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ANALYSIS OF MULTILAYERED COMPOSITE PLATES
BY LOCAL PETROV-GALERKIN METHOD

Daniel Riecky*, Milan Žmindák**, Martin Dudinský**, Zoran Pelagić**

This paper focuses on the implementation of the MLPG formulation for layered plates.
For this purpose implementation of homogenization theory was required and analy-
ses were performed in order to obtain homogenized material properties of composite
plates. Software for homogenization of material properties uses direct homogeniza-
tion method that is based on volume average of stresses in the representative volume
element (RVE). Homogenization is performed by linking MATLAB and ANSYS soft-
ware. Obtained data are used in analyses carried out in own software which is based
on the MLPG method. Strain, stress and displacement fields were evaluated. Results
obtained by MLPG were compared with those obtained by FEM programs ANSYS
and ABAQUS.

Keywords : composite plates, unidirectional composites, Reissner-Mindlin theory,
meshless method

1. Introduction

The finite element method (FEM) is one of the most widely used and most popular
numerical methods for analyzing plate structures. Although the method is stable, well
developed and has reached extensive development during last decades, it also has some
limitations [1].

In last years an increase of interest in new type of numerical methods known as meshless
methods was observed [2, 3]. These methods are interesting due to their flexibility and
ability of solving boundary value problems without predefined mesh. One of the areas
where meshless methods are convenient to use is analysis of plate and shell structures.
These methods are useful due to flexibility of meshless algorithms and ability of meshless
approximation functions to obtain interpolating field with high order of continuity in a simple
way. In some cases it is possible to overcome some ‘locking’ effects in more simple way
than in FEM. Meshless methods are relatively new concept in computational mechanics.
Compared to FEM formulations there are less meshless formulations available for plate and
shell structures. Additional research and development of general meshless methods able
to successfully solve various problems in plate structural analyses is therefore necessary.
Meshless approaches proved to be successful in modeling of functionally graded materials
(FGM) [4, 5].

This paper also focuses on implementation of the MLPG formulation for layered plates.
Strain, stress and displacement fields were evaluated. Results obtained by MLPG were
compared with those obtained by FEM programs ANSYS and ABAQUS.
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2. Homogenization of composite

2.1. Homogenization techniques

Some analytical and numerical techniques have been used for prediction and characteri-
zation of composite microstructure behaviour. Analytical methods provide reasonable pre-
diction for relatively simple configurations of the phases. Complicated geometries, loading
conditions and material properties often do not yield analytical solutions, due to complexity
and number of equations. In this case, numerical methods are used for approximate solving,
but they still make some simplifying assumptions about the microstructures of heterogeneous
multiphase materials.

There are various homogenization methods. Direct homogenization is based on the vo-
lume average of field variables, such as stress, strain and energy density. Effective properties
can be calculated from effective properties definitions. The average and calculation of field
variables can be performed numerically, for example by FEM or boundary element method
and geometry and microstructural properties can be generalized for real composite materials
which do not have periodic structure distribution of the fibers in the matrix [6].

Indirect homogenization is based on the Eshelby solution of self-deformation for one
inclusion in an infinite matrix – the equivalent inclusion method [7]. An alternative approach
to direct and indirect homogenization is the variational method, which can determine the
upper and lower limits of the elasticity modulus [8].

A relatively new approach for a homogenization of microstructures consists of mathe-
matical homogenization based on a two-scale extension of the displacement field [9].

2.2. Results of homogenization

This part describes a procedure of homogenization of material properties of composites
using the method of representative volume element (RVE). For the analysis of material
properties an own software in MATLAB language was programmed and a part of the solution
was carried out in ANSYS software. The RVE consists of volume elements and then it is
loaded by unit strains in various directions. The effective lamina properties are obtained
from the volume means of stress values obtained by loading of the RVE.

Homogenized lamina RVE consists of fibers and epoxy matrix. The fibers are from three
material types : carbon, glass, polyaramid (kevlar). The RVE dimensions are calculated

Fiber material

Carbon Fiberglass Kevlar

M40J S2Glass K49

Ef [GPa] 377 85.5 135.5

F1t [GPa] 4.41 4.6 3.5

ν 0.33 0.22 0.37

�f [kg/m3] 1770 2490 1450

df [μm] 5 10 10

Tab.1: Fiber material properties

Matrix material Em [GPa] F1t [MPa] ν �m [kg/m3] Gm [GPa]

Epoxy 3.45 70 0.3 85.5 1.33

Tab.2: Matrix material properties
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for the hexagonal fiber configuration and for the square configuration [10]. We assumed
cylindrical fiber shapes and an ideal cohesion between the fiber and the matrix. Used
carbon fibers have an industrial label T300 and M40J. The glass fiber label is EGlass and
S2Glass. Polyaramide fibers have the label K49. Fiber material properties ale listed in
Table 1 and the matrix properties ale listed in Table 2, where subscript ‘f’ denotes fiber and
‘m’ matrix, respectively and E – Young modulus, G – shear modulus, F1t – longitudinal
tensile strength, ν – Poisson number, � – density, df – fiber diameter.

The RVE dimensions are calculated for the hexagonal fiber configuration Fig. 1a, from
the relations

a2 =

√
1
8

π d2
f

Vf tan(60◦)
, a3 = a2 tan(60◦) , a1 = 0.5 a2 (1)

and for the square fiber configuration the RVE dimensions are in Fig. 1b, from the relations

a2 =

√
1
8

π d2
f

Vf tan(60◦)
, a3 = a2 tan(60◦) , a1 = 0.5 a2 (2)

where 1 is the x direction, in this case the fiber direction, 2 is the y direction, orthogonal to
the fiber direction, a3 in direction z, transverse vertical to the fiber direction.

Fig.1: Representative volume elements, a) hexagonal
configuration, b) square configuration

The four elastic properties of the homogenized material can be computed by [11] :

E1 = C11 − 2C2
12

C22 + C23
,

ν12 =
C2

12

C22 + C23
,

E2 =
(C11 (C22 + C23) − 2C2

12) (C22 − C23)
C11 C22 − C2

12

,

G12 = C66 .

(3)

In order to evaluate the elastic matrix C of the composite, the RVE is subjected to an
average strain. Then the volume average of the strain in the RVE equals to the applied
strain

ε̄ij =
1
V

∫
V

εij dV (4)
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The components of the tensor C are determined solving three elastic models of RVE with
parameters (a1, a2, a3) subjected to the boundary conditions (BC). The unit strain applied
on the boundary results in a complex state of stress in the RVE. Then volume average of
stress in RVE equals to required components of the elastic matrix as

Cij = σ̄i =
1
V

∫
V

σi dV . (5)

The coefficients in C are found by setting a different problem for each column of C and the
components are determined using three steps listed in [11]. Homogenization of composite
plate is performed by linking MATLAB and ANSYS software and final results are given in
Table 3, where the indices ‘h’ and ‘s’ denotes hexagonal array and square array, respectively.

Vf = 0.6
M40J S2Glass K49

h s h s h s

E1 [GPa] 227.58 227.58 52.683 52.687 82.683 82.685

E2 [GPa] 12.831 16.71 11.607 14.334 12.121 15.301

G12 [GPa] 5.15 5.53 4.67 4.94 4.844 5.155

G23 [GPa] 4.737 6.967 4.3314 5.905 4.481 6.288

ν12 0.320 0.321 0.246 0.245 0.347 0.348

ν23 0.354 0.199 0.340 0.214 0.352 0.217

Tab.3: Material properties for composite with fiber volume fraction of Vf = 0.6

3. Governing equations

The Mindlin-Reissner laminated theory of plates was formulated by deriving classical
plate theory for composite plates. In this theory the plate composes of N orthotropic layers
with total thickness h. The midsurface of layered plate is located in the region Ω, in plane
(x1, x2). Axis x3 ≡ z is perpendicular to the midsurface (Fig. 2). k-th layer is located
between coordinates from z = zk to z = zk+1 in thickness direction x3.

Fig.2: Composite plate a) geometry and displacements, b) moments and shear forces

If k-th lamina is from orthotropic material, then the relation between stresses σij and
strains εmn is expressed by the constitutive equation for stress tensor

σ
(k)
ij (x, x3, t) = c

(k)
ijmn εmn(x, x3, t) , (6)



Engineering MECHANICS 179

with assumption of homogeneous coefficients of the constitutive tensor c(k)ijmn for k-th lamina.
In the case of layer-wise continuous material properties the following constitutive equations
are obtained for bending moments Mαβ and shear forces Qα, α, β = 1, 2 for orthotropic
plate

Mαβ = Dαβ (wα,β + wβ,α) + Cαβ wγ,γ ,

Qα = Cα (wα + w3,α) .
(7)

We note that for repeated indices α and β in (7) Einstein summation rule does not apply
and material parameters Dαβ , Cαβ , and Cα are given in [12].

Assuming that the plate is loaded with transverse distributed loading q(x, t) and that
each lamina has homogeneous density in thickness direction, then equations of motion for
Reissner linear theory for thick plates may be written as

Mαβ,β(x, t) −Qα(x, t) = IM ẅα(x, t) , (8)

Qα,α(x, t) + q(x, t) = IQ ẅα(x, t) , (9)

where

IM =

h/2∫
−h/2

z2 �(z) dz =
N∑
k=1

zk+1∫
zk

�(k) z2 dz =
N∑
k=1

�(k) 1
3

(z3
k+1 − z3

k) ,

IQ =

h/2∫
−h/2

�(z) dz =
N∑
k=1

zk+1∫
zk

�(k) dz =
N∑
k=1

�(k) (zk+1 − zk)

are global inertial characteristics of the laminate plate. If the mass density is constant
throughout the plate thickness, we obtain IM = � h3/12, IQ = � h. Throughout the analysis,
Greek indices vary from 1 to 2, and the dots over a quantity indicate differentiations with
respect to time t.

4. Numerical implementation of MLPG for composite plate

In MLPG method the local weak form is assembled on local subdomain ΩQ, which is
a small domain around each node within the global domain [2]. These local subdomains
overlap each other and cover the whole global domain Ω, Fig. 3.

Fig.3: Local boundaries for the weak formulation, the support domain Ωs for MLS
approximation of the trial function, and support domain of the weight function
around node xi, ΩQ is the integration domain around given node
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Applying the Gauss divergence theorem to the local weak form of the governing equations
one obtains∫

∂Ωi
Q

Mα(x, t)w∗
αγ(x) dΓ −

∫
Ωi

Q

Mαβ(x, t)w∗
αγ,β(x) dΩ −

∫
Ωi

Q

Qα(x, t)w∗
αγ(x) dΩ = 0 , (10)

∫
∂Ωi

Q

Qα(x)nα(x)w∗(x) dΓ −
∫

Ωi
Q

Qα(x)w∗
,α(x) dΩ +

∫
Ωi

Q

q(x)w∗(x) dΩ = 0 , (11)

where ∂ΩiQ is boundary of a local subdomain, Mα(x) = Mαβ(x)nβ(x) is the normal bending
moment and nα is the unit outward normal on the boundary ∂ΩiQ. The local weak forms (10)
and (11) are starting points for deriving local boundary integral equations on the basis of
proper test function. Unit step function is chosen in each subdomain as test functions w∗

αγ(x)
and w∗(x)

w∗
αγ(x) =

{
δαγ for x ∈ (Ω ∪ ∂Ωs) ,
0 for x �∈ (Ω ∪ ∂Ωs) ,

w∗(x) =
{

1 for x ∈ (Ω ∪ ∂Ωs) ,
0 for x �∈ (Ω ∪ ∂Ωs) .

(12)

Then the local weak form (10) and (11) transforms on the following local integral equations

∫
∂Ωi

Q

Mα(x, t) dΓ −
∫

Ωi
Q

Qα(x, t) dΩ =
∫

Ωi
Q

IM ẅα(x, t) dΩ , (13)

∫
∂Ωi

Q

Qα(x, t)nα(x) dΓ +
∫

Ωi
Q

q(x) dΩ =
∫

Ωi
Q

IQ ẅ3(x, t) dΩ . (14)

In the above local integral equations wα(x, t) is the trial function corresponding to rotations,
α = 1, 2, the trial function w3(x) corresponds to the transverse displacement. These trial
functions are assembled in MLS approximation over nodes in local subdomain around the
point x.

In general, a meshless method uses a local interpolation to represent the trial function
with values (or fictitious values) of the unknown variable at some randomly located nodes [2].
To approximate a distribution of the generalized displacements (rotations and deflection)
in Ωx over a number of randomly located nodes xa, a = 1, 2, . . . , n, the MLS approximant
wh
i (x, t) of wi(x, t) is defined by

wh(x, t) =
n∑
a=1

φa(x) ŵa(t) , (15)

where wh = [wh
1 , w

h
2 , w

h
3 ]T, φa is the shape function of MLS approximation corresponding

to node xa. The directional derivatives of w(x, t) are approximated in terms of the same
nodal values

w,k(x, t) =
n∑
a=1

ŵa(t)φa,k(x) , (16)

where φa,k(x) is partial derivative of the shape function φa(x) according to direction k =
= x1, x2.
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If we ignore inertial terms in (13) and (14), then substituting the approximation (16)
into the definition of the bending moments (8) and then using Mα(x) = Mαβ(x)nβ(x), one
obtains

M(x) = N1

N∑
a=1

Ba
1(x)w∗a + N2

N∑
a=1

Ba
2(x)w∗a = Nα(x)

N∑
a=1

Ba
α(x)w∗a , (17)

where vector w∗a = [ŵ∗a
1 , ŵ∗a

2 ]T, the matrices Nα(x) are related to the normal vector n(x)
and the matrices Ba

α are represented by the gradients of the shape functions [1].

The influence of the material properties for composite laminates is incorporated into Cαβ
and Dαβ, given in [12]. Similarly, one can obtain the approximation for the shear forces

Q(x) = C(x)
N∑
a=1

[φa(x)w∗a + Fa(x) ŵ∗a
3 ] , (18)

where Q(x) = [Q1(x), Q2(x)]T and

C(x) =
[
C1(x) 0

0 C2(x)

]
, Fa(x) =

[
φa,1
φa,2

]
. (19)

For the source point xi located on the global boundary Γ the boundary of the subdomain
∂ΩiQ is decomposed into LiQ and ΓiQM (part of the global boundary with prescribed bending
moments), Fig. 3. It should be noted here that there are neither Lagrange multipliers nor
penalty parameters introduced into the local weak-forms ΓiQM. Part of the global boundary
with prescribed rotations or displacements can be imposed directly, using the MLS appro-
ximation (15)

N∑
a=1

φa(xi) ŵa = w̃(xi) for (xi) ∈ ΓiQM , (20)

where w̃(xi) is the generalized displacement vector prescribed on the boundary ΓiQM. Then,
insertion of the MLS discretized moment and force fields into the local integral equations (13)
and (14) we get the discretized local integral equations in the form of

n∑
a=1

⎡
⎢⎣ ∫
Li

Q+Γi
QM

Nα(x)Ba
α(x) dΓ −

∫
Ωi

Q

C(x)φa(x) dΩ

⎤
⎥⎦w∗a −

−
n∑
a=1

ŵa3

⎡
⎢⎣∫
Ωi

Q

C(x)Fa(x) dΩ

⎤
⎥⎦ = −

∫
Γi

QM

M̃(x) dΓ ,

(21)

n∑
a=1

⎡
⎢⎣ ∫
∂Ωi

Q

Cn(x)φa(x) dΓ

⎤
⎥⎦w∗a −

n∑
a=1

ŵa3

⎡
⎢⎣∫
Ωi

Q

Cn(x)Fa(x) dΓ

⎤
⎥⎦ = −

∫
Ωi

Q

q(x) dΓ , (22)

Collecting the discretized local boundary-domain integral equations together with the dis-
cretized boundary conditions for the generalized displacements, one obtains a complete
system of algebraic equations for calculation of strain, stress and displacement fields.
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5. Numerical example

In this section, numerical results are presented for laminated plates under a mechanical
load. Data obtained from homogenization in Part 2 are used in own MLPG software. In
order to test the accuracy, numerical results obtained by the presented method are compared
with the results provided by the FEM software ANSYS and ABAQUS.

The averaged percentage error (APE) was calculated by the following equation

APE = 100

√√√√√√√√√√

N∑
a=1

(
uref(xa) − uMLPG(xa)

)2

N∑
a=1

(
uref(xa)

)2

, (23)

where N is total number of nodes in given domain, uref(xa) is the reference value in node
xa, uMLPG(xa) is value calculated by means of MLPG in node xa.

Clamped and simply supported rectangular plates were analysed. We considered compos-
ite plates with dimensions Lx = 0.24m and Ly = 0.2m. Plates composed from six laminae
with thickness of Δz = 0.00025m, so the total thickness of plate is h = 0.0015m. Material
of the analyzed plate is EGlass vf06. The comparison of results is given in Table 4 and
Table 5. APE in the point of maximum deflection is |errε11| = 2.3 % and |errε22| = 2.95 %.
For stress the maximum APE is |errσ11| = 2.58 % and |errσ22| = 2.94 %.

layer 1 2 3 4 5 6

εMLPG
11 [–] 4.85e-04 2.90e-04 0.97e-04 -0.97e-04 -2.90e-04 -4.85e-04

εref
11 [–] 4.74e-04 2.84e-04 0.95e-04 -0.95e-04 -2.84e-04 -4.74e-04

|errε11| [%] 2.3 2.3 2.3 2.3 2.3 2.3

εMLPG
22 [–] 9.10e-04 5.46e-04 1.82e-04 -1.82e-04 -5.46e-04 -9.10e-04

εref
22 [–] 8.84e-04 5.31e-04 1.77e-04 -1.77e-04 -5.31e-04 -8.84e-04

|errε22| [%] 2.95 2.95 2.95 2.95 2.95 2.95

Tab.4: Comparison of deformations ε11 and ε22 from MLPG and FEM, EGlass vf06

layer 1 2 3 4 5 6

σMLPG
11 [–] 7.76e+06 3.14e+06 3.43e+06 -3.43e+06 -3.14e+06 -7.76e+06

σref
11 [–] 7.57e+06 3.07e+06 3.35e+06 -3.35e+06 -3.07e+06 -7.57e+06

|errσ11| [%] 2.58 2.52 2.37 2.37 2.52 2.58

σMLPG
22 [–] 10.20e+06 17.91e+06 1.50e+06 -1.50e+06 -17.91e+06 -10.20e+06

σref
22 [–] 9.92e+06 17.4e+06 1.46e+06 -1.46e+06 -17.4e+06 -9.92e+06

|errσ22| [%] 2.85 2.94 2.88 2.88 2.94 2.85

Tab.5: Comparison of stresses σ11 and σ22 from MLPG and FEM, Eglass vf06

6. Conclusions

The MLPG method was applied to analysis of laminated composite plates under static
loadings. The numerical results confirm the fact that MLPG method is a good tool for ana-
lyzing the composite structures. It is a reliable method after sufficient setting of parameters
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such as order of numerical integration, size of the integration domain, support domain for
weight function, etc.

Errors in strain and stress evaluation can have several sources. Accuracy of the meshless
methods is affected by several factors such as rounding errors in approximation or rounding
errors caused by the numerical integration. The above mentioned errors become evident in
differences between the reference and computed values. FEM software compute strain or
stress values at the middle surface of the layer as the arithmetic mean of strain or stress
values from top and bottom surface of the layer.
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