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Abstract: This paper explores the application of Proximal Policy Optimization (PPO) for achieving stable
bipedal locomotion in autonomous robots. Unlike traditional model-based approaches, PPO leverages rein-
forcement learning to develop adaptive gait patterns that respond to environmental changes in real time.
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1. Introduction

Autonomous bipedal robots have gained significant attention in recent years, driven by advancements in
control algorithms, reinforcement learning, and robotic actuation. Unlike wheeled robots (Thrun et al.,
2005; Vechet et al., 2020), which benefit from inherent stability, bipedal robots must continuously adjust
their posture and gait to maintain balance while navigating complex environments (Vechet, 2011; Krejsa
and Vechet, 2018). This challenge is particularly relevant in applications ranging from industrial automation
to assistive robotics and disaster response, where humanoid robots must operate in unstructured terrains.
More recent advancements in model-based control (Vechet et al., 2024), such as Model Predictive Control
(MPC), improved stability by incorporating real-time feedback and optimizing foot placement strategies.
However, these approaches often require precise modeling of the robot’s dynamics and are computationally
expensive, limiting their real-time applicability in highly dynamic scenarios.

In contrast, reinforcement learning (RL) has emerged as a promising alternative for bipedal locomotion con-
trol, offering a data-driven approach to learning complex motor behaviors. Among RL algorithms, Proximal
Policy Optimization (PPO) has shown remarkable success in training robust policies for continuous control
tasks (Schulman et al., 2017). PPO leverages a trust region-based update mechanism to ensure stable and
efficient policy learning, making it well-suited for high-dimensional problems such as bipedal walking. By
optimizing a reward function that accounts for stability, energy efficiency, and step regularity, PPO-based
controllers can generate adaptive gait patterns that respond to environmental changes in real time.

Despite the potential of PPO for bipedal locomotion, several challenges remain, including sample efficiency,
sim-to-real transfer, and robustness to external perturbations (Grandia et al., 2024). We present an approach
to training bipedal locomotion policies to improve stability and through experiments, we demonstrate that
PPO-based control strategies can achieve stable and adaptive walking behaviors in real-world robot.

2. Materials and Methods

This section describes the tools and methodologies used to develop a simulation model of a bipedal walking
robot PAWO (see Fig. 1) and implement Proximal Policy Optimization (PPO) for stable locomotion. The
simulation framework is built using PyBullet (Vechet et al., 2024, 2020), a physics engine that enables
accurate modeling of robotic movements and interactions with the environment.
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Fig. 1: PAWO Personal Autonomous Walking Optimizer robot in it’s latest design configuration during
social interaction with human operator.

PyBullet is a Python-based physics simulation library built on Bullet Physics, a widely used open-source
engine for real-time collision detection and multi-body dynamics. It provides an efficient platform for
simulating robotic systems, allowing precise control over physics parameters such as gravity, joint forces,
and contact dynamics.

The bipedal robot is modeled using the Unified Robot Description Format (URDF) to define its mechan-
ical structure, including links, joints, and actuation properties. The robot, consisting of ten rigid bodies
connected by joints, is imported into PyBullet, creating a digital twin that replicates its physical behavior
(Vechet et al., 2024). The simulation environment is configured with realistic physics parameters, including
gravitational acceleration and motor constraints, to match real-world conditions.

Proximal Policy Optimization (PPO) is implemented to learn stable walking behaviors by continuously
adjusting joint torques based on sensory feedback. The control policy is trained in simulation using reward
functions that encourage balance, energy efficiency, and smooth gait transitions. Position control is used in
the simulation, aligning with the actuation method of the real robot’s servo-driven joints.

2.1. PPO Algorithm

The PPO algorithm optimizes the policy by iteratively updating parameters while ensuring that changes
remain within a safe trust region. The objective function for PPO is given by:

L(θ) = E [min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)] (1)

where:

• rt = rmove_forward
t + rfalling_forward

t + rrotatet is reward function taking into account translation of
center of the gravity, falling forward (pitch), rotation around vertical axis (yaw),

• rt(θ) =
πθ(at|st)
πθold (at|st)

is the probability ratio between the new and old policies,

• At is the advantage function,

• ε is a small clipping parameter to prevent excessive policy updates (see Table 1).

The PPO training procedure follows these steps:
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Algorithm 1 Proximal Policy Optimization (PPO)
1: Initialize policy parameters θ and value function parameters φ
2: for each iteration do
3: Collect trajectories using policy πθ
4: Compute advantage estimates At
5: Optimize surrogate loss L(θ) using clipped objective
6: Update value function by minimizing squared error loss
7: Update policy using gradient ascent
8: end for

The policy is updated using stochastic gradient descent based on the clipped objective function. PPO
ensures stable learning by preventing large policy updates, making it suitable for bipedal locomotion tasks
where stability is critical.

2.2. Simulation Parameters

Table 1 summarizes the key parameters used in the simulation:

Parameter Value
Simulation time step 1/240 s

Gravity −9.81 m/s2

PPO learning rate 3× 10−4

Clip parameter ε 0.2
Discount factor γ 0.99

Reward function weights
Move forward wfwd 0.9

Falling forward wpitch 0.9
Rotate around vertical axis wyaw 0.05

Tab. 1: Simulation and PPO training parameters.

Fig. 2: Telemetry data gathered during walking after training (successful left, unsuccessful right) in the
distance traveled on the horizontal axis in millimeters. Both figures shows x, y, z[mm] coordinates of
center of the gravity for robots torso and angular velocity for axis x, y[rad.s−1]. The rotation around
vertical z axis is not shown. The walking attempt on the right was canceled during exceeding maximal
value for angular velocity in the x axis which means the robot is falling front.

3. Conclusions

The successful application of Proximal Policy Optimization (PPO) to the dynamic walking of an under-
powered and underactuated bipedal robot highlights the potential of reinforcement learning in optimizing
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locomotion strategies for constrained robotic systems. The observed variations in episode lengths during
training align with expected reinforcement learning behaviors, including the exploration-exploitation trade-
off, policy stability mechanisms, and dynamic interactions with the environment.

This work demonstrates that PPO can effectively enable stable and adaptive walking in connection with real
world applications where unexpected disturbances can be observed. The learned policies exhibit robustness
to varying environmental conditions and perturbations, making this approach a viable solution for real-
world robotic locomotion challenges.

Looking ahead, these findings pave the way for applying similar methodologies to larger and heavier hu-
manoid robots with industrial applications. Scaling up PPO-based control frameworks will require address-
ing additional challenges, such as increased inertia, higher degrees of freedom, and the need for real-time
adaptation in unstructured environments. Future research will explore the integration of sim-to-real trans-
fer techniques, domain adaptation strategies, and hardware-in-the-loop training to bridge the gap between
simulated and physical deployments.

As reinforcement learning continues to mature, its application in humanoid robotics is expected to advance
the field significantly, contributing to the development of agile, efficient, and autonomous bipedal robots
for industrial and commercial use.
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