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Abstract: Multiscale homogenization enables the calculation of the macroscopic stress response of a discrete
periodic representative volume element (RVE) of a (quasi) brittle materials subjected to a macroscopic strain,
accurately capturing their nonlinear inelastic behaviour. Wider application of the RVE as a microstructural
constitutive model is hindered by its high computational cost. This paper investigates two data-driven ap-
proaches to approximate the effective response of the RVE. 3D RVE is loaded by uniaxial macroscopic strain
and the response is approximated using polynomial chaos expansion (PCE) and neural networks. Both ap-
proaches incorporate a predefined history variable to incorporate the path dependency, while the second also
tries to leverage recurrent neural networks (RNNs) to learn the load path dependency autonomously. The re-
sults show that the RNN can reach the same accuracy as a feed-forward network with a history variable given
enough training data. The PCE provides good results but does not reach the precision of the other methods.
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1. Introduction
Discrete particle-based lattice models are highly effective for capturing the fracture behavior of quasi-brittle
heterogeneous materials such as concrete (Schlangen and Garboczi, 1997). They accurately model the
hardening, softening, and unloading-reloading regimes while depending on simple vector-based constitutive
relations. However, their high computational cost makes them impractical for large-scale simulations of
real-size structures. Their advantages can be exploited for practical applications by incorporating them as a
micro or meso scale model in a multi-scale homogenization scheme (Rezakhani et al., 2017).

In this approach, meso-scale discrete model is used as a periodic Representative Volume Element (RVE)
loaded by the macroscopic strain path, and the macroscopic history-dependent stress path is computed.
While this method significantly reduces computational overhead compared to a full-scale discrete model,
RVE computations remain demanding, driving the search for computationally efficient approximations of
its macroscopic response.

Polynomial Chaos Expansion (PCE) and Neural Networks (NNs) are two data-driven approaches widely
used in mechanics for their ability to approximate highly nonlinear functions while keeping computational
costs manageable. NNs have proven to be able to predict path-dependent and time-dependent responses
of nonlinear materials (Wang et al., 2024). This study aims to compare the effectiveness of these methods
in predicting the effective stress of the RVE under uniaxial loading, capturing softening, hardening, and
unloading-reloading behaviors.

PCE represents a spectral expansion of the original stochastic problem in a polynomial basis orthogonal
with respect to input random variables (Wiener, 1938; Ghanem and Spanos, 1991; Blatman and Sudret,
2011). Recently, physics-informed PCE has been proposed by Novák et al. (2024). This extension of the
standard PCE is designed to incorporate both stochastic and deterministic input variables. In this pilot study,
we used the same framework, though no stochastic variables are present in the investigated example.
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Fig. 1: Left-hand side: facets of RVE with crack perpendicular to the loading direction x; right-hand side:
several random load paths εxx(tp)

2. Homogenization of a discrete RVE

To obtain effective macroscopic behavior of a microstructure model the asymptotic expansion homogeniza-
tion method can be employed. Here the material microstructure is explicitly modeled in a periodic RVE
(Kouznetsova et al., 2002). In this work, the Lattice Discrete Particle Model (LDPM) (Cusatis et al., 2011) is
used to represent a concrete material at meso-scale. The model consists of discrete particles connected with
the constitutive relations prescribed on the contact facet of the particles. The constitutive relations allow
damage initiation and accumulation at each facet, leading to inelastic hardening and post-peak softening
behavior in the macroscopic response.

A lattice geometry is constructed inside a cube with a side length of 50 mm and periodic boundary condi-
tions. The model is shown in Fig. 1. Given a macroscopic strain tensor ε = {εxx, εyy, εzz, εyz, εxz, εxy} a
strain vector ε is applied to all RVE facets. After solving a set of non-linear balance equations the micro-
scale displacements and rotations of the RVEs particles and tractions of the facets are obtained. Then the
averaged effective macroscopic stress tensor σ = {σxx, σyy, σzz, σyz, σxz, σxy} can be calculated. The
procedure is described in detail in (Eliáš and Cusatis, 2022).

3. Data-driven surrogates for inelastic material modeling

The data-driven prediction of the discrete RVE’s macroscopic stress tensor is a similar problem to approxi-
mating history- and time-dependent material models, like elastoplasticity and elastoviscosity. In both cases,
the information about the current load state—here the strain tensor ε—is insufficient to predict the current
stress state accurately. The history dependence must be considered, namely in the unloading reloading
states in the case of the fracture softening RVE. Various approaches exist to address the history or time
dependence in constitutive modeling (Maia et al., 2023; Mendizabal et al., 2020; Wang et al., 2024). In this
work, two methods are explored: manually defining a history variable that is supplied as additional input to
the surrogate and autonomous discovery of the history dependence by recurrent neural networks (RNNs).

In the presented work, the RVEs are loaded by macroscopic uniaxial strain tensor εu = {εxx, 0, 0, 0, 0, 0}
with the εxx varying along a defined strain path. Only the σxx component of the macroscopic stress tensor
is monitored reducing the problem to a prediction of input-output pairs εxx : σxx.

The loading paths of εxx(tp) varying with a pseudo-time tp were generated as Lagrange interpolation poly-
nomials interpolated through 6 points with tp = (0, 0.2, 0.4, 0.6, 0.8, 1.0) and εxx(tp) = i · tp ·0.002, where
i is randomly picked from uniform distribution U ∼ (0, 1). Additionally, the condition that εxx(tp) is al-
ways non-negative was imposed by rejecting those random paths that violate it. In this manner, 1000 strain
paths were generated, each sampled at uniformly spaced 100 tp values between 0 and 1, resulting in 1000
sequences of 100 εxx values. Due to the imposed constraints, the εxx maximum value is about 0.002 and
the RVE is always loaded in tension. However, the strain decreases and increases at various tp values, re-
sulting in unloading-reloading regimes. Several paths can be seen in Fig. 1. The RVE with lattice geometry
generated in a cube of edge size 50 mm was loaded by the strain paths, resulting in 1000 corresponding σxx
sequences.
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3.1. Predefined history variable

Once the onset of the damage occurs, a decrease of εxx leads to states in which one εxx value corresponds to
two σxx different values, depending whether the current state is in the loading or unloading-reloading phase.
The influence of tp history needs to be taken into account for correct σxx value prediction. For this a history
variable can be manually defined. In this work, the maximum reached strain εmax

xx (tp) is used. This way, the
input-output data pairs used for the training and inference phases read (εxx(tp), ε

max
xx (tp)) : σxx(tp). These

can be predicted by a standard feed-forward neural network (FFNN) or PCE. A simple network with one
hidden layer with 512 neurons and ReLu activation was used.

3.2. Self-discovery of history dependence by RNN

For higher-dimensional generalization, defining the history variable is problematic. Recurrent neural net-
works can bypass this by self-discovering time dependencies in data sequences. In this work, the Gated
recurrent unit (GRU) based neural network is used for its advantages over other RNN implementations,
such as its low computational cost and effective handling of long-term dependencies (Tsantekidis et al.,
2022). The network architecture comprises a GRU unit with 2 layers each with 100 hidden neurons fol-
lowed by two linear layers with 128 neurons and ReLu activation. The sequence-to-sequence approach was
used for GRU-NN training and inference. In practical applications, inference can be modified to export
hidden-state tensors at each step alongside stress prediction, feeding them back with strain values in the
next step. The method is described in detail in (Mendizabal et al., 2020).

4. Results

The 1000 sequences were divided into 800 training and 200 testing samples. The PCE and FFNN with
the history variable as well as the GRU RNN were trained using varying sample sizes, ranging from 10
to all 800 available samples. The architecture and hyperparameters of all methods remained the same.
Fig. 2 (left-hand side) shows the mean and maximum relative square error of the σxx predictions. For a
low number of samples, the FFNN provides the best result. With an increasing number of samples, the
accuracy of all models increases, with the GRU surpassing the FFNN’s accuracy, which is to be expected
as the GRU’s architecture used has bigger representational power. Since the training subset is randomly
selected, the error does not always decrease with more samples, highlighting the importance of careful data
selection.

The results show that with enough training data, the RNN can autonomously discover the history depen-
dence. The PCE model with an adaptive least-angle regression algorithm reaches a lower level of prediction
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Fig. 2: Left-hand side: the mean and maximum squared error of prediction of PCE, FFNN, and GRU
models trained on different numbers of samples; right-hand side: is a comparison of predicted macroscopic
stress tensor σxx component for several strain paths from the testing set
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accuracy, only surpassing the GRU at very low sample numbers. Overall, all of the methods succeed in cap-
turing the behaviour in the unloading-reloading regimes. This can be seen in Fig. 2 (right-hand side). It
shows the response prediction to several loading paths from the testing samples. The constant tp sampling
step results in nonconstant εxx(tp) step, which might be a complication for RNNs (Wang et al., 2024). In
the presented case, the GRU network handles this well.

5. Conclusions

By manually specifying a history variable and using it as additional input information for (i) a feed-forward
neural network or (ii) a polynomial chaos expansion model, a data-driven approximation of the macro-
scopic response of an inelastic discrete RVE to a non-monotonic uniaxial macroscopic strain loading was
constructed. The predictions of such surrogate models can closely match the correct results computed by
the LDPM simulation. However, the manual identification of the history variable presents a challenge for
higher-dimensional problems and also represents a subjective choice rather than an underlying physical
principle. In contrast, (iii) the recurrent neural networks discover the history dependencies in sequence data
automatically and show similar accuracy to the FFNN providing the training dataset is large enough. While
this work includes predictions only for one component of the macroscopic stress tensor, they show a path
for predicting the full stress tensor. Furthermore, while the presented models are purely data-driven, physi-
cal constraints can be incorporated potentially leading to robust metamodels of discrete RVEs macroscopic
response.
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