstek (2017)),
here a straightforward, built-in FEM solver from Mathematica version 12.3 is employed. Because the
homogeneous PDE admits infinitely many solutions—and the FEM solver by default yields the trivial zero
solution—an additional constraint is required to extract a meaningful non-zero solution.

This constraint is introduced by first solving a reduced 1D boundary value problem (BVP). Fixing, e.g.,
ac = 0, the resulting ODE is solved with a prescribed zero value on one boundary and a non-zero value
in the region expected to contain the mode of the distribution. This can be achieved either by solving two
BVPs or, if the solver allows, by specifying one boundary condition and one interior condition. Inadequate
decay at the boundary or mismatch at the interior point indicates an improperly chosen domain size.

The resulting 1D profile is then imposed as a boundary condition along a shared edge in a split domain
strategy for solving the full 2D problem. Alternative formulations include adding integral constraints or
using Lagrange multipliers, but the chosen method maximizes simplicity and computational availability.

Figure 2 shows the FEM solution. The results display visually good agreement with the analytical solutions
shown in Fig. 1. However, it is evident that the Galerkin correction with M = 5 moments may not be
sufficient to fully capture the effects of detuning near the boundary of the lock-in region.

3.3. Monte Carlo Simulations
The Monte Carlo simulation of the original van der Pol system Eq. (1) was carried out under combined
harmonic and stochastic excitation. From the steady-state portion of each realization, the FFT was applied
to extract the dominant frequency component. The corresponding amplitude was then decomposed into sine
and cosine contributions, interpreted as estimates of the partial response amplitudes ac and as, respectively.
Their absolute values were used to construct a two-dimensional smoothed and normalized histogram.
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Fig. 3: MC-simulation approximation of the averaged partial amplitudes for ∆ = 0 (top) and ∆ = 0.125.
Left column: marginal densities for values as = {0.8, 1.2, 1.6}; right column: dtto for ac = {0, 0.4, 0.8}.

While this approach does not retain the sign and absolute value of information of the amplitudes, the result-
ing spatial distribution, shown in Fig. 3, exhibits a qualitative agreement with the Galerkin and FEM-based
solutions. A potential refinement for future work would involve cycle-by-cycle trigonometric fitting of the
time series, enabling a more accurate reconstruction of amplitude statistics.

4. Conclusions
This paper presents three complementary approaches to evaluating stationary responses in nonlinear stochas-
tic systems: a simple FEM-based solution of the reduced Fokker–Planck equation using NDSolve, a
Galerkin-type approximation of the Fokker–Planck equation, and a time-domain simulation estimating par-
tial amplitudes from dominant Fourier components. While the time-domain method does not preserve
absolute amplitudes, its relative distribution aligns well with the FEM results and offers a basis for future
refinements, such as cycle-by-cycle trigonometric fitting. The Galerkin-type method provides theoretical
advantages in terms of reduced-order modelling and basis function interpretation; however, it fails to accu-
rately reproduce the probability density function shape when compared to the FEM benchmark, indicating
the need for further development or adaptive basis enhancement.

Acknowledgments

The kind support of Czech Science Foundation project No. 24-13061S is gratefully acknowledged. The
authors used the ChatGPT language model (OpenAI) to assist with language polishing and proofreading;
all suggestions were reviewed and revised to preserve the intended meaning.

References
Bernard, P. (2003) Stochastic Averaging: Some Methods and Applications, pp. 29–41. Springer Netherlands.
Fischer, C. and Náprstek, J. (2020) Numerical simulation of a wind excited quasi-periodic regime of a stochastic van

der Pol-type equation. MATEC Web of Conferences, 313, pp. 00044.
Král, R. and Náprstek, J. (2017) Theoretical background and implementation of the finite element method for multi-

dimensional Fokker-Planck equation analysis. Advances in Engineering Software, 113, pp. 54–75.
Lin, Y. K. and Cai, G. Q. (1988) Equivalent stochastic systems. Journal of Applied Mechanics, 55, 4, pp. 918–922.
Náprstek, J. and Fischer, C. (2024) Averaging-based characteristics of the response induced by combined random and

harmonic excitation. In Sassi, S. et al., eds, Proceedings of ICoVP 2023, Singapore. Springer, pp. 191–202.
Náprstek, J., Fischer, C., Pospíšil, S., and Trush, A. (2021) Modeling of the quasi-periodic galloping response type

under combined harmonic and random excitation. Computers & Structures, 247, pp. 106478.
Roberts, J. B. and Spanos, P. D. (1986) Stochastic averaging: An approximate method of solving random vibration

problems. International Journal of Non-Linear Mechanics, 21, 2, pp. 111–134.

76 Engineering Mechanics 2025, Medlov, Czech Republic, May 12 –14, 2025


