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MAGNETO-THERMAL CONVECTION IN WALTERS’
(MODEL B’) ELASTICO-VISCOUS FLUID SATURATED

BY A DARCY-BRINKMAN POROUS MEDIUM

G. C. Rana*, S. K. Kango**, Kalpna Chadha***

The present paper investigates the thermal convection in Walters’ (model B’) fluid
saturated by a porous medium in the presence of uniform vertical magnetic field.
For the porous medium, Brinkman model is employed and Walters’ (model B’) fluid
model is used to describe the rheological behavior of elastico-viscous fluid. By ap-
plying normal mode analysis method, the dispersion relation has been derived and
solved analytically. It is observed that the magnetic field and viscoelasticity intro-
duce oscillatory modes. For stationary convection, it is observed that the Walters’
(model B’) elastico-viscous fluid behaves like an ordinary Newtonian fluid. The effects
of Darcy number, magnetic field and medium permeability have been discussed ana-
lytically and numerically in detail. The case of overstability has also been discussed
and a sufficient condition for the non-existence of overstability is derived.

Keywords : Darcy-Brinkman porous medium, magnetic field, thermal convection,
Walters’ (model B’) fluid

1. Introduction

The problem of thermal convection in porous medium has attracted considerable in-
terest during the last few decades, because it has various applications in geophysics, soil
sciences, ground water hydrology, astrophysics, food processing, oceanography, limnology
and engineering etc.

Many researchers have investigated thermal convection problems by taking different types
of fluids. A detailed account of the thermal instability of a Newtonian fluid, under varying
assumptions of hydrodynamics and hydromagnetics has been given by Chandrasekhar [1].
Bhatia and Steiner [2] have studied the thermal instability of a Maxwellian visco-elastic
fluid in the presence of magnetic field while the thermal instability in a viscoelastic fluid in
hydromagnetics has been considered by Sharma [3].

The medium has been considered to be non-porous in all the above studies. The inves-
tigation in porous media has been started with the simple Darcy model and gradually was
extended to Darcy-Brinkman model. A good account of convection problems in a porous
medium are given by Vafai and Hadim [4], Ingham and Pop [5] and Nield and Bejan [6].
Lapwood [7] has studied the convective flow in a porous medium in hydromagnetics using
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linearized stability theory whereas Rayleigh instability of a thermal boundary layer in flow
through porous medium has been considered by Wooding [8]. The gross effect when the fluid
slowly percolates through the pores of the rock is represented by the well known Darcy’s
law.

There are many elastico-viscous fluids that cannot be characterized by Maxwell’s con-
stitutive relations or Oldroyd’s constitutive relations. One such class of fluids is Walters’
(model B’) elastico-viscous fluid having relevance in chemical technology and industry. Wal-
ters’ [9] reported that the mixture of polymethyl methacrylate and pyridine at containg
30.5g of polymer per litre with density 0.98 g per litre behaves very nearly as the Walters’
(model B’) elastico-viscous fluid. Walters’ (model B’) elastico-viscous fluid form the basis
for the manufacture of many important polymers and useful products. Sharma and Rana
[10] have studied the stability of Walters’ (model B’) superposed fluid in porous medium.
Baris [11] has studied the steady three-dimensional flow of a Walter’s B’ fluid in a vertical
channel whereas Sharma and Rana [12] have studied thermal instability of an incompress-
ible Walters’ (model B’) elastico-viscous fluid in the presence of variable gravity field and
rotation in porous medium.

The effect of magnetic field on thermal instability of Walters’ (model B’) elastico-viscous
fluid finds importance in geophysics, particularly, in the study of Earth’s core where the
Earth’s mantle, which consists of conducting fluid, behaves like a porous medium which can
become convectively unstable as a result of differential diffusion. The other application of
the results of a magnetic field is in the study of the stability of a convective flow in the
geothermal region. Sharma et al. [13] has studied the stability of stratified Walters’ (Model
B’) fluid in porous medium in the presence of suspended particles and variable magnetic
field whereas Sharma and Kango [14] studied the effect of suspended particles and variable
magnetic field on the stability of two superposed fluids in porous medium and found that
magnetic field completely stabilizes the system.

Recently, Shivakumara et al. [15] have studied the effect of thermal modulation on the
onset of thermal convection in Walters’ B viscoelastic fluid in a porous medium whereas
Joneidi et al. [16] studied the homotopy analysis method to Walter’s B fluid in a vertical
channel with porous wall. Nadeem and Akbar [17] studied the peristaltic flow of Walter’s B
fluid in a uniform inclined tube whereas Kuznetsov and Nield [18] studied thermal instability
in a porous medium layer saturated by a nanofluid in a Darcy-Brinkman porous medium.
Kango et al. [19] studied the thermosolutal instability in Walters’ (model B’) fluid in the
presence of Hall currents in porous medium in hydromagnetics while the convection in
Walters’ (model B’) fluid in a Darcy-Brinkman porous medium is studied by Rana [20]. More
recently, Rana and Jamwal [21] studied the effect of rotation on the onset of compressible
viscoelastic fluid saturating a Darcy-Brinkman porous medium and found that Darcy number
has stabilitizing effect on the system.

Keeping in mind the importance in various applications mentioned above, our interest, in
the present paper is to study the thermal convection in Walters’ (model B’) elastico-viscous
in the presence of uniform vertical magnetic field in a Darcy-Brinkman porous medium.

2. Mathematical model and perturbation equations

Here, we consider an infinite horizontal layer of an electrically conducting Walters’
(model B’) elastico-viscous fluid of depth d in a porous medium bounded by the planes
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z = 0 and z = d in an isotropic and homogeneous medium of porosity ε and permeability
k1, which is acted upon by a uniform vertical magnetic field H(0, 0, H) and variable gravity
g(0, 0,−g) as shown in figure 1. This layer is heated from below such that a steady adverse
temperature gradient β = (|dT/dz|) is maintained. The character of equilibrium of this
initial static state is determined by supposing that the system is slightly disturbed and then
following its further evolution.

Fig.1: Geometrical configuration of physical situation

The hydromagnetic equations in porous medium (Chandrasekhar [1], Walters’ [9],
Kuznetsov and Nield [18] and Rana [19], Rana and Jamwal [21]) relevant to the problem are
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,

ρs, Cs, ρ0, Cf denote the density and heat capacity of solid (porous) matrix and fluid
respectively.

The equation of state is
ρ = ρ0 [1 − α (T − T0)] , (6)

where the suffix zero refers to values at the reference level z = 0. Here ρ, μ, μ′, p, ε, T , μe,
α, �q(0, 0, 0) and �H = (0, 0, �H) stand for density, viscosity, viscoelasticity, pressure, medium
porosity, temperature, magnetic permeability, thermal coefficient of expansion, velocity of
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the fluid and magnetic field. Here μ̃ and κ are the effective viscosity and effective thermal
diffusivity of the porous medium.

The initial state of the system is taken to be quiescent layer (no settling) with a uniform
particle distribution number. The initial state is

q = (0, 0, 0) , qd = (0, 0, 0) , T = −β z + T0 , ρ = ρ0 (1 + αβ z) .

Let q(u, v, w), θ, δp and δρ denote, respectively, perturbations in fluid velocity q(0, 0, 0),
temperature T , pressure p and density ρ while ν and ν′ denote respectively the kinematic
viscosity and kinematic viscoelasticity of the fluid.

The change in density δρ caused by perturbation θ temperature is given by

δρ = −αρ0 θ . (7)

Then equations (1)–(5), on linearization, give
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The boundaries are taken to be free as well as perfect conductors heat and the adjoining
medium is electrically non-conducting. The case of two free surfaces is a little artificial
except in the case of stellar atmospheres. However this assumption allows us to obtain the
analytical solution without affecting the essential features of the problem. The boundary
conditions appropriate for the problem are

w =
∂2w

∂z2
= 0 , θ = 0 , at z = 0 and z = d (13)

and �h is continuous with an external vacuum field.

Equations (8)–(12) give
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where
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.

3. Dispersion relation

Analyzing the disturbances into normal modes, we assume that the perturbation quan-
tities have x, y and t dependence of the form

[w, θ, hz] = [W (z),Θ(z),K(z)] exp(i kx x+ i ky y + n t) , (17)

where kx and ky are the wave numbers in the x and y directions, k = (k2
x + k2

y)1/2 is the
resultant wave number and n is the frequency of the harmonic disturbance, which is, in
general, a complex constant.

Using expression (17), equations (14)–(16) in non-dimensional form, become
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where we have put a = k d, σ = n d2/ν, Pl = k1/d
2 is the dimensionless medium permeabil-

ity, Pr = ν/κ, is the thermal Prandtl number, Qr = ν/η, is the magnetic Prandtl number,
F = ν′/d2, is the dimensionless kinematic viscoelasticity, DA = μ̃K1/(μd2), is the Darcy
Brinkman number and D∗ = dd/dz and the superscript ∗ is suppressed.

Eliminating K and Θ between equations (18)–(20), we obtain{[
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where

R =
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ν κ

is the thermal Rayleigh number, and

Q =
μeH

2 d2

4π ρ0 ν η

is the Chandrasekhar number.

Here we assume that the temperature at the boundaries is kept fixed, the fluid layer is
confined between two boundaries and adjoining medium is electrically non conducting. The
boundary conditions appropriate to the problem are (Chandrasekhar, [1])

W = D2W = DZ = Θ = 0 at z = 0 and 1 (22)
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and the components of h are continuous. Since the components of the magnetic field are
continuous and the tangential components are zero outside the fluid, we have

DK = 0 , (23)

on the boundaries. Using the boundary conditions (22) and (23), we can show that all the
even order derivatives of W must vanish for z = 0 and z = 1 and hence, the proper solution
of equation (21) characterizing the lowest mode is

W = W0 sinπz , W0 is a constant. (24)

Using equation (24) in (21), we obtain the dispersion relation
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Equation (25) is required dispersion relation accounting for the effect of magnetic field,
medium permeability and viscoelasticity on thermal convection in Walters’ (model B’)
elastico-viscous fluid in a Dracy-Brinkman porous medium.

4. Stability of the system and Oscillatory modes

Here we examine the possibility of oscillatory modes, if any, in Walters’ (model B’)
elastico-viscous fluid due to the presence of magnetic field, viscoelasticity and gravity field.
Multiply equation (18) by W ∗ the complex conjugate of W , integrating over the range of z
and making use of equations (18)–(20) with the help of boundary conditions (22) and (23),
we obtain [
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and σ∗ is the complex conjugate of σ. The integral part I1, . . . , I6 are all positive definite.

Putting σ = σr + iσi in equation (26) and equating the real and imaginary parts, we
obtain [(
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It is evident from equation (27) that σr is positive or negative. Therefore, the system is
stable or unstable. Equation (28) implies that σi = 0 or σi �= 0 which mean that modes may
be non oscillatory or oscillatory. The oscillatory modes are introduced due to presence of
magnetic field and viscoelasticity which were non-existent in their absence.

5. The stationary convection and discussion

For stationary convection, putting σ = 0 in equation (25), reduces it to

R1 =
1 + x

x

[
1 + x

P
+

(1 + x)2DA1

P
+
Q

ε

]
, (29)

which expresses the modified Rayleigh number R1 as a function of the dimensionless wave
number x and the parameters DA1 , P , Q1 and Walters’ (model B’) elastico-viscous fluid
behave like an ordinary Newtonian fluid since elastico-viscous parameter F vanishes with σ.

To study the effects of Darcy number, magnetic field and medium permeability, we
examine the behavior of ∂R1/∂DA1 , ∂R1/∂Q1 and ∂R1

∂P analytically and numerically.

From equation (29), we obtain

∂R1

∂DA1

=
(1 + x)3

xP
, (30)

which shows that Darcy number has stabilizing effect on the system which is an agreement
with the result derived by Kuznetsov and Nield [18], Rana [20] and Rana and Jamwal [21].
Also, in fig. 2, R1 increases with the increase in DA1 as shown. Thus, Darcy number has
stabilizing effect, which clearly verifies the analytical result (30).
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Fig.2: Variation of Rayleigh number R1 with Darcy number DA1 for Q1 = 15, ε = 0.3,
P = 0.4 for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8

From equation (29), we get
∂R1

∂Q1
=

1 + x

x ε
. (31)

Thus magnetic field stabilizes the system which is an agreement with the result derived by
Bhatia and Stiener [2], Sharma [3], Sharma and Kango [14] and Kango et al. [19]. Also, in
fig. 3, R1 increases with the increase in magnetic field parameter Q1. Hence, magnetic field
has stabilizing effect, which clearly verifies the analytical result (31).

Fig.3: Variation of Rayleigh number R1 with magnetic field Q1 for DA1 = 0.05,
ε = 0.3, P = 0.4 for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8

It is evident from equation (29) that

∂R1

∂P
=

1 + x

xP 2
[1 + (1 + x)2DA1 ] . (32)

From equation (32), we observe that medium permeability has destabilizing effect on the
system. Also in fig. 4, R1 decreases with the increase in medium permeability P . Hence,
medium permeability has destabilizing effect, which clearly verifies the analytical result (32).
This destabilizing effect is an agreement of the earlier work of, Sharma [3], Sharma and
Rana [12], Kango et al. [19], Rana [20] and Rana and Jamwal [21].



Engineering MECHANICS 433

Fig.4: Variation of Rayleigh number R1 with medium permeability P for DA1 = 0.05,
Q1 = 15, ε = 0.3 for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8

6. The case of overstability

Here, we consider the possibility of whether instability may occur as an overstability.
When the marginal state is oscillatory, we must have σr = 0, σi �= 0.

Since for overstability, we wish to determine the critical Rayleigh number for the onset
of instability via a state of pur oscillations, it suffices to find conditions for which (25) will
admit of solutions with σ1 real.

Equating the real and imaginary parts of equation (25) and eliminating between them,
we obtain

A1 σ
2
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Since σ1 is real for overstability, the two values of σ1 are positive. Equation (32) shows
that this is clearly impossible if A1 > 0 and B1 > 0. Therefore, A1 > 0 and B1 > 0 gives
sufficient condition for the non-existence of overstability which yields

E Pr > F π (1 + x)2 and E Pr > Qr ,

which implies
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[
ε+ (1 − ε)

ρs Cs

ρ0 Cf

]
and
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d
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ν

κ

[
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ρsCs
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]
. (36)

Therefore, the conditions (36) are sufficient conditions for the non-existence of overstabi-
lity, the violation of which does not necessarily imply occurrence of overstability. These
conditions are good agreement with the earlier results of Sharma and Rana [12].
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7. Conclusions

The thermal convection in Walters’ (model B’) elastico-viscous fluid in a Darcy Brinkman
porous medium in the presence of uniform vertical magnetic field has been investigated.
The dispersion relation, including the effects of Darcy number, magnetic field, medium
permeability and viscoelasticity on the thermal convection in Walters’ (model B’) fluid is
derived. From the analysis, the main conclusions are as follows :

(i) For the case of stationary convection, Walters’ (model B’) elastico-viscous fluid be-
haves like an ordinary Newtonian fluid.

(ii) The Darcy number and magnetic field stabilize the system while medium permeability
destabilizes the system in the stationary convection as shown in figures 2, 3 and 4
respectively.

(iii) The oscillatory modes are introduced due to presence of viscoelasticity, magnetic field
and gravity field, which were non- existent in their absence.

(iv) Sufficient conditions for the non-existence of overstability is derived, the violation of
which does not necessarily imply occurrence of overstability.
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Nomenclature
q Velocity of fluid
p Pressure
�g Gravitational acceleration vector
g Gravitational acceleration
�H Magnetic field
k1 Medium permeability
T Temperature
t Time coordinate
cf Heat capacity of fluid
k Wave number of disturbance
kx, ky Wave numbers in x and y directions
Pr Thermal Prandtl number
Qr Magnetic Prandtl number
Pl Dimensionless medium permeability
DA Darcy-Brinkman number
n Growth rate of the disturbance

Greek Symbols
ε Medium porosity
ρ Fluid density
μ Fuid viscosity
μ′ Fluid viscoelasticity
μ̃ Effective viscosity of porous medium
ν Kinematic viscosity
ν′ Kinematic viscoelasticity
κ Thermal diffusitivity
α Thermal coefficient of expansion
β Adverse temperature gradient
θ Perturbation in temperature
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δ Perturbation in respective physical quantity
η Electrical resistivity
μe Magnetic permeability
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