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INPUT SHAPING CONTROL OF ELECTRONIC CAMS

Petr Beneš*, Michael Valášek*, Ondřej Marek**

The paper deals with the non-vibration control of electronic cams. Described ap-
proach is based on shaping of the command input. The goal is precise positioning
without residual vibration in final position. The models of different configurations
of electronic cams are used – the simple traditional one, the serial one, the paral-
lel one, the multi-input one. The generalized approach to input shaping control is
described that allows synthesis of the shaping functions with arbitrary time length.
These functions could be further transformed to the shapers with re-entry property.
It is demonstrated and explained that some advanced shaping functions are more
robust against model misalignment than the simple Heaviside pulse shapers. This
generalized input shaping control is applied to different kinds of electronic cams.
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1. Introduction

The term electronic cam means use of a precise controlled servomotor drive instead of
the conventional cam [1]. This concept can be further divided into several groups according
to the system structure – e.g. serial, parallel or multi-input electronic cams. The demand for
fast and precise positioning is common in all mentioned cases. But like other flexible systems
electronic cams have to deal with the problem of residual vibration that could corrupt system
performance.

To eliminate unwanted dynamics the standard control input could be reshaped in such
a way that it doesn’t excite flexible modes of the system or, more generally, that all energy

Fig.1: Comparison of shaped and unshaped control input
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** Ing. O.Marek, VÚTS, a.s., U Jezu 525/4, 461 19, Liberec, Czech Republic
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put into the flexible modes is totally relieved at the end of the movement [2]. The difference
between the original unshaped signal and the shaped one as well as the response of the
two-mass model is shown in Fig. 1.

2. Necessary conditions

The control input that ensures non-vibration positioning has to fulfil some necessary
conditions. For the system described using the state space formulation as

ẏ = Ay(t) + Bu(t) (1)

the general solution can be written in the form

y(t2) = eA(t2−t1) y(t1) +

t2∫
t1

eA(t2−τ) Bu(τ) dτ , (2)

where A is the system matrix, B is the input matrix, y is the vector of states, u is the
input (control) vector, t1 and t2 represent the start and the finish time. Using the finite
time Laplace transform [2]

U(s) =

t2∫
t1

e−s τ u(τ) dτ , (3)

the necessary conditions connecting control input with system states can be derived in the
form

n∑
l=1

Ul(s)
∣∣
s=A

bl = e−A t2 y(t2) − e−A t1 y(t1) , (4)

where Ul(s) is the finite time Laplace transform of the l-th input, bl is the corresponding
column of B matrix, n is the number of inputs. The solution ul(t) in the time domain is
the inverse Laplace transform of Ul(s).

Now this approach will be applied to the simple electronic cam that can be modelled as
a two mass spring-dumper system in Fig. 2.

Fig.2: Two-mass model of the electronic cam

This system is described by the equation

Mẍ(t) + B ẋ(t) + Kx(t) = F(t) , (5)

where

x =
[
ϕ1

ϕ2

]
, M =

[
I1 0
0 I2

]
, B =

[
b −b
−b b

]
, K =

[
k −k
−k k

]
, F =

[
u
0

]
. (6)
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Non-vibration conditions in the final position Φf of point-to-point control problem are

xf =
[

Φf

Φf

]
, ẋf =

[
0
0

]
. (7)

The differential equation of the second order (5) can be rewritten as a set of first order
equations and transform to the Jordan canonical form⎡

⎢⎣
ẏ1
ẏ2
ẏ3
ẏ4

⎤
⎥⎦

︸ ︷︷ ︸
ẏ

=

⎡
⎢⎣

0 1 0 0
0 0 0 0
0 0 p 0
0 0 0 p∗

⎤
⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎣
y1
y2
y3
y4

⎤
⎥⎦

︸ ︷︷ ︸
y

+

⎡
⎢⎣

0
1
1
1

⎤
⎥⎦

︸ ︷︷ ︸
B

u (8)

where p and p∗ are complex conjugated poles of flexible modes.

The boundary conditions (7) are transformed to the equation

y(t2) = [Φf; 0; 0; 0]T . (9)

Assuming t1 and zero initial conditions equation (4) can be rewritten in the component form

dU(s)
ds

∣∣∣∣
s=0

= Φf ,

U(s)
∣∣
s=0

= 0 ,

U(s)
∣∣
s=p

= 0 ,

U(s)
∣∣
s=p∗ = 0 .

(10)

This simple analytical formulation of necessary conditions for non-vibration positioning
used by Bhat & Miu [3] is the result of the system description in the canonical form. Other
state space representations usually need a numerical solution of (4).

Described approach leads to the control input in the form of pre-computed curve. How-
ever if it is rewritten to the form of a dynamical block it acts like a filter that transform
any arbitrary signal to non-vibration one [4]. And in contrast with patented input shaping
technique by Singhose & Seering [5] the length of this shaper is not dependent on the system
natural frequency and can be set arbitrary.

3. Additional conditions and the control input synthesis

There are an infinite number of input functions u(t) that fulfill equations (10). But these
only ensure zero residual vibration. Therefore additional restrictions have to be applied e.g.
for the time domain continuity of the input signal

u(0) = 0 , u(t2) = 0 . (11)

Other restrictions are defined by maximal torque and rate of the actuator available etc.

The straight forward method of the control input synthesis is to assume analytical form of
the control input with some variable parameters, e.g. the polynomial function with unknown
coefficients

u(t) =
n∑
i=0

ai t
i . (12)
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The exact value of parameters ai is then calculated with respect to (10) and all other defined
restrictions. It is possible to use some optimization methods as well.

Generally the number of parameters should be at least the same as the number of re-
stricted conditions, however a smart choice of an analytical form of the input could auto-
matically filled some of them. For example this form of a control input

u(t) =
n∑
i=1

ai sin
(

2π i
t2

t

)
(13)

automatically filled conditions (11).

4. Systems with multiple inputs and multiple outputs

The two-mass model in Fig. 2 is probably the most common demonstrator of different
input shaping methods. Speaking about electronic cams the two masses represent the actu-
ator (index 1) and the cam (index 2). The solution of the two-mass problem ensures precise
positioning of the cam only. But in real systems the cam is connected to the rest of the
system that usually has its own flexibility. The following chapters describe an application
of the presented approach to different system structures – serial one, parallel one and the
system with two inputs.

4.1. Serial electronic cam

The modified serial structure consisting of a three bodies is in Fig. 3.

Fig.3: Serial structure of electronic cam

This system has two pairs of complex conjugated flexible modes and the rigid body mode.
For simulation experiments it was described according to (5) as

⎡
⎣ I1 0 0

0 I2 0
0 0 I3

⎤
⎦

⎡
⎣ ϕ̈1

ϕ̈2

ϕ̈3

⎤
⎦ +

⎡
⎣ b12 −b12 0
−b12 b12 + b13 −b23

0 −b23 b23

⎤
⎦

⎡
⎣ ϕ̇1

ϕ̇2

ϕ̇3

⎤
⎦ +

+

⎡
⎣ k12 −k12 0
−k12 k12 + k13 −k23

0 −k23 k23

⎤
⎦

⎡
⎣ϕ1

ϕ2

ϕ3

⎤
⎦ =

⎡
⎣u0

0

⎤
⎦ .

(14)

For the simulation purposes the value of all moments of inertia was set to 1 kgm2, stiffness
100Nm/rad and the dumping 1Nm s/rad. The model was transformed to the set of first
order differential equations that is represented in Jordan canonical form

ż = Jz + cF , (15)
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where

J =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 0 0 0
0 0 −0.5000− 9.9875 i 0 0 0
0 0 0 −0.5000 + 9.9875 i 0 0
0 0 0 0 −1.5000− 17.2554 i 0
0 0 0 0 0 −1.5000 + 17.2554 i

⎤
⎥⎥⎥⎥⎥⎦ ,

c =

⎡
⎢⎢⎢⎢⎢⎣

0.0400
1.0000

0.9950− 0.0999 i
0.9950 + 0.0999 i
0.9850− 0.1726 i
0.9850 + 0.1726 i

⎤
⎥⎥⎥⎥⎥⎦ .

(16)

The control input was considered in the form of a polynomial function

u(t) = λ0 + λ1 t+ λ2 t
2 + λ3 t

3 + λ4 t
4 + λ5 t

5 . (17)

Coefficients were calculated using (4) for t1 = 0 s, t2 = 1 s and Φf = 1 rad and the solution
is

λ = [52.9868;−529.9711; 2271.6044;−4726.9460; 4399.2114;−1459.8514] . (18)

The computed input and simulated system response is shown in Fig. 4.

The time domain continuity of the input wasn’t required in this case. However it could
be reached either by using input function in the form of (13) or adding restrictions (11).

Fig.4: Serial electronic cam – shaped input and system response

Fig.5: Parallel structure of electronic cam
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4.2. Parallel electronic cam

The structure in Fig. 5 describes situation when the load consists of two masses with
different resonant frequencies connected parallel to the actuator.

The value of all moments of inertia was set to 1 kg m2, k12 = 100Nm/rad, k13 =
= 50Nm/rad and all the dumping was neglected. The system was described using equation⎡

⎣ I1 0 0
0 I2 0
0 0 I3

⎤
⎦

⎡
⎣ ϕ̈1

ϕ̈2

ϕ̈3

⎤
⎦ +

⎡
⎣ b12 + b13 −b12 −b13

−b12 b12 0
−b13 0 b23

⎤
⎦

⎡
⎣ ϕ̇1

ϕ̇2

ϕ̇3

⎤
⎦ +

+

⎡
⎣ k12 + k13 −k12 −k13

−k12 k12 0
−k13 0 k23

⎤
⎦

⎡
⎣ϕ1

ϕ2

ϕ3

⎤
⎦ =

⎡
⎣u0

0

⎤
⎦ .

(19)

As in the previous chapter this model was transform to Jordan canonical form (15) where

J =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 + 15.3819 i 0 0 0
0 0 0 0 + 7.9623 i 0 0
0 0 0 0 0 − 15.3819 i 0
0 0 0 0 0 0 + 7.9623 i

⎤
⎥⎥⎥⎥⎥⎦ ,

c =

⎡
⎢⎢⎢⎢⎢⎣

0.0000
1.0000
1.0000
1.0000
1.0000
1.0000

⎤
⎥⎥⎥⎥⎥⎦ .

(20)

The shape of the control input was considered in the form of polynomial (17) where the
coefficients were calculated using (4) for for t1 = 0 s, t2 = 1 s and Φf = 1 rad

λ = [22.4522;−14.8122;−612.5777; 2149.3888;−2611.5054; 1044.6021] . (21)

The computed input and simulated system response is shown in Fig. 6.

Fig.6: Parallel electronic cam – shaped input and system response
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4.3. Two-inputs electronic cam

Input shaping techniques are usually applied only to systems with a single input. However
many systems has two or more actuators. The schema of simple electronic cam with two
inputs is shown in Fig. 7. The position of the cam I2 is controlled by actuators I1 and I3.
Both actuators act on the same axis. The real application of this structure is that I3 is
primary force element, e.g. asynchronous motor, but with low accuracy of positioning. The I1
is a fast servo motor that ensures precise positioning and/or vibration suppression.

Fig.7: Two-input structure of electronic cam

The system was described using equation⎡
⎣ I1 0 0

0 I2 0
0 0 I3

⎤
⎦

⎡
⎣ ϕ̈1

ϕ̈2

ϕ̈3

⎤
⎦ +

⎡
⎣ b12 −b12 0
−b12 b12 + b13 −b23

0 −b23 b23

⎤
⎦

⎡
⎣ ϕ̇1

ϕ̇2

ϕ̇3

⎤
⎦ +

+

⎡
⎣ k12 −k12 0
−k12 k12 + k13 −k23

0 −k23 k23

⎤
⎦

⎡
⎣ϕ1

ϕ2

ϕ3

⎤
⎦ =

⎡
⎣u1

0
u3

⎤
⎦ .

(22)

Model parameters were set to the same values as in the chapter 4.1 and for the simulation
the input u3 was defined as a constant load u3 = −10Nm.

Once again the model was transformed to Jordan canonical form

ż = Jz + CF , (23)

with

J =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 0 0 0
0 0 −0.5000− 9.9875 i 0 0 0
0 0 0 −0.5000 + 9.9875 i 0 0
0 0 0 0 −1.5000− 17.2554 i 0
0 0 0 0 0 −1.5000 + 17.2554 i

⎤
⎥⎥⎥⎥⎥⎦ ,

C =

⎡
⎢⎢⎢⎢⎢⎣

0.0400 0.0400
1.0000 1.0000

0.9950 − 0.0999 i 0.9950− 0.0999 i
0.9950 + 0.0999 i 0.9950 + 0.0999 i
0.9850 − 0.1726 i 0.9850− 0.1726 i
0.9850 + 0.1726 i 0.9850 + 0.1726 i

⎤
⎥⎥⎥⎥⎥⎦ , F =

[
u1

u3

]
.

(24)

The solution of the control input in the form of polynomial (17) leads to the solution

λ = [133.607;−1854.280; 8924.832;−18449.097; 16856.130;−5582.174] . (25)

The computed input and simulated system response is shown in Fig. 8.
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Fig.8: Two-inputs electronic cam – shaped input and system response

Note that there is no residual vibration but the controlled mass no. 2 slightly ‘overshoot’
the final position during the travel. The reason is that no restrictions were defined to deal
with this problem, but it is possible to add them to existing calculating procedure.

5. Robustness

Being a feed-forward method all control shaping techniques need precise system models.
The vibration suppression is in fact caused by placing zeros of the control input into the
poles of the system. Therefore incorrect system model causes that the control input is not
design properly and vibrations are not cancelled. To increase robustness to modelling errors
it is possible to formulate additional constrains that either introduced more zeros to the
control input or increase the order of existing ones. The price for that is the increase of
necessary acting force or longer settling time.

Fig. 9 shows the spectral analysis of the polynomial shaper of 5th order (designed for two-
mass model with time domain continuity restrictions) and Fig. 10 shows the robust variant
of 7th order that fulfil constraints for zero derivatives in the poles of controlled system.

The density of iso-lines around system poles is considerably higher in the case of robust
shaper. That means lower sensitivity to modelling errors.

Fig.9: Spectral analysis of 5 th order polynomial shaper
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Even more robust is the shaper in Fig.11 that was designed by placing two additional
zeros nearby the poles of the system. Even if the real system resonant frequency Ω differs
from the modelled one Ωm more than 20% the amount of residual vibration is below 1%
compared to unshaped signal, see Fig. 12. On the other hand to achieve this performance
the shaped input command lasts 4 times longer than unshaped one.

Fig.10: Spectral analysis of 7 th order polynomial shaper

Fig.11: Spectral analysis of 9th order polynomial shaper

Fig.12: Sensitivity to modelling errors a) 5th order shaper b) 9th order shaper
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6. Experiment

The test stand that was used for an experimental evaluation of simulations is in Fig. 13.
Its structure is similar to Fig. 2, but the gearbox with ratio 1:5 was added. So for desired
position ϕ2(t2) = 2π rad the motor position has to be ϕ1(t2) = 10π rad. The settling time
was t2 = 0.5 s. The control input was in the form (13) and two zeros were added to control
input nearby modelling system poles.

The computed control input and the system response are in Fig. 14 and Fig. 15. The
experiment proved simulation results and no vibration appeared.

Fig.13: Test stand

Fig.14: Experiment – control input Fig.15: Experiment – system response

7. Conclusions

The presented approach to control of electronic cams describes the design of control
curves that suppress residual vibration in final position. Based on the finite time Laplace
transform it formulates the set of necessary conditions for non-vibration control input. Fur-
ther these conditions are modified to increase robustness to model misalignments. The length
of the control curve can be set arbitrary. Therefore the transformation of control curve into
the dynamical block creates the command shaper that is not strictly determined by the sys-
tem natural frequency. The results were supported by simulation experiments with models
of serial, parallel and multi-input structure of electronic cam and by real experiments using
test stand. The formulation is opened for additional constrains and optimization criteria
and aside from electronic cams it could be used for other flexible systems as well.
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