
Engineering MECHANICS, Vol. 19, 2012, No. 4, p. 249–260 249

ASSESSMENT OF COMPUTATIONAL EFFICIENCY
OF NUMERICAL QUADRATURE SCHEMES

IN THE ISOGEOMETRIC ANALYSIS

Daniel Rypl*, Bořek Patzák*

Isogeometric analysis (IGA) has been recently introduced as a viable alternative to the
standard, polynomial-based finite element analysis. One of the fundamental perfor-
mance issues of the isogeometric analysis is the quadrature of individual components
of the discretized governing differential equation. The capability of the isogeometric
analysis to easily adopt basis functions of high degree together with the (generally)
rational form of those basis functions implies that high order numerical quadrature
schemes must be employed. This may become computationally prohibitive because
the evaluation of the high degree basis functions and/or their derivatives at indi-
vidual integration points is quite demanding. The situation tends to be critical in
three-dimensional space where the total number of integration points can increase
dramatically. The aim of this paper is to compare computational efficiency of seve-
ral numerical quadrature concepts which are nowadays available in the isogeometric
analysis. Their performance is assessed on the assembly of stiffness matrix of B-spline
based problems with special geometrical arrangement allowing to determine minimum
number of integration points leading to exact results.

Keywords : isogeometric analysis, numerical quadrature, Gaussian quadrature, Bézier
extraction, half-point rule, exact B-spline quadrature rule

1. Introduction

The concept of the isogeometric analysis [1, 2], initially motivated by the gap between the
computer aided design (CAD) and the finite element analysis (FEA), builds upon the concept
of isoparametric elements, in which the same shape functions are used to approximate the
geometry and the solution on a single finite element. The IGA, as its name suggests, goes one
step further because it employs the same functions for the description of the geometry and for
the approximation of the solution space on that geometry. This implies that the isogeometric
mesh (discretization for computational purposes) of the CAD geometry encapsulates the
exact geometry no matter how coarse the mesh actually is. As a consequence, the need to
have a separate representation for the original CAD model and another one for the actual
computational geometry is completely eliminated.

The isogeometric approach [1] has been originally developed using the NURBS (non-
uniform rational B-splines [3, 4]) which are the basic building blocks in most CAD systems
and which allow precise representation of wide class of objects (e.g. conics and quadrics). To
overcome several drawbacks related to handling of NURBS patches (propagation of the re-
finement through the entire control grid, difficult merging of adjacent patches and handling of

* doc. Dr. Ing. D. Rypl, prof.Dr. Ing. B.Patzák, Department of Mechanics, Faculty of Civil Engineering,
Czech Technical University in Prague



250 Rypl D. et al.: Assessment of Computational Efficiency of Numerical Quadrature Schemes . . .

trimmed patches, etc.), this approach has been recently extended to so-called T-splines [5, 6]
which are a generalization of NURBS. The advantage of T-splines consists in the fact that
they allow local refinement, without propagating the entire row of control points (by creating
a T-junction), which enables efficient merging of several NURBS patches of different parame-
terization into a single gap free model of C0 or higher order continuity [6, 7]. However, linear
independence of T-spline blending functions impose some limitations [8] on local refinement,
which has lead to the introduction of the class of so-called ‘analysis suitable’ T-splines [9].
Recently, this problem has been overcome by the concept of hierarchical B-splines [10] which
seems quite promissing for the IGA.

It has been shown [1, 11, 12, 13, 14] that the IGA outperforms the classical FEA in various
aspects (accuracy, robustness, system condition number, etc.), which is the consequence of
several important advantages of the IGA compared to the FEA. On the other hand, the
computational effort of the IGA, especially when using higher order basis functions, seems
to exceed that for the FEA. The significant source of the computational inefficiency has
been identified to be related to the numerical quadrature of individual components of the
discretized governing differential equation (for example in the context of structural mechan-
ics, of stiffness matrix, mass matrix, load vector, etc.). The basic computational scheme
of the IGA resembles very much that of the FEA with the only difference that instead of
performing the numerical quadrature on individual finite elements the quadrature is accom-
plished over individual non-zero knot spans1of the underlying B-spline based geometry. Due
to the tensor product structure of the basis functions on individual knot spans of a two-
and three-dimensional B-spline patch, the Gaussian quadrature schemes used for (so much
popular) quadrilateral and hexahedral finite elements can be readily adopted in the IGA.

Analogical concept of Gaussian quadrature is also offered by the Bézier extraction ap-
proach [15, 16] typically used when implementing the IGA into existing finite element com-
putational codes. This approach utilizes the fact that the smooth B-spline basis can be
constructed as a linear combination of a C0 Bernstein polynomials which are the basis func-
tions on the so-called Bézier element. Note that the coefficients of the linear combination
are dependent only on the parameterization of the B-spline patch and are independent of
the geometry (position of control points) itself. The beauty of this approach consists in
the fact that the code does not have to implement the B-spline technology. It is enough
to implement rather simple Bernstein polynomials in the interpolation engine (similarly as
the standard Lagrange polynomials) and to apply appropriate linear operator (the so-called
extraction operator) which hides the transformation between the C0 Bernstein basis and
smooth B-spline basis and which is typically part of the input data. Since the individual
Bézier elements correspond to the individual non-zero knot-spans, the Gaussian integration
over individual Bézier elements seems to be equivalent to the Gaussian integration over the
individual non-zero knot spans. There is, however, one important difference. Because the
Bernstein polynomials are defined over the same parametric domain (typically from 0 to 1)
and because the degree of Bernstein basis is the same for all Bézier elements within a single
B-spline patch, the values of individual Bernstein basis functions and their derivatives are
the same at individual Gauss integration points on all Bézier elements and can be there-
fore precomputed (only once) and stored (also only once) thus saving potentionally a huge
number (depending on the number of integration points) of their evaluations.

1 In the context of the IGA, the non-zero knot spans are often called elements.
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Recently, there has been initiated a study [17] on efficient quadrature schemes for the
NURBS-based IGA which profits from the continuity of higher degree B-spline basis func-
tions between adjacent knot spans compared to the C0 continuity of basis functions between
classical finite elements. While the Gaussian quadrature is optimal for the C0 continuous
finite elements, it is far from optimal for Cp−1 continuous B-spline basis functions of order p

spanning several consecutive knot spans. By taking into account the smoothness of the basis
functions across boundaries of infinite number of uniform knot spans, a simple integration
rule (the so-called half-point rule) independent (in terms of the number of integration points,
not in terms of their location) of the degree of the polynomial basis and having (in 1D) just
one integration point per two knot spans has been derived. For practical purposes, however,
integration rules corresponding to open non-uniform finite knot vector are desirable. These
rules can be obtained by the numerical solution of a system of non-linear equations which
is computationally demanding and which is worth only if the rules are applied repeatedly
many times within the same analysis. Therefore only rules on 2, 3, 4, or 5 consecutive
uniform knot spans for few cases of degree of practical interest (thereafter denoted as exact
B-spline integration rules) have been derived. Although these rules only approach the best
possible performance, the savings, especially in 3D, are significant.

The aim of this paper is to compare the efficiency of the above three approaches within
the same software (OOFEM [18]) using the same programming techniques. The results of
the comparison are given in the following Section. The discussion of the results together
with the concluding remarks are given in Section 3.

2. Comparison of computational efficiency of individual quadrature schemes

Although the discussed quadrature schemes are used generally for (only approximate)
integration of rational functions, they can handle precisely only polynomials. Therefore the
examples (see Figure 1) on which the computational efficiency of quadrature schemes has
been assessed are chosen to be B-spline patches with orthogonal system of isoparametric
curves with control points defined by Greville’s coordinates [19], which are defined as an
average of p consecutive knots in the knot vector, from which the first and last knot are
exluded. This ensures that all entries of the Jacobian matrix are constant. In order to
enable application of exact B-spline integration rules (derived in [17]), the (open) knot
vectors describing the parameterization of the B-spline patch are always uniform having
from 2 to 5 non-zero consecutive knot spans. Since the efficiency of these rules is dependent
on the actual number of knot spans, the same number of knot spans is used for each spatial
dimension. Only a limited set of degrees of B-spline basis functions has been employed. The
selected values, namely degrees 2, 3, and 4,2 cover the range of degree of mostly adopted
B-spline basis functions and are sufficient to illustrate the influence of the degree on the
computational performance of the investigated quadrature schemes. All the problems have
been run in one-, two-, and three-dimensional space. The particular jobs are identified as
xD:y-z where x ∈ {1, 2, 3} stands for the spatial dimension of the problem, y ∈ {2, 3, 4}
denotes the degree of B-spline basis functions (common for all spatial dimensions), and
z ∈ {2, 3, 4, 5} indicates the number of uniform knot spans (also common for all spatial
dimensions). For example, 2D:3-4 denotes two-dimensional analysis of degree 3×3 with 4×4
non-zero uniform knot spans (see Figure 1).

2 The case of degree 1 is not interesting, because then the IGA is identical with FEA and the Gaussian
quadrature is optimal in such a case.
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Fig.1: Examples of geometry of investigated B-spline patches : (a) 1D:4-3, (b) 2D:3-4,
(c) 3D:2-5; patch control points are indicated by dots, distinct knots by solid
lines; dashed line in 1D is used just to outline the actual geometry

The investigated quadrature schemes are the following :
– GSR – Gauss Standard Rule,
– GBE – Gauss rule on Bézier Elements,
– GPS – Gauss rule with basis functions Precomputed for all knot Spans,
– EBR – Exact B-spline Rule.

The GPS scheme, considered only to assess the slow-down of the GBE scheme due the
application of the extraction operator, is similar to the GBE scheme in that the values of
B-spline basis functions and their derivatives are precomputed. However, since the concept
of Bézier extraction is not adopted in the GPS scheme, the precomputed values must be
stored for all knot spans. Note that due to the tensor product structure of the Gauss rules,
only the univariate B-spline functions and their derivatives are stored for individual spatial
directions in the GPS as well as in the GBE scheme.

The performance of individual quadrature schemes has been assessed by measuring the
time needed for the assembly of complete stiffness matrix (in the symmetric skyline format).
In order to make the time measurable, the stiffness matrix has been assembled repeatedly,
namely 106 times for 1D problems, 104 times for 2D problems, and 102 times for 3D prob-
lems. Recalling that the Jacobian matrix is constant, the integrated terms of the stiffness
matrix are univariate polynomials of order equal to 2 p − 2 in 1D case and multivariate
(but of tensor product structure) polynomials of order 2 p (in each variable) in 2D and 3D
case, where p denotes the degree of B-spline basis functions. This allows to select the ap-
propriate quadrature rule with minimum number of integration points which still leads to
exact results. In the case of Gauss-based schemes, taking into account the basic property of
Gauss-Legendre quadrature rules, which states that n-point quadrature schemes integrate
exactly polynomials of order up to 2 n − 1, the number of integration points used per span
is equal to p for 1D problems and to p + 1 (in each direction) for 2D and 3D problems.
When using the EBR scheme, the number of integration points is dependent not only on
the order q of integrated univariate polynomials but also on minimum continuity k of these
polynomials at inner knots (meaning that all the derivatives up to k are continuous). The
appropriate EBR quadrature scheme then must exactly integrate functions from space ϕq,k

of piecewise polynomials defined over the whole span of the knot vector (see [17] for details).
It is not difficult to show that the relevant spaces in the context of the evaluation of the
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stiffness matrix are ϕ2p−2,p−2 for 1D case and ϕ2p,p−2 for 2D and 3D case. Thus for the
investigated degrees of B-spline basis functions 2, 3, and 4, the exact B-spline integrations
rules for the quadrature in spaces ϕ2,0, ϕ4,0, ϕ4,1, ϕ6,1, ϕ6,2, and ϕ8,2 are needed. While
integration schemes for the first three spaces are available in [17], schemes for the remaining
spaces had to be computed and are summarized in Appendix A.

A typical pseudo-code for the assembly of the stiffness matrix (on an abstract level)
using the Gaussian quadrature is presented in Table 1. Each knot span is associated with
an integration rule (see papers [20, 21]) which stores individual integration points, position of
which are defined within that single knot span. Note that at all integration points within the
same integration rule, the same basis function attain non-zero value. Such an implementation
can be easily adopted for the exact B-spline quadrature schemes. It is just enough to localize
the individual integration points, distribution of which is defined over several consecutive
knot spans, into individual knot spans and create corresponding integration rules.

compute_stiffness_matrix {

initialize K_global;

loop over all B-spline patches (Bp) {

loop over all integration rules (ir) of Bp {

initialize K_local;

loop over all integration points (ip) of ir {

B = compute B_matrix at(ip);

D = compute D_matrix at(ip);

J = compute Jacobian at(ip);

K_local += B^T.D.B.J;

}

assemble K_local to K_global;

}

}

return K_global;

}

Tab.1: Pseudo-code for the evaluation of the stiffness matrix

The results of individual analyses are summarized separately in Tables 2, 3 and 4 for
spatial dimension 1, 2, and 3, respectively. Note that the elapsed time3 does not account
neither for precomputing the values of B-spline basis functions and their derivatives (for
schemes GBE and GPS) nor for the evaluation of the extraction operator (in the GBE
scheme) which is also precomputed and stored. Except the timing, also some additional
quantities are provided to complete the information :

– Ctrl pnts – total number of control points describing the B-spline patch,
– G* tip – total number of integration points for GSR/GBE/GPS schemes,
– G* ip/d – number of integration points per number of spatial dimensions on the whole

patch for GSR/GBE/GPS schemes,
– EBR ϕq,k – space of piecewise polynomials corresponding to the EBR scheme,
– EBR tip – total number of integration points for the EBR scheme,
– EBR ip/d – number of integration points per number of spatial dimensions on the

whole patch for the EBR scheme.

3 The simulations have been performed using OOFEM [18] software package on a Dell Precision notebook
equipped with Intel dual core 2.53 MHz processor and 4 GB of memory running under Ubuntu 9.04.
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Job Ctrl G* GSR GBE GPS EBR
id pnts tip ip/d time time time ϕq,k tip ip/d time

1D:2-2 4 4 4 6.7 4.6 4.0 3 3 5.7
1D:2-3 5 6 6 10.5 7.0 5.9 ϕ2,0

4 4 7.2
1D:2-4 6 8 8 13.4 9.3 7.6 5 5 9.8
1D:2-5 7 10 10 17.2 11.6 9.6 6 6 11.0

1D:3-2 5 6 6 12.2 7.3 6.1 4 4 8.5
1D:3-3 6 9 9 18.5 10.8 8.9 ϕ4,1

6 6 13.0
1D:3-4 7 12 12 24.8 14.0 11.9 7 7 15.3
1D:3-5 8 15 15 31.2 18.1 15.0 9 9 19.8

1D:4-2 6 8 8 19.1 10.9 8.6 6 6 14.5
1D:4-3 7 12 12 29.3 15.6 13.1 ϕ6,2

8 8 20.5
1D:4-4 8 16 16 38.8 23.3 17.3 10 10 25.8
1D:4-5 9 20 20 50.1 29.1 22.3 12 12 31.3

Tab.2: Summary of 1D jobs assembling 106 times
stiffness matrix. Timing is in seconds

Job Ctrl G* GSR GBE GPS EBR
id pnts tip ip/d time time time ϕq,k tip ip/d time

2D:2-2 16 36 6 2.2 1.7 1.6 25 5 1.5
2D:2-3 25 81 9 4.8 3.8 3.6 ϕ4,0

49 7 3.0
2D:2-4 36 144 12 8.5 7.2 6.5 81 9 5.0
2D:2-5 49 225 15 13.6 10.7 10.1 121 11 8.0

2D:3-2 25 64 8 6.9 6.0 5.6 36 6 4.4
2D:3-3 36 144 12 15.4 13.3 13.1 ϕ6,1

81 9 9.5
2D:3-4 49 256 16 27.9 23.5 22.6 121 11 14.3
2D:3-5 64 400 20 43.3 37.7 35.3 196 14 23.4

2D:4-2 36 100 10 19.4 17.7 16.7 64 8 13.9
2D:4-3 49 225 15 44.1 39.5 38.2 ϕ8,2

121 11 26.2
2D:4-4 64 400 20 78.5 70.2 68.0 196 14 42.9
2D:4-5 81 625 25 121.1 109.7 105.8 289 17 63.8

Tab.3: Summary of 2D jobs assembling 104 times
stiffness matrix; timing is in seconds

Job Ctrl G* GSR GBE GPS EBR
id pnts tip ip/d time time time ϕq,k tip ip/d time

3D:2-2 64 216 6 1.3 1.3 1.3 125 5 0.8
3D:2-3 125 729 9 4.5 4.3 4.3 ϕ4,0

343 7 2.3
3D:2-4 216 1728 12 10.6 10.2 10.1 729 9 5.0
3D:2-5 343 3375 15 20.8 20.1 20.0 1331 11 9.1

3D:3-2 125 512 8 13.7 13.6 13.6 216 6 6.5
3D:3-3 216 1728 12 46.4 46.1 46.0 ϕ6,1

729 9 22.1
3D:3-4 343 4096 16 110.2 109.5 108.8 1331 11 40.9
3D:3-5 512 8000 20 217.3 215.2 214.5 2744 14 85.3

3D:4-2 216 1000 10 93.0 92.9 92.6 512 8 53.7
3D:4-3 343 3375 15 315.6 314.2 314.0 ϕ8,2

1331 11 140.5
3D:4-4 512 8000 20 747.1 744.6 745.8 2744 14 291.1
3D:4-5 729 15625 25 1456.8 1458.5 1457.3 4913 17 523.0

Tab.4: Summary of 3D jobs assembling 102 times
stiffness matrix; timing is in seconds
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The inspection of 1D results in Table 2 reveals that the times needed by GSR and EBR
schemes are, not surprisingly, approximately in the ratio of the total number of integration
points. It also shows that the application of the GBE scheme leads to significant speedup
which increases with the growing degree of B-spline basis functions (as the demands for their
evaluation are growing). Although the GBE scheme outperforms the EBR scheme for all
considered cases, the trend in the results indicates that for a large enough number of knot
spans, the EBR scheme is going to start to dominate because the savings due to decreasing
the total number of integration points grow faster than the savings of the GBE scheme with
respect to the GSR scheme. It is also apparent that the critical number of knot spans will
be decreasing with the increasing degree because the costs of the GBE scheme due to the
application of the extraction operator are growing with the increasing degree as the size of
the extraction operator grows as well. In the case of results of 2D analyses (see Table 3),
the situation changes quite considerably. The profit from precomputing the values of basis
functions and their derivatives in GBE and GPS schemes is much less pronounced, which
is caused by the fact, that the saving is realized (due to the tensor product structure of the
patch) only at limited number of integration points corresponding to 1D integration schemes
in either direction. On the other hand, the advantage of the EBR scheme due to the smaller
number of integration points is accentuated because the total number of integration points
is growing with the square (of the number of integration points used in the single direction).
This implies that the EBR scheme is the best from all the schemes and its performance
(compared to the GSR scheme) improves again not only with the increasing number of
knot spans but also with the increasing degree. It is also worth to note that the cost of
Bézier extraction for the 2D case is, compared to 1D, diminishing. This is, however, not
caused by the improved efficiency of the Bézier extraction in 2D but by the decrease of its
participation in the overall computational demands, which are enlarged by two facts. Firstly,
the evaluation of the derivatives of basis functions with respect to Cartesian coordinates is
more complex and secondly, the size of matrices B and Klocal handled in the stiffness matrix
assembly algorithm (see Table 1) is growing rapidly with the increasing degree. Assuming
that the degree is the same in both spatial directions (which is the considered case), the
number of basis functions which are non-zero at a particular integration point is growing
with square of the degree. This effect becomes critical in 3D (see Table 4) where there is
virtually no difference between individual Gauss based schemes. In this case the size of
matrix Klocal grows with the cube of the degree of the B-spline basis functions. Thus the
costs related to the computation of the product BTDBJ are dominating and the overall
assembly time, for a given degree, is more or less linearly dependent on the total number
of integration points. Since the total number of integration points for the EBR scheme
is much smaller than the number used by the Gauss based schemes, the EBR scheme in
3D is clearly superior for all degrees and number of knot spans. It is interesting to see,
however, that despite the fact that the costs of the numerical quadrature in 2D and 3D are
driven predominantly by the evaluation of the product BTDBJ (not of its components), the
times for GSR and EBR schemes are only approximately in the ratio of the total number
of integration points. A detailed inspection of the profiling information has uncovered that
the time consumed by the function evaluating the product BTDBJ per integration point is
noticeably smaller for the GSR scheme. This could be attributed to the effect of caching
Klocal because the number of processed integration points per integration rule is generally
higher for the GSR scheme compared to the EBR scheme.
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3. Conclusions

In this paper, a study of computational efficiency of several numerical quadrature schemes
available for the IGA has been performed. The performance of the schemes has been assessed
on the assembly of the stiffness matrix on such a geometrical arrangement of a B-spline patch
that the minimum number of integration points leading to exact results could have been
safely determined. The investigation has revealed that the main source of the computational
costs of the numerical quadrature is dependent on the spatial dimension qualitatively as well
as quantitatively. While in 1D the prevailing costs are related to the expensive evaluation
of basis functions and their derivatives and are increasing with the degree and consequently
with the complexity of the B-spline basis functions, in 2D and 3D, the dominating costs
are associated with the assembly of the contributions to the stiffness matrix at individual
integration points, number of which as well as the size of the contributions is also growing
with the degree. This implies that in 1D, the algorithms which profit from the precomputed
values of the basis functions and their derivatives (such as the GBE scheme) are the most
competitive (at least up to a certain crititial number of knot spans). In 2D and 3D, on the
other hand, since the critical factor is the total number of integration points, the quadrature
rules that benefit from taking into account the continuity between the knot spans (such as
the EBR scheme) are always (and in 3D significantly) the better ones.

In the current implementation of two- and three-dimensional GSR, GBE as well as EBR
schemes, there is still some space for savings. For example, the evaluation of particular
components of the stiffness matrix could be accelerated if they are computed on the level of
integration rule rather than on the level of integration point, because the locally precomputed
univariate quantities (on the level of integration rule) can be repeatedly reused (due to the
tensor product structure) for all integration points within the same integration rule. The
preliminary results reveal, however, that this effect is of only a little significance in 2D and
completely negligible in 3D.

An important issue is related to the fact that, in reality, the integrated functions are
only rarely polynomials. More commonly, the integrated terms are of rational character as
the consequence of non-constant Jacobian (does not matter whether due to the location of
control points4 of a B-spline geometry or because of using non-uniform weights in a NURBS
geometry). In such a case, the common practice to select the quadrature rule under the
assumption that the Jacobian is constant may lead to significant error. This aspect can
be demonstrated on a simple example of one-dimensional truss modelled by a quadratic
B-spline patch with two uniform knots with control points located at x1 = 0, x2 = 0.2,
x3 = 0.6, and x4 = 1. The entry [2, 3] of stiffness matrix computed analytically yields
−0.112943611. When applying 2-point (per span) Gaussian integration, the obtained value
is −0.09615, which corresponds to approximately 15% error. The 2-span exact B-spline
rule with three integration points for integration in space ϕ2,0 gives value −0.25 which is
wrong by far more than 100%. Although this is rather pathological case, effect of which is
reduced by the fact that the above entry corresponds approximately to 3.4% of the maximum
stiffness matrix entry, it should not be generally neglected. Thus the over-integration when
using the Gaussian quadrature rules may play also a positive role. Moreover, taking into
account the fact that the derivation of exact B-spline quadrature rule for non-uniform knot

4 Note that while in the FEA the Jacobian (more precisely, its variation) could be reasonably controlled
by the quality of the finite element mesh, in the IGA, the analyst does not have usually such a flexibility
as he/she is stuck with the geometry.
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spans is computationally prohibitive, especially if large number of spans and high degree
of basis functions is considered, and that refining the knot vector to (at least piecewise)
uniform knot vector leads to the increase of both the number of control points (and thus also
problem unknowns) and the number of integration points, the use of the standard Gaussian
quadrature per non-zero knot span still remains reasonable alternative (in a general case).
This, however, implies that the question of numerical quadrature in the IGA remains open
and that there is a strong need to further search for efficient quadrature rules.
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Appendix A.

In this Appendix, the quadrature schemes for the exact integration in ϕ6,1, ϕ6,2, and
ϕ8,2 on the interval [0, 1] with 2, 3, 4, and 5 uniform knot spans are provided. Coordinates
and weights of quadrature points, summarized in Tables 5, 6, and 7, have been computed
by the numerical procedure outlined in [17] which is based on the solution of a system of
non-linear equations stating the exactness of the quadrature rule in the form∫

Ω

Bp
j (ξ) dξ =

nip∑
i=1

H wi Bp
j (ξi) , j = 1, . . . , ndof , (1)

where Bp
j (ξ) denotes the j-th univariate B-spline basis function of degree p, ndof repre-

sents the overall number of basis functions (equal to the total number of control points on

# Coordinate Weight
1 0.046212737218262 0.115024181444685
2 0.213797850599990 0.203072613437640
3 0.413962200649013 0.181903205117487
4 0.586037799350987 0.181903205117487
5 0.786202149400010 0.203072613437640
6 0.953787262781738 0.115024181444685

# Coordinate Weight
1 0.030642376608000 0.076266745374326
2 0.141734846651573 0.134567907647719
3 0.273971127286385 0.118618440802605
4 0.379779139633981 0.106063492775587
5 0.500000000000000 0.128966826799148
6 0.620220860366019 0.106063492775587
7 0.726028872713615 0.118618440802605
8 0.858265153348427 0.134567907647719
9 0.969357623392000 0.076266745374326

# Coordinate Weight
1 0.018520173765736 0.046097561282814
2 0.085687841697670 0.081402101437263
3 0.166020807756211 0.073397453079548
4 0.237178093583745 0.077039783118035
5 0.322462519002690 0.086822232209338
6 0.397484374599436 0.062648276280257
7 0.462203552699062 0.072592592592556
8 0.537796447300938 0.072592592592556
9 0.602515625400564 0.062648276280257

10 0.677537480997310 0.086822232209338
11 0.762821906416255 0.077039783118035
12 0.833979192243789 0.073397453079548
13 0.914312158302330 0.081402101437263
14 0.981479826234264 0.046097561282814

# Coordinate Weight
1 0.023151919684118 0.057626217478808
2 0.107117994402021 0.101761040444035
3 0.207547338857538 0.091778791186793
4 0.296610452114193 0.096512828661717
5 0.403475006137249 0.108804883034682
6 0.500000000000000 0.087032478387552
7 0.596524993862751 0.108804883034682
8 0.703389547885807 0.096512828661717
9 0.792452661142462 0.091778791186793

10 0.892882005597979 0.101761040444035
11 0.976848080315882 0.057626217478808

Tab.5: Coordinates and weights of quadrature points for exact quadra-
ture in ϕ6,1 on the interval [0, 1] with 2 (top left), 3 (top right),
4 (bottom right), and 5 (bottom left) uniform knot spans
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# Coordinate Weight
1 0.046212737218262 0.115024181444685
2 0.213797850599990 0.203072613437639
3 0.413962200649013 0.181903205117487
4 0.586037799350987 0.181903205117487
5 0.786202149400010 0.203072613437639
6 0.953787262781738 0.115024181444685

# Coordinate Weight
1 0.032509212332349 0.080935503234357
2 0.150617986025149 0.143497669038710
3 0.294914900084714 0.137136269815659
4 0.429193875888619 0.138430557911085
5 0.570806124111381 0.138430557911085
6 0.705085099915286 0.137136269815659
7 0.849382013974851 0.143497669038710
8 0.967490787667651 0.080935503234357# Coordinate Weight

1 0.019796220904769 0.049291039978820
2 0.091787579286588 0.087594474874824
3 0.181541216020813 0.089204170945075
4 0.274797052289712 0.098993104267671
5 0.371943037927442 0.090194507546738
6 0.456885245389865 0.084722702386682
7 0.543114754610135 0.084722702386682
8 0.628056962072558 0.090194507546738
9 0.725202947710288 0.098993104267671

10 0.818458783979187 0.089204170945075
11 0.908212420713412 0.087594474874824
12 0.980203779095231 0.049291039978820

# Coordinate Weight
1 0.024674350061536 0.061435702093662
2 0.114388066516845 0.109125580973635
3 0.225696248333798 0.109440065519943
4 0.338034400421348 0.117618543966031
5 0.451622850188181 0.102380107446540
6 0.548377149811819 0.102380107446540
7 0.661965599578652 0.117618543966031
8 0.774303751666202 0.109440065519943
9 0.885611933483155 0.109125580973635

10 0.975325649938464 0.061435702093662

Tab.6: Coordinates and weights of quadrature points for exact quadra-
ture in ϕ6,2 on the interval [0, 1] with 2 (top left), 3 (top right),
4 (bottom right), and 5 (bottom left) uniform knot spans

# Coordinate Weight
1 0.029317365558605 0.073785388617378
2 0.142157704774954 0.144519421377153
3 0.299856825427078 0.160564975301295
4 0.443811666373756 0.121130214704163
5 0.556188333626244 0.121130214704163
6 0.700143174572922 0.160564975301295
7 0.857842295225046 0.144519421377153
8 0.970682634441395 0.073785388617378

# Coordinate Weight
1 0.020216037277298 0.050882211074448
2 0.098054432048896 0.099731887928612
3 0.207036969428665 0.111258635867919
4 0.308710240572963 0.089942766919391
5 0.396857836748817 0.094098649790251
6 0.500000000000000 0.108171696838738
7 0.603142163251183 0.094098649790251
8 0.691289759427037 0.089942766919391
9 0.792963030571335 0.111258635867919

10 0.901945567951104 0.099731887928612
11 0.979783962722702 0.050882211074448

# Coordinate Weight
1 0.012217141892880 0.030750255302139
2 0.059263644659815 0.060288691569683
3 0.125182489234921 0.067371141771344
4 0.187554035144786 0.057210267660312
5 0.247257333632995 0.066005863127736
6 0.318054522422214 0.071759255045056
7 0.383299962490317 0.057049551398649
8 0.437792437671208 0.056976406190641
9 0.500000000000000 0.065177135868859

10 0.562207562328792 0.056976406190641
11 0.616700037509683 0.057049551398649
12 0.681945477577786 0.071759255045056
13 0.752742666367005 0.066005863127736
14 0.812445964855214 0.057210267660312
15 0.874817510765079 0.067371141771344
16 0.940736355340185 0.060288691569683
17 0.987782858107121 0.030750255302139

# Coordinate Weight
1 0.015253923946387 0.038393631636945
2 0.073993328835077 0.075270862300191
3 0.156285641994598 0.084089673438105
4 0.233943313351680 0.070747659625745
5 0.306871944085494 0.079958531122863
6 0.392416628402800 0.086471694873232
7 0.469822629830853 0.065067947002908
8 0.530177370169147 0.065067947002908
9 0.607583371597200 0.086471694873232

10 0.693128055914506 0.079958531122863
11 0.766056686648320 0.070747659625745
12 0.843714358005402 0.084089673438105
13 0.926006671164923 0.075270862300191
14 0.984746076053613 0.038393631636945

Tab.7: Coordinates and weights of quadrature points for exact quadra-
ture in ϕ8,2 on the interval [0, 1] with 2 (top left), 3 (top right),
4 (bottom right), and 5 (bottom left) uniform knot spans



Engineering MECHANICS 259

1D patch), H stands for the size of the parametric space Ω (H = 1 was used as the unit
interval [0, 1] is considered as Ω), nip is the number of integrations points and ξi and wi are
their unknown coordinates and weights. For even ndof , the minimum number of integra-
tion points allowing to fulfil Eqs (1) is given by nip = ndof/2. For odd ndof , the minimum
required number of integration points turns out to be nip = (ndof + 1)/2, which yields
one less equations than is the number of unknowns. To ensure the unique solution in such
a case, the system of equations (1) is supplemented by a symmetry condition representing
the fact that, for the investigated case of uniform knot vector, the (nip+1)/2-th integration
point is in the middle of Ω. The left-hand side of Eqs (1), corresponding to the exact values
of integrals of individual B-spline basis functions, can be evaluated using, for example, the
standard Gauss quadrature rule using (p + 1)/2 and (p + 2)/2 Gauss integration points on
each non-zero knot span for odd and even p, respectively. The system of equations (1),
extended by the symmetry condition for odd ndof , has been solved using the MATLAB
fsolve routine with tolerance 10−12.

References
[1] Hughes T.J.R., Cottrell J.A., Bazilevs Y.: Isogeometric Analysis: CAD, Finite Elements,

NURBS, Exact Geometry and Mesh Refinement, Computer Methods in Applied Mechanics
and Engineering, 194 (2005), pp. 4135–4195

[2] Cottrell J.A., Hughes T.J.R., Bazilevs Y.: Isogeometric Analysis: Toward Integration of CAD
and FEA, John Wiley & Sons 2009

[3] Rogers D.F.: An Introduction to NURBS: With Historical Perspective, Morgan Kaufmann
2000

[4] Piegl L., Tiller W.: The NURBS Book, Springer-Verlag 1997
[5] Sederberg T.W., Zheng J., Bakenov A., Nasri A.: T-splines and T-NURCCs, ACM Transac-

tions on Graphics (SIGGRAPH 2003), 22(3) (2003), pp. 477–484
[6] Bazilevs Y., Calo V.M., Cottrell J.A., Evans J.A., Hughes T.J.R., Lipton S., Scott M.A., Seder-

berg T.W.: Isogeometric Analysis Using T-splines, Computer Methods in Applied Mechanics
and Engineering, 199(5–8) (2010) pp. 229–263

[7] Sederberg T.W., Gardon D., Finnigan G., North N., Zheng J., Lyche T.: T-spline Simplifica-
tion and Local Refinement, ACM Transactions on Graphics (SIGGRAPH 2004), 23(3) (2004),
pp. 276–283
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