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NEW MATHEMATICAL MODEL OF CERTAIN CLASS
OF CONTINUUM MECHANICS PROBLEMS

Frantǐsek Pochylý*, Simona Fialová*, Jaroslav Krutil*

This paper presents a variant of a mathematical model of continuum mechanics.
Adaptation of the model is focused on the unsteady term. The solution is based on
the assumption of the zero value of the divergence vector, which can have a different
physical meaning.
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1. Introduction

Solution of many problems of continuum mechanics is based on the method of control
volumes. Formulation of the task is often complicated by the unsteady term on which in
the classic formulation cannot be applied the Gauss-Ostrogradsky theorem.

The above mentioned unsteady term often complicates the problematic of the fluid struc-
ture interaction. Major complications occur even in dealing with the interactions of fields of
different physical nature; for example the interaction of the fluid and electromagnetic fields.
For simplification there is used the index notation in the article.

Fig.1: The body motion in the incompressible liquid

Here are two examples:

• Let’s determine the strength exerted incompressible fluid moving object, as shown in
Figure 1 : i-th component of the force acting on the body is defined by the term [4], [5],
where n is inner nominal vector.

Fi = −
∫
S

σij nj dS . (1)
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Define it from the Navier Stokes equations, where it holds [1], [3], [4] :

�
∂vi

∂t
+ �

∂

∂xj
(vi vj) − ∂σij

∂xj
= � gi . (2)

By integration over the volume V and using Gauss-Ostrogradsky theorem we get the
force F in the form :

Fi = −�
∫
V

∂vi

∂t
dV − �

∫
S∪Γ

vi vj nj dΘ +
∫
Γ

σij nj dΓ + � gi V , Θ = S ∪ Γ . (3)

From here it is clear that the expression (3) is very difficult to analyze because of the
unimaginable estimation of the size of the integral over the volume V .

• The relationship between electric field intensity and transient magnetic field can be dif-
ficult to analyze because it is difficult to change the magnetic field inside the region V .
It follows from Maxwell’s equations, as it applies relations :

rotE = −∂B
∂t

. (4)

Integration over the volume V can be derived :

εijk

∫
S

Ej nk dS = −
∫
V

∂Bi

∂t
dV . (5)

As in the previous case, the analysis is complicated by the integral over the region V .

The aim of this paper is to modify the mathematical model, so that it was possible to
use Gauss-Ostrogradsky methods for the unsteady term integration.

The solution comes out a certain type of operator equations, which is typical for a wide
class of the continuum mechanics problems.

2. Mathematical model

Considering multiple contiguous region V bounded by the surface Θ. The boundary
orientation is defined by a unit vector outward normal n to the surface Θ.

The mathematical model is defined by the Cartesian coordinate system, the Euler ap-
proach, where each independent variable, generally designated E depends on the spatial
coordinate x and time t. Thus E = E(x, t), x = (xj). On the V there is defined the variable
field E.

The mentioned area is defined by a mathematical model using the summation convention
in the form :

∂Ai

∂t
+
∂Bij

∂xj
= Ci , x ∈ V , (6)

∂Ai

∂xi
= 0 , x ∈ V . (7)

In the equations (6), (7), we assume :

Ai = Ai(x, t) , Bij = Bij [(x, t)] , Ci = Ci(x, t) , (8)

div C = 0 . (9)
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The move to a new model follows; if we apply on the equation (6) the divergence operation
and considering (9), we may write :

∂2Bij

∂xi ∂xj
= 0 or also

∂2Bjk

∂xj ∂xk
xi = 0 . (10)

After integrating (10) over the region V we obtain :

∫
Θ

∂Bjk

∂xk
xi nj dΘ =

∫
V

∂Bjk

∂xk

∂xi

∂xj
dV . (11)

Considering ∂xi/∂xj = δij , using Gauss-Ostrogradsky theorem we obtain :

∫
Θ

(
∂Bjk

∂xk
xi −Bij

)
nj dΘ = 0 . (12)

Expression (12) is very important for the qualitative analysis, it determines the relationship
between ∂Bjk/∂xk and Bij on the boundary Θ, without the influence of unsteady term
∂Ai/∂t: Into (13) we substitute now from (6). The following holds :

∫
Θ

[(
∂Ai

∂t
− Cj

)
xj +Bij

]
nj dΘ = 0 . (13)

Expression (13) is crucial for solving of the interactions, because the influence of unsteady
term is transformed to the boundary Θ, compared to the original model (6), where for the
integration over the region V and the use of Gauss-Ostrogradsky theorem applies :∫

V

∂Ai

∂t
dV +

∫
V

∂

∂xj
Bij dV =

∫
V

Ci dV . (14)

Hence it is clear that the analysis and control volume numerical method greatly complicate
integrals over the volume V .

To a new mathematical model we move simply using the Gauss-Ostrogradsky theorem
on the expression (13). Hence, it is clear that it applies :

∫
V

∂

∂xj

[
∂Aj

∂t
xi +Bij − Cj xi

]
dV = 0 . (15)

Considering that the term has to pay for each volume V , can be placed inside the integral
term is zero. So shortly :

∂

∂xj

(
∂Aj

∂t
xi +Bij − Cj xi

)
= 0 . (16)

With regard to (7) also
∂Aj

∂xi
= 0 . (17)
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Equations (16), (17) now formulate a new mathematical model for the class of operators of
continuum mechanics. The model is not only suitable for the method of control volumes,
but especially for the qualitative analysis of the forces interaction within the fields of dif-
ferent physical nature; for example for the determination of the solid/liquid interaction, or
a magnetic field.

Evidence of the transition from the model (6) to (18) follows from the following identity;
let us put :

∂Ai

∂t
=

∂

∂xj
(Aj xi) =

∂Aj

∂xj
xi +Aj

∂xi

∂xj
. (18)

Considering the validity of (7) and ∂xi/∂xj = δij , the validity of (18) is proved. For the
same reason holds Ci = ∂(Cj xi)/∂xj , since we assume (9).

If is only a function of time, it holds that

Ci = Ci(t) . (19)

Can be used :
Ci =

∂

∂xi
(Cj xj) . (20)

Based on (13), (14) may have to reformulate the expressions (3), (5).

Fi = −�
∫
Θ

[
∂vj

∂t
xi + vi vj − δij gk xk

]
nj dΘ +

∫
Γ

σij nj dΓ , (21)

εijk

∫
Θ

Ek nj dΘ = −
∫
Θ

∂Bj

∂t
xi nj dΘ . (22)

Or after the treatment ∫
Θ

[
εijk Ek − ∂Bj

∂t
xi

]
nj dΘ = 0 . (23)

The fundamental significance of these modifications is the possibility to change the unknown
quantity on the function area. More important is the possibility to correct formulation of
boundary conditions which must be met integral identity.

3. Class problems of continuum mechanics, which can be transferred to the
general shape (6), (7), respectively (16), (17)

While solving problems of continuum mechanics we can encounter mathematical models
of various physical natures, which have a similar structure. For example :

A. The equation for the vortex velocity Ω = rotv [1], [3] :

∂Ω
∂t

+ rot(Ω× v) = 0 , (24)

div Ω = 0 . (25)

Comparing with (6), (7) it holds :

A = Ω , Bij = εijk εkmn Ωm vn . (26)
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B. Maxwell equations : equation for magnetic field strength H assuming infinite conductivity
[2], [3] :

∂H
∂t

+ rot(H× v) = 0 , (27)

div H = 0 . (28)

Comparing with (6), (7) and (24), (25), by analogy it applies :

A = H , Bij = εijk εkmnHm vn . (29)

C. Equations of equilibrium macroscopic particles – Navier-Stokes equations [1], [3] :

∂vi

∂t
+

∂

∂xj

(
vi vj − σij

�

)
= gi , (30)

∂vi

∂xi
= 0 . (31)

Comparing with (6), (7) holds :

Ai = vi , Bij = vi vj − σij

�
, Ci = gi . (32)

D. Homogenous conductor with constant conductivity and permeability

∂H
∂t

+ rot(H × v) − αΔH = 0 , (33)

div H = 0 . (34)

A = H , Bij = εijk εkmnHm vn − α
∂Hi

∂xj
. (35)

When we use our model of (16), it’s possible to write operators (24), (27), (30), (33) in
the shape :

[
∂Ω
∂t

+ rot(Ω× v)
]

i

=
∂

∂xj

[
∂Ωj

∂t
xi + εijk εkmn Ωm vn

]
= 0 , (36)[

∂H
∂t

+ rot(H× v)
]

i

=
∂

∂xj

[
∂Hj

∂t
xi + εijk εkmnHm vn

]
= 0 , (37)

∂vi

∂t
+

∂

∂xj

(
vi vj − σij

�

)
− gi =

∂

∂xj

[
∂vj

∂t
xi + vi vj − σij

�
− gj xi

]
= 0 , (38)[

∂H
∂t

+ rot(H × v) − αΔH
]

i

=
∂

∂xj

[
∂Hj

∂t
xi + εijk εkmnHm vn − α

∂Hi

∂xj

]
= 0 . (39)

4. Conclusion

From the presented analysis, the usefulness of the Gauss-Ostrogradsky theorem for the
qualitative analysis of the mathematical models of continuum mechanics is illustrated. From
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that theorem, the relation between the changes within the region V on the function values
and their gradients acting on the surface S of the region V are defined in a mathematical
model. The model can be used for application of the method of finite volumes and qualitative
examining of the interactions of the environment with the different physical characteristics.
Considering div A = 0 has the original model form :

∂Ai

∂t
+

∂

∂xj
Bij = Ci . (40)

It’s new, equivalent shape is shown by term :
∂

∂xj

[(
∂Ai

∂t
− Ci

)
xi +Bij

]
= 0 . (41)

Additionally it holds following identity :∫
V

∂A
∂t

dV =
∫
Θ

(
∂A
∂t

n
)

xdΘ . (42)
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CZ.1.07/2.3.00/30.0005

Nomenclature

A, B, C, E – general dependent variable
x – position vector
t – time
n – normal vector
V – volume
S – surface
2Ω – angular velocity
v – velocity vector
δij – Kronecker delta
εijk – Levi-Civit tensor
Θ = S ∪ Γ – boundary volume
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