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COUPLED LONGITUDINAL 1–D THERMAL AND
VISCOELASTIC WAVES IN MEDIA WITH

TEMPERATURE DEPENDENT MATERIAL PROPERTIES

Harry H. Hilton*

A general analysis is formulated for the closed loop coupled thermal and displace-
ment viscoelastic 1–D wave problem. The proper inclusion of the highly temperature
sensitive viscoelastic material properties renders the problem nonlinear, even though
the displacements and material properties continue to obey linear relations. Vari-
ous categories of open and closed loop temperature-displacement couplings as well as
boundary conditions are formulated and discussed. Comparisons between tempera-
ture independent and dependent material properties indicate that the nature of the
latter nonlinear problem radically differs from the former steady-state temperature
linear one.

Keywords : material temperature sensitivity, longitudinal waves, thermal waves, non-
linear variable coefficient integral PDEs

1. Introduction

Propelled by intense needs for the development of structural applications of high poly-
mers, solid propellants, elevated temperature metals, composites, etc., fundamental research
efforts during the last sixty plus years starting with [3] have moved linear viscoelasticity into
the realm of mature sciences [10] and [3–17]. However, there remain a number of problems
areas that need further research refinements, such as improved linear characterization, ana-
lysis and computational protocols and practically the entire nonlinear viscoelasticity area.

Analyses in the presence of temperature fields, whether static T (x) or fully dynamic
T (x, t) where x = {xi}, with i = 1, 2, 3 are Cartesian coordinates, generate their own set of
intrinsic difficulties and fundamentally distinct responses. The temperature dependence of
viscoelastic coefficients of viscosity η generally follows the Arrhenius relation [2]

η(Θ) = η0 exp
(
− Q

R Θ

)
. (1)

See Table 1 for symbol legend. A plot of this equation in Fig. 1 shows that η varies about
one order of magnitude for every 20 ◦C. This extremely sensitive temperature dependence
of viscoelastic material properties produces significant orders of magnitude changes (shifts)
in relaxation moduli times as seen in Fig. 2. It is to be noted that three distinct, albeit
related, temperature definitions (T, ϑ, Θ) are used in this paper as listed in Table 1.
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– Elastic constitutive relations are path independent and algebraic, while the viscoelas-
tic ones are integral partial differential equations. Table 2 summarizes the coupling
between displacements, temperature and material properties.

– It has been shown in [34] that steady state temperatures cannot arise from the coupled
closed loop elastic relations nor are T (t) function possible solutions to the coupled
governing relations. In other words, while these forms of temperature functions are
certainly physically and mathematically realizable they do not lead to any elastic
displacement-temperature coupling.

– However, in viscoelastic media even the most degenerate constant temperature case
leads to coupling because of the relaxation moduli, such as E(x, t − t′, T0), are inhe-
rently temperature dependent.

Fig.1: Viscoelastic viscosity temperature dependence

Fig.2: Relaxation modulus variation with temperature
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Temperature Definition Where used Units Eq. no. Scale

T material E(T ), ET(T ), ◦C (5) T = Θ − 273.16

temperature C(T ), CT(T )

ϑ temperature εTij = αij ϑ ◦C (3) ϑ = T − T0

relative to T0

T0 temperature for εTij = 0 ◦C (3)

Θ absolute η(Θ) K (1) Θ = T + 273.16

temperature

TR and Tg WLF reference aT(T, TR) ◦C (25) TR ≥ Tg

and glassy

temperatures

Tab.1: Temperature definitions

Material Displacement Moduli Density

elastic yes no no

viscoelastic yes yes yes

Tab.2: Temperature coupling

Material Temperature/ Modulus Coupling Governing Convolution EVCP

displacement relations in time space

elastic ∂uE
1 (x, t)/∂t E0(x) weak linear n/a n/a

elastic T (x, t) E0(x) strong linear n/a n/a

viscoelastic ∂u1(x, t)/∂t E[x, t, t′, T (x, t′)] strong nonlinear no no

viscoelastic T (x, t) E[x, t, t′, T (x, t′)] strong nonlinear no no

Tab.3: Elastic and viscoelastic coupling

– For the ubiquitous worst case scenario when T (x, t), material properties effectively
become non-homogeneous resulting in governing integral partial differential relations
(IPDE) without convolution properties and with spatially and temporal variable coef-
ficients, thus making even the linear problem not amenable to the elastic/viscoelastic
correspondence principle (EVCP) analysis.

– In all cases where material properties are considered temperature dependent, the
analysis of coupled temperature-displacement problems entails solutions of nonlinear
governing relations (see Table 3) and, consequently, the EVCP is equally inapplicable.

There exists a substantial body of literature on separate thermal waves and elastic stress
waves [18] [24] and for coupled thermal/elastic waves [27–32]. Uncoupled viscoelastic stress
wave analyses may be found in [5] and [41–50]. The latter are typified by stress/displacement
waves traveling at elastic wave speeds but with decaying amplitudes and a dissipating after-
flow behind the wave front. The stability of the governing relations for pure viscoelastic
deformation waves at constant temperatures is analyzed in [48]. Uncoupled (pure) thermal
waves are independent of deformations and are, in effect, heated rigid body phenomena and
may be considered as zero approximations to the coupled formulation.

Early formulations of effects of temperature dependent viscoelastic properties on the
state of stress and strain may be found in [53–61].
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One of the important factors in the study of 1–D wave propagations is that such analyses
present analytical and experimental tools for the relatively simple and accurate determina-
tion of the instantaneous viscoelastic modulus E0 at either constant or variable temperatures.

2. Analysis

2.1. Constitutive relations

One of the most waxing problems yet remaining in linear thermo-viscoelasticity is the
formulation of an efficient protocol for handling integral relations for temperature dependent
material properties as the following analysis indicates. A MATLABTM subroutine has been
developed in [64] but further refinements are needed for extensions to large scale finite
element procedure.

In a Cartesian coordinate system1, x = {xj} (j = 1, 2, 3), the linear anisotropic non-
homogeneous non-isothermal linear stress–strain relations can be stated as

elastic =⇒

⎧⎨⎩σE
ij(x, t) = EE

ijkl(x)
[
εEkl(x, t) − αij ϑ(x, t)

]
εEij(x, t) = CE

ijkl(x) σE
kl(x, t) + αij ϑ(x, t)

, (2)

viscoelastic =⇒

=⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σij(x, t) =

t∫
−∞

E∗
ijkl(x, t, t′) εkl(x, t′) dt′ −

t∫
−∞

E∗T
ij (x, t, t′) αij ϑ(x, t′)︸ ︷︷ ︸

= εTij(x,t′)

dt′

εij(x, t) =

t∫
−∞

C∗
ijkl(x, t, t′)σkl(x, t′) dt′ +

t∫
−∞

C∗T
ij (x, t, t′)αij ϑ(x, t′) dt′

, (3)

where E∗s and C∗s are respectively moduli and compliances with

E∗
ijkl(x, t) =

∂Eijkl(x, t)
∂t

and C∗
ijkl(x, t) =

∂Cijkl(x, t)
∂t

. (4)

The temperature ϑ is measured relative to a reference temperature T0 where the thermal
strains are at rest, i.e. εT

ij(T0) = 0. Table 1 lists the various temperature definitions and
their notational symbols.

Viscoelastic moduli and compliances are highly temperature sensitive, such that
(see Fig. 1)

Eijkl(x, t, t′) ≡ Eijkl [x, t, t′, T (x, t′)] and ET
ij(x, t, t′) ≡ ET

ij [x, t, t′, T (x, t′)] . (5)

From Eqs. 3 it can be seen that zero stress conditions, σij(x, t) = 0, and T = T (x) only will
produce strains that creep in time. No such strain-time variations occur in elastic materials.
For time independent temperatures the constitutive relations simplify to t-space convolution
integrals with

Eijkl(x, t, t′) ≡ Eijkl [x, t − t′, T (x)] and ET
ij(x, t, t′) ≡ ET

ij [x, t − t′, T (x)] . (6)

1 The Einstein tensor notation applies throughout the paper. Pairs of repeated indices indicate summation
while underlined indices signify no summations.
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The explicit x dependence of the moduli and compliances indicates non-homogeneous ma-
terials in their own right exclusive of any temperature contributions. Additionally, strains
are dependent on small displacements through the linear relations

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

Alternately, the constitutive relations can be expressed in a differential form as

Pij(x, t)
{

σij(x, t)
}

= Qijkl(x, t) {εkl(x, t)} − QT
ij(x, t) {α ϑ(x, t)} (8)

with

Pij(x, t) =
r∑

n=1

aij [x, T (x, t)]
∂n

∂tn
, Qijkl(x, t) =

r∑
n=1

bijkl [x, T (x, t)]
∂n

∂tn
,

QT
ij(x, t) =

r∑
n=1

bT
ij [x, T (x, t)]

∂n

∂tn

(9)

and where the underscore indicates no summation over the so designated indices. Elastic
material characterization is included with Pij = 1, Qijkl = EE

ijkl and QT
ij = EET

ij . Eqs. (3)
essentially are the Green’s functions associated with the PDEs (8). With the higher and more
numerous derivatives now present in the differential form, extreme care must be exercised
to properly and consistently state the many initial conditions. Real material high polymer
characterization may require derivatives up to orders of 25 to 30. Such higher order deriva-
tives require additional initial conditions when compared to the integral relations, but the
differential form may offer limited advantages when for instance Runge-Kutta techniques are
employed, although in [64] a protocol is formulated for handling nonlinear integral differential
equations in conjunction with the Runge-Kutta method. Integral-differential constitutive
relations will exhibit at most second order time derivatives plus single temporal integrals.

The elastic relations are path independent algebraic equations while viscoelastic media
exhibit Volterra hereditary behavior with energy dissipation and memory. In viscoelastic
materials the thermal strains α ϑ can creep independently of the mechanical strains εkl. This
means that it is possible to creep due to thermal expansions alone with zero stresses present
throughout the body. In elasticity both types of these strains follow the same moduli and
stresses and strains are time invariant under static loading conditions.

Elastic materials are conservative and their loading and unloading paths are identical and
history independent. Unless inertia effects are present, elastic stresses and strains, unlike
viscoelastic ones, are always in phase. Viscoelastic materials dissipate energy starting at
the initial condition time and continuing through the entire subsequent time period. This
non-conservative action is initiated at any stress level and, therefore, neither material class
possesses a yield point or yield stress.

Unlike elastic responses, another consequence of this viscoelastic behavior is the inability
to produce stress-strain curves since all stress/strain responses are path and history specific.
Any and all such data can be presented only in the form of stress vs. time and strain vs. time
curves. Furthermore, any such responses are individually loading and temperature history
dependent and are so reflected in these σ−t and ε−t plots. The explicit dependence of
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relaxation moduli on positions xi indicates that the material may be non-homogeneous in
its own right in addition to the temperature T (x) or T (x, t) dependences.

Anisotropic isothermal non-homogeneous linear viscoelastic moduli can be expressed as
Prony series [26] in the form2

Eijkl(x, t) = Eijkl∞ (x) +

Nijkl∑
n=1

Eijkln(x) exp

(
− t

τijkln (x)

)
(10)

with (Fig. 3)

EE
ijkl(x) ≡ Eijkl0(x)︸ ︷︷ ︸

instantaneous elastic moduli

= Eijkl∞ (x)︸ ︷︷ ︸
fully relaxed moduli

+

Nijkl∑
n=1

Eijkln(x)︸ ︷︷ ︸
viscoelastic contributions

. (11)

The constitutive relations (3) can be rewritten as

σij(x, t) =

= EE
ijkl(x)︷ ︸︸ ︷

Eijkl(x, 0) εkl(x, t)︸ ︷︷ ︸
instantaneous elastic response

+

t∫
0

Eijkl(x, t − t′)
∂εkl(x, t′)

∂t′
dt′

︸ ︷︷ ︸
viscoelastic response

. (12)

The dimensions3 of the various parameters are given in Table 4. This includes symbols
with and without subscripts n. Therefore,

En = E∗
n τn and Cn = C∗

n τn (13)

etc. Typical elastic and viscoelastic moduli curves are shown in Fig. 3.

Fig.3: Normalized isotropic isothermal relaxation moduli

2 Underlined indices indicate no summations. The Einstein tensor notation is used throughout this paper.
3 [F]= force, [L]= length, [T]= time
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Parameters Dimensions

E∗
ijkln, E∗T

ijn [F/(L2 − T)]

Eijkln, ET
ijn [F/L2]

C∗
ijkln, C∗T

ijn [L2/(F − T)]

Cijkln, CT
ijn [L2/F]

τn [T]

Tab.4: Viscoelastic parameters ([F]= force, [L]= length, [T] = time)

At t = −∞ and in the interval −∞ ≤ t < 0 all state variables are at rest, i.e.

σij(x, t) = εij(x, t) = ui(x, t) = 0 for t ∈ [−∞, 0) (14)

and initial conditions (ICs) at t = 0 are prescribed for individual problems for state variables
ui(x, t) and σij(x, t) and their time derivatives.

Elastic materials posses algebraic constitutive relations and represent conservative

systems. Viscoelastic ones, on the other hand, respond to time hereditary integrals,

which imply energy dissipation, creep, relaxation phenomena, memory and time histo-

ries. Additionally, viscoelastic thermal expansions, unlike their elastic counter parts,

can take place in time at sustained zero stress levels throughout the entire medium.

Fig.4: The prismatic bar

2.2. Elastic and viscoelastic coupled thermal governing relations

As an illustrative example and for the sake of simplicity, consider the 1–D problem of a
long isotropic prismatic bar with a heat source and impact load at the end x1 = 0 (Fig. 4).
Standing 1–D displacement and thermal waves will travel down the bar toward the end at
x1 = L for t > 0 and the solution will be of the form

u1(x, t) = u1(x1, t) , (15a)

T (x, t) = T (x1, t) , (15b)

ρ[x, t, T (x, t)] = ρ(x1, t) viscoelastic only , (15c)

E[x, t, T (x, t)] = E(x1, t) viscoelastic only , (15d)

x1 ∈ [0, L] and t ∈ [0,∞] .

While it may be justifiable in some instances to assume the density ρ to be temperature
independent, the same cannot equally defensibly be said about the relaxation moduli E,
G, K and their counterpart compliances (see Fig. 2). The state variables are identified
in Eqs. (15a)–(15c) while the modulus E [x, t, T (x, t)] is a temperature dependent material
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property. Other state variables, such as σij , εij , σ and ε will be eliminated through substi-
tution from the governing relations (17)–(24).

In the elastic case, the waves will not dissipate any energy and eventually reflect from
the end x1 = L and continue indefinitely back and forth between the two ends. For the
viscoelastic material, dissipation will take place with possibly no reflection from x1 = L or
with at most a finite number of reflections at both ends.

The driver energy source comes from either or both an input load and/or heat flow at
x1 = 0. The initial conditions (ICs) for the study at hand are due to impulsive inputs at
x1 = 04

F (0, 0) = F0 δ(t) , (16a)

q1(0, 0) = q10 δ(t) , (16b)

u1(x1, 0) = 0 , (16c)

T (x1, 0) = T̃0 , (16d)

ρ(x1, 0) = ρ0 . (16e)

The bar and the state variables are at rest for t ∈ [−∞ 0].

For small deformations (7) and linear elastic or viscoelastic materials (2) and (3), the
governing relations describing the coupled 1–D thermal and displacement wave motions are
given by Eqs. (17)–(24)

conservation of mass =⇒ LCM(u1, T ) =
D
[
ρ[x1, t, T (x1, t)]

= ε(x,t)︷ ︸︸ ︷
div u(x, t)

]
D t

= 0 (17)

where Θ = T + T ∗
0 is the absolute temperature. For a 1–D ideal material, the law reads in

various forms as

equation of state =⇒ LES(u1, ρ, T ) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(p, ρ, V, Θ) = f(σ11, ρ, ε, Θ) = 0

or

σ(x1, t) =
σ11(x1, t)

3︸ ︷︷ ︸
=pressure p

−ρ(x1, t)R Θ(x1, t) = 0

or

σ11(x1, t)
9

[
∂u1(x1, t)

∂x1
+ 2

∂u2(x1, x2, t)
∂x2

]
︸ ︷︷ ︸

=3 ε(x1,t)= εii(x1,t)

−R Θ(x1, t) = 0

(18)

where the displacement u2 has for consistency at most the permissible form

u2(x, t) = u3(x, t) = [a0(t) + a1(t)x2] fu2(x1, t) (19)

4 The force per unit area F has the units of [F/L2]. See Table 4.
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with

constitutive relations =⇒ LCR1(u1, T ) = σ11(x1, t) =

=

t∫
−∞

E[x1, t, t
′, T (x1, t

′)]
∂2u1(x, t′)

∂x1 ∂t′
dt′ −

t∫
−∞

ET[x1, t, t
′, T (x1, t

′)]
∂ [α ϑ(x1, t

′)]
∂t′

dt′ ,
(20)

constitutive relations =⇒ LCR2(u1, T ) = ε22(x1, t) =
∂u2(x1, x2, t)

∂x2
=

=

t∫
−∞

C1122[x1, t, t
′, T (x1, t

′)]
∂σ11(x1, t

′)
∂t′

dt′ +

t∫
−∞

CT[x1, t, t
′, T (x1, t

′)]
∂ [α ϑ(x1, t

′)]
∂t′

dt′ ,

(21)

conservation of thermal energy =⇒ LTH(u1, T ) =

=
∂

∂x1

{
k[T (x1, t)]

∂T (x1, t)
∂x1

}
− ∂

∂t
{ρ[x1, t, T (x1, t)] cv[T (x1, t)] T (x1, t)} +

external
heat flow or

heat loss (T3)︷ ︸︸ ︷
q1(x1, t)︸ ︷︷ ︸

uncoupled rigid body heat conduction law [28]

−

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EE α T0
∂2uE

1 (x1, t)
∂x1∂t︸ ︷︷ ︸

Coupling Term T4EL: elastic volume changes

α T0
∂

∂t

⎛⎝ t∫
−∞

E[x1, t, t
′, T (x1, t

′)]
∂2u1(x1, t

′)
∂x1 ∂t′

dt′

⎞⎠
︸ ︷︷ ︸

Coupling Term T4VE: viscoelastic volume changes

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= 0 .

(22)

The heat flux Q in has been eliminated from Eq. (22) through

Fourier’s heat conduction law =⇒

LHC(T ) = Q(x1, t)︸ ︷︷ ︸
heat flux (T3)

+ κ[T (x1, t)]
∂T (x1, t)

∂x1︸ ︷︷ ︸
Conductivity Term T5

= 0 (23)

although convection, radiation, etc., laws are equally applicable.

conservation of linear momentum =⇒

LLM (u1, T ) = − ∂

∂t

(
ρ[x1, t, T (x1, t)]

∂u1(x1, t)
∂t

)
+ f1(x1, t) +

∂σ11(x1, t)
∂x1

= 0 =⇒⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂

∂t

(
ρ[x1, t, T (x1, t)]

∂uE
1 (x1, t)
∂t

)
︸ ︷︷ ︸

inertia force (T1E2)

+
∂

∂x1

(
EE(x1)

∂uE
1 (x1, t)
∂x1

)
︸ ︷︷ ︸
internal elastic stresses (T2E2)

− ∂

∂t

(
ρ[x1, t, T (x1, t)]

∂u1(x1, t)
∂t

)
︸ ︷︷ ︸

inertia force (T1VE2)

+
∂

∂x1

⎛⎝ t∫
−∞

E[x1, t, t
′, T (x1, t

′)]
∂2u1(x1, t

′)
∂x1 ∂t′

dt′

⎞⎠
︸ ︷︷ ︸

internal viscoelastic stresses (T2VE2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+
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+ f1(x1, t)︸ ︷︷ ︸
body force
other than

inertia
(T3B2)

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x1
[EE(x1)α ϑ(x1, t)]︸ ︷︷ ︸

Coupling Term T4EL2 : stresses due to elastic thermal expansions

∂

∂x1

⎛⎝ t∫
−∞

ET[x1, t, t
′, T (x1, t

′)]
∂[α ϑ(x1, t

′)]
∂t′

dt′

⎞⎠
︸ ︷︷ ︸

Coupling Term T4VE2: stresses due to viscoelastic thermal expansions

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= 0 . (24)

It must be noted that regardless of whether or not the heat flow term T3 in (22) is time

dependent, the coupling of the governing elastic or viscoelastic relations can only lead to

a temperature function T (x, t) and never produce a steady state one. The temperature

consequences are displayed in Table 3.

Aside from the readily visible important fundamental differences in elastic and viscoelas-
tic governing Eqs. (22) and (24), there remains the most significant matter of the temperature
dependence of Young’s and relaxation moduli. When one eliminates all relaxation/creep in-
fluences at elevated temperatures from Young’s modulus experimental measurements, the
remainder shows little variations of elastic moduli with temperature [38–40]. Viscoelas-
tic relaxation moduli, on the other hand, show extreme sensitivity to temperature due
to real material variations in viscosity coefficients of approximately one order of magni-
tude per 20 ◦C – see Fig. 1. The additional most significant effect of this temperature
dependence is to change the kernel functions in the hereditary integrals from E(x, t − t′)
to E(x, t, t′) = E[x, t, t′, T (x, t′)] thus destroying the convenient properties of the convo-
lution integrals and making the governing relations nonlinear in the case of the coupled
temperature-displacement formulation.

Fig.5: A typical temperature shift function

A large class of viscoelastic materials, known as thermo-rheologically simple materials
(TSMs), has behavioral responses that admit the presence of the WLF5 material property

5 Also known as the Williams-Landel-Ferry shift factor/function.
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shift function aT [51] empirically defined as (Fig. 5)

loge [aT(T )] =
−C̃1(T − TR)

C̃2 + T − TR

∈ (−∞,∞] , T ≥ Tg (25)

with TR a conveniently chosen constant reference temperature in ◦C and Tg is the glassy
temperature. Typical values for high polymers are C̃1 ≈ 17.4 and C̃2 ≈ 51.6 ◦C. The
reference temperature TR may, but need not, be equated to

(a) the rest temperature T0 at which the thermal expansions α ϑ vanish,
(b) the glassy temperature Tg,
(c) any other value provided TR ≥ Tg.

In this paper the temperature TR is arbitrarily set to Tg. By the above definition (25)
it then follows that at T = TR, aT = 1 and the reduced time of Eq. (27) is equal to the
real time, ξ = t, i.e. no temperature shift of the moduli and compliances and moduli and
compliances are the reference functions, such that

E(t) = Ê(ξ)
∣∣∣∣ aT =1

ξ=t

. (26)

This empirical well working model for TSMs defines an associated reduced time ξ(x, t)
as [51], [52]

ξ [x, t, T (x, t)] ≡ ξ(x, t) =

t∫
0

aT[T (x, s)] ds =

t∫
0

exp

(
−C̃1[T (x, s) − TR]

C̃2 + T (x, s) − TR

)
ds (27)

and reduces all relaxation moduli curves at many divers temperatures to a single master
relaxation curve for each TSM with Ê(x, ξ) = E[x, t, T (x, t)] vs. ξ. Further, examinations
reveal that

t∫
−∞

Eijkl [x, t, t′, T (x, t′)]
∂εkl(x, t′)

∂t′
dt′ ≡

ξ(x,t)∫
−∞

Êijkl [x, ξ(x, t) − ξ′]
∂ε̂kl(x, ξ′)

∂ξ′
dξ′ (28)

and thus the convolution integrals are restored in the ξ-space. However, any success at
recapturing an elastic-viscoelastic correspondence principle in the ξ-space is thwarted by
the fact that the xi derivatives acquire variable coefficients due to the ξ transformations, to
whit

∂

∂xi
=

∂ξ(x, t)
∂xi︸ ︷︷ ︸

=Zi(x,t)= �Zi(x,ξ)

∂

∂ξ
. (29)

The transformation into the ξ-space mandates that

Eijkl(x, t) ≡ Êijkl(x, ξ) = E∞
ijkl(x) +

Nijkl∑
n=1

Eijkln(x) exp

(
− ξ(x, t)

τ0
ijkln(x)

)
(30)
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where τ0
ijkln(x) = τijkln [TR(x)]. Eqs. (28) should be preferentially used in the governing

relations as they simplify the ‘bookkeeping’ and numerical solutions when used. When
substituting (30) into (24) the more convenient evaluative form results [64]

T2VE2 =
∂

∂x1

⎛⎝ t∫
−∞

E[x1, t, t
′, T (x1, t

′)]
∂2u1(x1, t

′)
∂x1 ∂t′

dt′

⎞⎠
︸ ︷︷ ︸

internal viscoelastic stresses (T2VE2)

=

= Z1(x1, t)
∂

∂ξ

⎛⎝ N∑
n=1

⎧⎨⎩En(x1) exp
(
− ξ

τ0
n(x1)

) ξ∫
−∞

exp
(

ξ′

τ0
n(x1)

)
Ẑ1(x1, ξ

′)
∂2û1(x1, ξ

′)
∂ξ′2

dξ′

⎫⎬⎭
⎞⎠ .

(31)

An examination of Eqs. (22) and (24) reveals that the thermo-viscoelastic coupling is
three fold, namely through

– the material dependence on temperature, E(T ) =⇒ non-linear differential-integral
relations

– the displacement terms in the energy relation, u1(x, t) =⇒ fully coupled governing
relations

– the thermal expansions, αij ϑ(x, t) =⇒ fully coupled governing relations

Of course, the last two conditions are also ever present in thermo-elasticity, with a sec-
ondary effect stemming from the weak dependence of Young’s modulus, E0 on T (x, t).
Additionally, the density is coupled with the temperature and displacement through the
conservation of mass and state equations.

2.3. Solution protocols

1. If the density and material and thermodynamic properties are approximated as tem-
perature independent, then the resulting linear constant coefficient integro-differential
equations (17) to (24) are linear and can be solved by standard procedures, such as for
instance Laplace (LT) or Fourier (FT) transforms or by series of separable terms

E(x1, t) = Ê[ξ(x, t), t] = E∞ +
N∑

n=1

En exp
(
−ξ(x1, t)

τn

)
, (32a)

ρ(x1, t) = const. = ρ0 , (32b)

u1(x1, t) =
∞∑

n=1

U(t) Ξu(x1) =
∞∑

n=1

Au
n(t) exp (i ku

n x1) +
∞∑

n=1

Bu
n(t) exp (−iku

n x1) , (32c)

T (x1, t) =
∞∑

n=1

T(t) ΞT (x1) =
∞∑

n=1

CT
n (t) exp

(
ı kT

n x1

)
+

∞∑
n=1

DT
n (t) exp

(
− ı kT

n x1

)
. (32d)

Such a formulation, particularly vis-à-vis temperature independent material properties,
may be considered as a first approximation to the more realistic development in 3. below.

2. Since in the identical thermo-elastic problem the temperature influence on material prop-
erties is marginally weak compared to viscoelastic media, the same integral transform
protocols as above can be employed.
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3. In the more realistic viscoelastic formulation where material properties are indeed tem-
perature dependent and the density is not a constant, Eq. (32a) is replaced by (30) and
Eq. (32b) by (18). The ρ acquires a solution in the form

ρ(x1, t) =
∞∑

n=1

R(t) Ξρ(x1) =
∞∑

n=1

Eρ
n(t) exp (i kρ

n x1) +
∞∑

n=1

F ρ
n (t) exp (−i kρ

n x1) . (33)

4. If material and/or thermodynamic properties are inclusively prescribed as temperature
dependent, then the governing relations are nonlinear and currently there is no hope for
an analytical solution. Numerical procedure involving finite element and finite difference
approaches are then useful [64].

5. If boundary conditions corresponding to say absorbing or reflecting boundaries at x1 = 0
and/or x1 = L are introduced, then Galerkin’s method may be applied to the gover-
ning relation’s spatial dependences and thus resulting in ordinary, rather than partial,
temporal integro-differential nonlinear equations.

6. The collocation method many be used at one or more points, However, here the solution
and its accuracy are very sensitive to the ensemble of selected points.

7. A Runge-Kutta approach may also be employed [62–64] (see [73]).

8. Alternately, for the nonlinear relations (17) to (24), the Poincaré-Kuo method of succes-
sive approximations may be used to linearize the simultaneous PIDEs [65], [66].

9. An approximate analytical EVCP approach realized through averaging temperature de-
pendent moduli/compliances over time interval [60], [61] may also be employed if appro-
ximate analytical solutions are desired.

In order to bring answers/solutions to the coupled 1–D thermo-viscoelastic problem,
a minimum of three simultaneous governing relations – (17), (22) and (24) – must be solved
for the unknowns ρ, T and u1 or alternately a minimum of two relations if the density ρ

is assumed to be approximately constant. In the latter case by essentially considering the
density-temperature variations as higher order, one may eliminate Eqs. (17) and (18) from
the ensemble to be solved.

The material property dependence on the temperature T is given by (27). The order of
some of the derivatives contained in the governing relations may be reduced by using the
E∗ definitions instead of the E ones and also by introducing ε11 as the fourth unknown and
substituting it for u1 where appropriate. This approach then brings into play the fourth
governing simultaneous relation (7) and trades ε11 for u1 as one of the unknowns of choice.

2.4. An illustrative example problem

General Problem Statement and BCs at x1 = 0. – Assume that the elastic instantaneous
moduli E0 are independent of temperature, which in effect is a reality since the viscoelastic
moduli are the ones that are predominantly affected by temperatures [40]. In a homogeneous
medium the E0 is, therefore, a constant. The viscoelastic wave front velocity will in a linear
medium be elastic and given by

c0 = cE =

√
E0

ρ
(34)

with the Young’s (instantaneous) modulus E0 a constant and associated with the specific
viscoelastic medium. The boundary conditions at x1 = 0 are those of a load and a thermal
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impact6 such that

σ11(0, t) = − F0 δ(t), ε11(0, t) =
σ11(0, t)

E0
=

∂u1(0, t)
∂x1

(35)

and
q1(0, t) = q00 δ(t) and T (x, 0) = T̃0 . (36)

While these BCs are mathematically consistent and valid statements, they are physically
unrealizable as it takes a finite time and a finite acceleration to build up a load and/or
temperature level. In Ref. [38] the severe influences of various BCs on a much simpler 1–D
uncoupled physical and mathematical wave problem are examined. However, as a purely
theoretical formulation, the mathematical model is valid and self consistent.

The initial conditions are given by Eqs. (16) as

u1(x1, 0) = ε11(x1, 0) = 0 , T (x1, 0) = T̃0 , x1 ∈ [0, L] . (37)

BCs at Far End x1 = L or x1 = LL. – Three, by no means all inclusive, physically
realistic conditions are presented for conditions at the far end that lead to no reflections,
namely

– (a)All mechanical and thermal energies are dissipated at x1 = LL ≤ L.
– (b)Absorbing boundary conditions (ABCs) are prescribed at x1 = L.
– (c)Thermal and mechanical properties are tailored such that their ensemble values

lead to no reflections at x1 = L [72].

It is to be noted that the last two BCs are at the prescribed bar length L, whereas the
first condition requires the solution of the unknown length LL in addition to the other state
variables.

Let the length of the bar L ≥ LL be such that when the wave fronts reach x1 = LL

at a time tL all energy has been dissipated and no reflective wave or waves take place.
Therefore,

ε11(LL, tL) =
∂u1(x1, tL)

∂x1

∣∣∣∣
x1=LL

= 0 and

T (LL, tL) = T̃0 with tL =
LL

c0
≤ L

c0
.

(38)

The value of LL and, therefore, tL as well are part of the solution and may have to be deter-
mined iteratively with a first approximation of LL = L. These quantities can be determined
from the far end condition that the dissipative energy per unit volume DE(LL, tL) vanishes,
or

DE(LL, tL) = 0 = σ11(LL, tL) ε11(LL, tL) − σ2
11(LL, tL)

2 G0
(39)

where

ε11(LL, tL) =

tL∫
−∞

C(tL, t′)
∂σ11(LL, t′)

∂t′
dt′ =

∂u1(x1, t)
∂x1

∣∣∣∣ x1=LL

t=tL

. (40)

6 See [41], [44], [5–20] for uncoupled viscoelastic stress wave studies and recall footnote 4.
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Subsequent values can, of course, be LL ≤ L. A solution form meeting these BCs term by
term is

u1(x1, t) =
Nu∑
n=1

Au
n(t) cos

(
n π x1

LL

)
+

Nu∑
n=1

Bu
n(t) sin

(
n π x1

LL

)
(41)

T (x1, t) =
NT∑
n=1

AT
n (t) cos

(
n π x1

LL

)
+

NT∑
n=1

BT
n (t) sin

(
n π x1

LL

)
(42)

ρ(x1, t) =
Nρ∑
n=1

Aρ
n(t) cos

(
n π x1

LL

)
+

Nρ∑
n=1

Bρ
n(t) sin

(
n π x1

LL

)
or ρ(x1, t) ≈ ρ0 (43)

for x1 ∈ [0, LL] and t ∈ [0, tL] with tL < ∞ and LL ≤ L < ∞.

Alternately, ABCs can be specified where the length of the bar is specified and inde-
pendent of the solution. For a 100% ABC that does not generate reflected waves the
requirement is

∂u1(x1, t)
∂x1

∣∣∣∣∣
x1=L

= M u1(x1, t)

∣∣∣∣∣
x1=L

(44)

where M is a constant.

For convenience one can prescribe the summation limits to be

Nu = NT = Nρ = N∗ (45)

without loss of generality.

3. Discussion and conclusions

Elastic formulations, although far different from the viscoelastic ones, are the degenerate
much simplified viscoelastic cases. Unfortunately, because of the latter’s extremely strong
material property dependence on temperature the elastic-viscoelastic correspondence prin-
ciples (analogies) are inapplicable in these thermal instances in either the real time space t

or the reduced time space ξ[x, t, T (x, t)]. See Eq. (27).

The thermo-viscoelastic wave problems can be divided into four categories (see Table 6).
The first formulation applies to the present problem only as a poor approximation. In

Conditions for uncoupling Exact formulation

Eqs. (22) and (24) if and only if

totally uncoupled time independent temperature

spatially independent temperature

temperature independent material properties

time independent displacements

temperature uncoupled constant temperature and

temperature independent material properties

displacements uncoupled time independent displacements

Tab.5: Temperature-discplacement coupling (T−u)
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Wave type Displacement and temperature Comments

uncoupled two independent equations no material temperature dependence

coupled with T (x) two coupled relations nonlinear, nonhomogeneous, no EVCP

fully coupled two coupled relations nonlinear, temperature dependent

with T (x, t) with variable coefficients material properties, no EVCP

fully coupled three coupled relations nonlinear, temperature dependent

and �[x, t, T (x, t)] with variable coefficients material properties, no EVCP

Tab.6: Types of 1–D thermo-viscoelastic waves

the second case, even though the temperature only has spatial dependencies, EVCP is
inapplicable due to nonlinear IPDEs. The third example is more inclusive with a spatial as
well as temporal temperature dependency, but with constant density. The fourth example
represents the full fledged thermo-viscoelastic wave problem. Example 2 to 4 all encompass
nonlinear governing relations.

Results of an example with constant density but coupled thermal and viscoelastic dis-
placement waves, including temperature dependent material properties, are depicted in
Figs. 6 to 8. These graphs respectively show carpet plots of stress and temperature vs. dis-
tance and time for the specific 1–D nonlinear example described above. Of interest is the
fact that the two waves in a bar with temperature dependent viscoelastic properties exhibit
decreases in amplitudes with time while not in phase and that the two waves are of con-
siderably different shapes. Similar responses for 1–D displacement wave with temperature
independent viscoelastic properties have been observed previously [5], [10], [41], [47], [49] to
mention a few.

Fig.6: Coupled viscoelastic stress waves for delta function force and heat inputs

Fig. 7 shows the details of a few viscoelastic stress wave fronts with decreasing amplitudes
and the corresponding after flow, which is not present in elastic waves. The after flow and
amplitude degeneration are caused by the energy dissipation. The typical highly significant
material temperature dependence displayed in Figs. 1 and 5 indicate that the additional
temperature coupling due to the functionality of viscoelasticity moduli E[x, t, T (x, t)] is of
primary importance and must be considered in the analysis.
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Fig.7: Coupled viscoelastic stress waves with after-flow for different times

Fig.8: Coupled thermal waves for delta function force and heat inputs

The applied force F (t) at x1 = 0 depicted in Fig. 4 can be readily related to any loadings
other than impact, such as acoustic noise inputs, quasi-static and dynamic loads, etc. Simi-
larly, distinct thermal inputs may be specified.

The complexity, magnitude and details of specific problems determine the type of com-
puter to be used, i.e. from the present solution on a MacBook ProTM laptop to the new
NCSA/NSF Blue WatersTM sustained peta scale 1015 flops/sec super computer [70], [71].
Additionally, the advent of large scale supercomputers has facilitated both analytical and
numerical protocols. Software, such as MATLABTM, MAPLETM, MATHEMATICATM,
etc., is capable of carrying out the numerous analytical Galerkin steps and subsequently
solve the large number of coupled Kutta-Runge simultaneous relations for the solution se-
ries coefficients. (See Eqs. (41) to (43) and [73].) Alternately, in larger more complicated
formulations, spatial finite element and temporal finite difference protocols may be used.
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[36] Parkus H.: Wärmespannungen, Springer, Wien, (1959)
[37] Tauchert T.R., Hetnarski R.B.: Bibliography on Thermal Stresses, Hemisphere, Washington,

DC, (1986)
[38] Beldica C.E., Hilton H.H., Greffe C.: The relation of experimentally generated wave shapes to

viscoelastic material characterizations – analytical and computational simulations, Proceedings
of the Sixteenth Annual Technical Conference of the American Society for Composites CD-
ROM Vol.: 1–11, (2001)

[39] Beldica C.E., Hilton H.H.: The influence of viscoelastic wave generation on experimental
material property characterization – analytical and computational simulations, Proceedings
of the IUTAM Symposium on Mechanical Waves for Composite Structures Characterization,
27–32, (2000)

[40] Beldica C.E., Hilton H.H.: Analytical and computational simulations of experimental deter-
minations of deterministic and random linear viscoelastic constitutive relations, accepted for
publication, Journal of Sandwich Structures and Materials, (2013)

[41] Berry D.S.: Stress propagation in viscoelastic bodies, Journal of Mechanics and Physics of
Solids 6:177–185, (1958)

[42] Coleman B.D., Gurtin M.E.: Waves in materials with memory III. Thermodynamic influences
on the growth and decay of acceleration waves, Archive for Rational Mechanics and Analysis
19:266–298, (1965)

[43] Doyle J.F.: Viscoelastic wave propagation, Encyclopedia of Thermal Stresses, Richard B.
Hetnarski, ed., 11:6462–6467, (2014)

[44] Hunter S.C.: Viscoelastic waves, Progress in Solid Mechanics 1:3–57, Pergamon Press, New
York, (1960)

[45] Mainardi F. (Ed.): Wave Propagation in Viscoelastic Media, Pitman Publishing Co., Boston,
(1982)

[46] Mainardi F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to
Mathematical Models, Imperial College Press, London, (2010)

[47] Knauss W.G.: Uniaxial wave propagation in a viscoelastic material using measured material
properties, ASME Journal of Applied Mechanics 35:449–453, (1968)

[48] Mustafa M.I., Messaoud S.A.: General stability result for viscoelastic wave equations, Journal
of Mathematical Physics 53:1–8, (2012)

[49] Ricker N.H.: Transient Waves in Visco-elastic Media, Elsevier, Amsterdam, (1977)
[50] Schanz M.: Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element

Approach, Springer-Verlag, New York, (2001)
[51] Williams M.L., Landel R.F., Ferry J.D.: The temperature dependence of relaxation mecha-

nisms in amorphous polymers and other glass-forming liquids, Journal of the American Chem-
ical Society 77:3701–3707, (1955)

[52] Schwarzl F., Staverman A.J.: Time-temperature dependence of linear viscoelastic behavior,
Journal of Applied Physics 23:838–843, (1952)

[53] Hilton H.H.: Thermal stresses and strains in circular thin plates and thick-walled cylinders ex-
hibiting temperature dependent elastic and viscoelastic properties, PhD Thesis in Theoretical
and Applied Mechanics, University of Illinois at Urbana-Champaign, (1951)

[54] Freudenthal A.M.: Effect of rheological behavior on thermal stresses, Journal Applied Physics
25:1110–1117, (1954)



238 Hilton H.H.: Coupled Longitudinal 1–D Thermal and Viscoelastic Waves . . .

[55] Hilton H.H.: Thermal stresses in thick walled cylinders exhibiting temperature dependent
viscoelastic properties of the Kelvin type, Second United States National Congress for Applied
Mechanics 547–553, (1954)

[56] Losi G.U., Knauss W.G.: Thermal stresses in nonlinearly viscoelastic solids, ASME Journal of
Applied Mechanics 59:S43–S49, (1992)

[57] Sackman J.L.: A remark on transient stresses in nonhomogeneous viscoelastic materials, Jour-
nal of the Aerospace Sciences 29:1015–1016, (1962)

[58] Muki R., Sternberg E.: On transient thermal stresses in viscoelastic materials with temperature
dependent properties, ASME Journal of Applied Mechanics 28:193–207, (1961)

[59] Hilton H.H.: Thermal distributions without thermal stresses in nonhomogeneous media, Jour-
nal of Applied Mechanics 26:137–138, (1959)

[60] Hilton H.H., Russell H.G.: An extension of Alfrey’s analogy to thermal stress problems in
temperature dependent linear viscoelastic media, Journal of Physics and Solids 9:152-164,
(1961)

[61] Hilton H.H., Clements J.R.: Formulation and evaluation of approximate analogies for temper-
ature dependent linear viscoelastic media, Thermal Loading and Creep 6:17-6:24, Institution
of Mechanical Engineers, London, (1964)
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