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Abstract: To enable high-fidelity and physically relevant simulations of non-spherical suspensions, we aim to
design a solver coupling computational fluid dynamics (CFD) with the discrete element method (DEM). The
CFD part of the solver is based on the widely used OpenFOAM library. However, to design a robust and
computationally efficient DEM for non-spherical particles is still an open problem, as the contact solution is,
in this case, nontrivial. In this contribution, we propose an updated formulation of a DEM contact model for
non-spherical particles that is (i) based on the concept of overlap volume, (ii) robust, and (iii) for the case of
spheres, consistent with the standard Hertz-Mindlin model. The presented model is successfully verified against
LIGGGHTS on a DEM benchmark test.
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1. Introduction

Suspension flows are abundant in both nature and industry, ranging from sand grains carried by the wind and
riverbed movement to fluidized bed reactors and pharmaceutical microdosing. The diverse applications of
such systems create demand for mathematical description. However, modeling dense suspensions requires
complex computational approaches (Lin et al., 2020; Srinivasan et al., 2021). Particularly, coupling of
computational fluid dynamics (CFD) with the discrete element method (DEM) can provide detailed insight
into the behavior of coarse-grain dense suspensions (Lin et al., 2020). A crucial factor in such systems are
particle collisions. A common approach is to assume spherical particles, which allows for an analytical and
computationally efficient solution based on the Hertz-Mindlin model (Antypov and Elliott, 2010; Soltan-
beigi et al., 2021). However, the particle shape plays a significant role (Xiong et al., 2021), introducing
challenges in both (i) particle representation and (ii) contact modeling.

To address these challenges, different DEM approaches exist, including (i) the multi-sphere model, (ii)
super-quadrics, and (iii) polyhedral representation (Zhong et al., 2016). The first two approaches leverage
smooth and well defined surfaces, thus benefiting from the sphere contact model with minor adjustments.
The polyhedral model is the most general approach and best suited for solids with sharp edges. At the
same time, it requires a more advanced contact model, including additional estimations of geometric prop-
erties (Chen, 2012).

In this work, we present further developments of our in-house but open-source CFD-DEM library (Isoz
et al., 2022). In particular, we describe a new modification of the contact model in DEM. The contact
model is based on (Chen, 2012) but modified to be, for the case of spheres, consistent with the standard
Hertz-Mindlin model. A test is designed to evaluate the repose angles of 1700 spherical particles, with
results validated against the LIGGGHTS DEM solver (Kloss et al., 2012).
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2. Framework fundamentals

Particle definition Fundamental features of the presented DEM solver are its direct embedding in the
CFD code and focus on non-spherical particles. The shape of the particleBi is described using a triangulated
surface mesh ∂Bi. During program execution, ∂Bi is kept in computer memory and undergoes a rigid solid
body motion governed by Newton’s second law. Besides its shape, each particle has its material properties,
such as the density ρ, Poisson ratio ν, Young’s and Shear moduli Y,G, and the friction coefficient µ, which
are assumed constant and homogeneous.

Next, to estimate geometrical properties, such as particle mass mi, center of gravity, or moment of inertia
Ii, the solver creates a projection of the body Bi on a finite volume (FV) mesh Ωh, which is provided by
the CFD part of the code. The projection is carried out using a color function λ, which is defined on the FV
mesh and returns the solid volume fraction for each FV cell.

Movement of the particles As stated above, the movement of Bi is governed by Newton’s second law of
motion,

mi
d2xi

dt2
= fg

i + f c
i + fd

i , Ii
dωi

dt
= tci + tdi . (1)

Here, the position xi of Bi and its angular velocity ωi are estimated based on the influence of forces f and
torques t. The forces and torques considered are gravity/buoyancy (g), collisions (c), and drag (d) at a given
time t. The drag force is considered only for CFD-DEM applications and will be neglected hereafter. The
equations are solved in a finite difference manner while assuming that the forces and torques are constant
during each time step ∆t, see (Studenı́k et al., 2024).

Collision force Out of all considered sources in governing equations, the collision term is probably the
most significant with respect to the overall behavior of systems of interest. There are many approaches to its
solution. The considered solver builds on the soft -DEM approach, which enables particle overlap as a way
to replace the elastic or elasto-plastic deformations at the contact point, compensating for the rigid nature of
the simulated solids. The first approach to model such forces was derived for the spherical particles using
the magnitude of the overlap to scale the contact force. According to the Hertz-Mindlin model (Soltanbeigi
et al., 2021; Antypov and Elliott, 2010), which is constructed as a spring-dashpot model. Its formulation
for the normal component of the contact force can be written as

f c,n =

(
knδ + γ

√
knM red

dδ

dt

)
nc , kn =

4

3
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√
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−
√

5 ln (ε)√
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, (2)

with kn denoting the elastic stiffness derived from reduced material properties and particle overlap length
δ. Please note that the superscript red denotes the harmonically averaged (reduced) properties weighted by
the Poisson ratio for the cases of Y and G. The dissipation of energy during the collision is accounted for
by the damping factor γ, based on the restitution coefficient ε. The contact normal nc and overlap δ for
spherical particles are

δ = max [0, (ri + rj)− (xi − xj) · nc] , nc =
xi − xj

||xi − xj ||
, (3)

where x and r are the respective positions and radii of spheres forming the colliding pair. The increment to
tangential component to the contact force can be formulated as,

∆f c,t = kt ut
r ∆t,−2γn

√
ktM red ut

r, kt = 8Gred
√
rredδ , ut

r = ur − (ur · nc)nc , (4)

where kt is a tangential elastic stiffness and ut
r is a tangential component of the relative velocity to the

contact pair, with the complete form given as ur = ui−uj +(ωi×`i−ωj×`j). In addition, the tangential
force is treated with respect to the contact history, and the value of the last iteration ∆f c,t

old is rescaled and
reprojected to account for the new iteration. The new tangential force then consists of the former value
and the current increase ∆f c,t. However, to account for surface friction, the estimated tangential force is
subsequently corrected with Coulomb’s Law as

f c,t
new = ∆f c,t

old + ∆f c,t f c,t = min
(∥∥f c,t

new

∥∥ , µ ‖f c,n‖
) f c,t

new∥∥∥f c,t
new

∥∥∥ . (5)
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Consequently, the evaluated components are combined as f c = f c,n + f c,t. The resulting contact force is
added to the governing equations (1), for each particle of the colliding pair i − j as f c

i = f c, f c
j = −f c

and tci = ri × f c, tcj = rj × (−f c) for force and torques, respectively.

The approach to contact treatment described above is restricted to spherical particles and is applied in DEM
solvers such as LIGGGHTS (Kloss et al., 2012) or MUSEN (Dosta and Skorych, 2020). Although there are
many approaches using some sort of characteristic overlap length for non-spherical solids, none of these
approaches is currently dominant in the research community.

In this contribution, we build on the approach first presented in (Chen, 2012), where the particle overlap
is characterized using directly its volume V o rather than through conversion of V o to some characteristic
overlap length. Therefore, a new formulation for contact force treatment was introduced in the original
publication (Chen, 2012). The main difference compared to the Hertz-Mindlin model is best visible for the
normal component of contact force,

f c,n =

(
Y red V o
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√
Y redM red

(`c)3
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d t

)
nc, `c = 4
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,
dV o

dt
= Āc (ur · nc) , (6)

where `c stands for the characteristic length scale of the contact given by the distances ‖`‖ between the
contact center and the centroids of the respective bodies. The time derivative of the overlap volume might
be simplified with the assumption of a constant contact cross-sectional area Āc multiplied by the relative
velocity to account for the temporal change.

Please note that the model (6) was derived in (Chen, 2012) for rectangular particles with the objective to
study wave propagation in an array of such particles. However, the model can be further modified to take
into account various particle shapes. In particular, the shape-dependent parameter in (6) is the constant 4 in
the definition of `c. In the generalization, a new effective curvature parameter C` is applied, for which the
values C` = 4 account for a flat surface and C` = 0.55 for spheres. Combining (2) and (6) and pluging in
C`, the overall model might be rewritten as follows

f c,n =

(
kn∗δ

o + γn
√
kn∗M

red ur · nc

)
nc , kn∗ = Y red Ā

c

`c
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‖`j‖ ‖`i‖
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. (7)

In (7), kn∗ is the effective stiffness of the material for the volume-defined contact, δo = V o/Āc is derived
from the overlap volume and the contact cross-section area. These modifications to the original model (6)
have proven quite effective and were applied to tangential forces only with the change of the constant for
the tangential elastic stiffness given as kt∗ = 8GredĀc/`c. The updated contact model was first presented
in (Studenı́k et al., 2024). and the reader is referred to this work for details regarding the implementation
and verification tests of the solver.

3. Results

To further verify the updated implementation of the contact model, we focus on the scaled-up application
rather than on single collision events, which are summarized in (Studenı́k et al., 2024). The application
considered in this contribution is a simulation study on the influence of friction coefficient on repose angle,
with the result of comparing the presented solver to the results from the LIGGGHTS DEM solver.

The study is set with the poured column of 1700 monodispersed spheres with diameter d = 2.5 cm and den-
sity ρ = 2650 kg/m3. Each particle is prescribed with the properties of the material as Y = 500 MPa, ν =
0.4, ε = 0.15. Gravity is considered as g = (0,−9.81, 0)T m/s2.The controlled variable is the friction
coefficient set to µ = 0, 0.3, 1.0. The integration step is fixed on the value of ∆t = 10−6 s with simulation
time of 2 s. The results are summarized. in Fig. 1 showing the increasing value of the repose angle α̃. The
results show a discrepancy with the general rule of thumb for the repose angle given as tan(α̃) = µ. This
might be due to several factors, including an overestimated dissipation coefficient, non-realistic particle
distribution, or an unfitting method to estimate the repose angle value. The last cause mentioned has the
highest probability. For this study, we employed a simple image analysis method. For the presentation of
our results at the conference, we will include more advanced results using the algorithm proposed in (Müller
et al., 2021). Nevertheless, the results show good agreement with the LIGGGHTS-DEM solver, verifying
the updated contact model for further applications.
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(a) µ = 0 α̃ = 0 o (b) µ = 0.3 α̃ = 14.69 o (c) µ = 1.0 α̃ = 24.78 o
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Fig. 1: Results of repose angle (α̃) study, displayed as overlay of end time t = 2 s for the two tested solvers
and three different friction coefficients (µ).

4. Conclusions

In this contribution, we present the updated contact force formulation for both normal and tangential com-
ponents while comparing it to the standard soft-DEM implementation of the Hertz-Mindlin model. Fur-
thermore, the results of the given implementation are verified against the LIGGGHTS DEM solver for the
estimation of the repose angle, which shows general good agreement. In the presentation of this contribu-
tion we will extend the results listed here with new postprocessing methods and add the results for studies
using polyheadron-based solids, both convex and non-convex.

The basic configuration for the test presented and full software library are available from the GitHub repos-
itory github.com/techMathGroup/openHFDIB-DEM and available for OpenFOAMv8 with a port to Open-
FOAMv2406 being prepared.
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