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DYNAMIC LOAD OF THE LOCOMOTIVE DRIVE
CAUSED BY SHORT-CIRCUIT MOTOR TORQUE

Vladimı́r Zeman*, Zdeněk Hlaváč*

The paper deals with mathematical modelling of dynamic response of the electric
locomotive wheelset drive caused by short-circuit traction motor torque. The indi-
vidual wheelset drive is composed of five subsystems – rotor of the traction motor
with driving gear, driven gear, stator of the traction motor with gear housing, hollow
graduated shaft with clutches and wheelset. The couplings between subsystems are
linearized in dependence on longitudinal creepage and locomotive forward velocity
before sudden short-circuit in the asynchronous traction motor. In comparison with
previous models of the wheelset drives, the rotor of the electromotor is characteri-
zed by flexible shaft supported on flexible rolling-element bearings. The sheet metal
packet of cylindrical shape is connected by parallel cooper bars with two short circuit
rings. In consequence of strong excitation an interruption of gear mesh can be ob-
served. This nonlinear effect and dynamic load of individual wheelset drive with large
number of DOF is investigated using the condensed mathematical model created by
modal synthesis method.

Keywords : electric locomotive, short-circuit torque, condensed model, dynamic load

1. Introduction

The sudden short-circuit in asynchronous traction motors represents an extreme dynamic
loading of wheelset drives of electric locomotives. The short-circuit motor torque in the air-
space of the traction motor applied in the electric locomotive developed for speed about
200 km/h by the company ŠKODA TRANSPORTATION was calculated in the production
plant ŠKODA ELECTRIC in dependence on time [3]. This torque affects the rotor and
conversely the stator for short time period (c. 0.1–0.2 s) and contains the high-frequency
harmonic components. On this account a dynamic response of the wheelset drive can not be
investigated using torsional models with rigid rotor of the traction motor, as it was shown
e.g. in [8], [9]. Only spatial models of the flexible rotor of the traction motor [6] and other
components of the wheelset drive [12] enable to investigate the dynamic load. The dynamic
response of the wheelset drive caused by short-circuit torque was originally investigated by
authors of this article [13] on condition of the rigid rotor supported on rigid bearings and
uninterrupted contact in gear mesh between pinion gear mounted on the end of the motor
shaft and the gearbox wheel. The bogie frame vibration turned out to be very small. That
is why we will suppose that the bogie frame (BF) does not vibrate.

The goal of the paper is to modify the mathematical model of the wheelset drive presented
in [13] and use it for dynamic response investigation of the railway vehicle individual wheelset
drive caused by short-circuit motor torque.
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2. Extended model of the wheelset drive

The new extended mathematical model of the individual wheelset drive is based on
computational (physical) model, which structure is shown in Fig.1.

Fig.1: Scheme of individual wheelset drive and coordinate systems

The wheelset drive was decomposed to 5 subsystems :

– rotor of traction motor (RM) with pinion gear (P),
– gearbox wheel (G) with wheel hub lug and driving part of disc clutch (DC),
– stator of traction motor (S) fixed with gearbox,
– hollow shaft (H) embrasing the wheelset axle with driven part of disc clutch and

driving part of claw clutch (CC),
– wheelset (W) with driven part of claw clutch, axle bearings and flexible linkage with

track.

The rotor model of the traction motor, newly integrated in the drive model, is cha-
racterized by a flexible shaft with mounted packet of sheet metals that are equipped with
parallel copper bars (CB) connected by end short-circuit rings (R). The shaft is modelled as
one-dimensional continuum of beam types on the basis of Rayleigh theory and discretized
to 15 finite elements (see Fig. 2) with 16 nodes. The sheet metal packet with copper bars
passing trough is modelled by five rigid bodies connected by flexible couplings to the shaft
nodes 6 to 10.

Two rings with gravity centres 17 and 18 (see Fig. 2) are connected with the copper bars
ends in the outer sides of the rotor. Each ring is supposed to be rigid body with 6 degrees of
freedom. The pinion gear is fixed with shaft in end nodal point 16. The shaft is supported
by two roller flexible bearings. The mathematical model of the rotor, in comparison with
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Fig.2: Scheme of rotor model

model in [6], has been completed by the pinion gear in nodal point 16 and is characterized
by mass and stiffness matrices MRM, KRM of order 108.

We assume a torsion displacement ϕ19 of the gearbox wheel inside the spatially vibrating
gearbox, which is fixed with stator of traction motor. Hence, the second subsystem (see
Tab. 1) is displayed in the global mass matrix by torsional moment of inertia IG and mass
concentrated in centre of gravity is associated with stator.

It is considered that the stator with gearbox is a rigid body with centre of gravity in
point 20 (see Fig. 1). In configuration space

qS = [u20, v20, w20, ϕ20, ϑ20, ψ20] , (1)

the stator is characterized by mass matrix

MS =
[
mS E 0

0 IS

]
∈ R6,6 (2)

of order 6, where mS is mass, E unit matrix and IS is inertia matrix in coordinate sys-
tem marked in the Fig. 1 by S with the coordinate basic origin in stator centre of gravity
(point 20). The stator with gearbox is connected to the bogie frame by silent blocks with
centres of elasticity A, B,C.

The composite hollow shaft and the wheelset are modelled as spatial vibrating one-
dimensional continua discretized by finite element method [11] in nodal points 21–25 (H),
26–32 (W) with rigid disc mounted at nodes 21 (driven part of the disc clutch), 25 (driving
part of claw clutch), 27, 31 (journals) and 28, 30 (wheels), respectively.

The viscous-elastic railway balast (rail, railpad, sleeper and balast) is respected by
a single mass-spring-damper system [4] defined by mass, stiffness and damping parame-
ters mR, kR, bR. Mathematical models of the hollow shaft and wheelset are characterized
by mass and stiffness matrices MH, KH of order 30 and MW, KW of order 42, respectively.
Angular speeds of the traction motor ωM and wheelset ωW correspond to pure rolling of the
wheelset defined by operational speed v of the electric locomotive.
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The vectors of general coordinates qi in nodal points i of the one-dimensional continua
(shaft of the traction motor, hollow shaft and wheelset) and in the gravity centres of rigid
bodies (short circuit rings and stator of the traction motor) have the form

qi = [ui, vi, wi, ϕi, ϑi, ψi]T , i = 1−18, 20−32 , (3)

where ui, vi, wi are translational deflections in the corresponding coordinate axes and
ϕi, ϑi, ψi are rotational deflections around these axes shifted to corresponding node (see
Fig. 1). A general position of the subsystems in the local coordinate systems displayed in
Fig. 1 is defined by generalized coordinates summarized in Table 1.

Subsystem Number Sequence Generalized coordinates
DOF in q

Rotor RM 108 1–108 u1, v1, w1, ϕ1, ϑ1, ψ1, . . . , u18, v18, w18, ϕ18, ϑ18, ψ18

Gearbox wheel G 1 109 ϕ19

Stator S 6 110–115 u20, v20, w20, ϕ20, ϑ20, ψ20

Hollow shaft H 30 116–145 u21, v21, w21, ϕ21, ϑ21, ψ21, . . . , u25, v25, w25, ϕ25, ϑ25, ψ25

Wheelset W 42 146–187 u26, v26, w26, ϕ26, ϑ26, ψ26, . . . , u32, v32, w32, ϕ32, ϑ32, ψ32

Tab.1: Generalized coordinates of subsystems

The matrices of the mutually isolated subsystems are included in the global matrices of
the individual wheelset drive in the form of the block-diagonal structures

M = diag[MRM, IG,MS,MH,MW] , K = diag[KRM, 0,0,KH,KW] (4)

accordant with the global vector of generalized coordinates

q = [qRM, ϕ19,qS,qH,qW]T ∈ R187 . (5)

3. Stiffness matrices of couplings between subsystems

Coupling stiffness matrices between subsystems are derived in configuration space defined
in (5). In comparison with previous models in [12], [13], the couplings between rotor and
stator of the traction motor and between pinion gear and gearbox wheel are now totally
changed. Hence, we will introduce theirs derivation.

The shaft of the rotor is supported on two roller bearings B1 and B2, where the left one
is the radial-axial (Fig. 3). Principal directions ηi, ζi of radial bearing stiffnesses kηi , kζi

include angle αi with corresponding frame axes yi, zi (i = 3, 14).

Fig.3: Scheme of the couplings between rotor and stator of the traction motor
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The deformation energy of the bearings is given by following form

EB =
1
2

dT
3 K3 d3 +

1
2

dT
14 K14 d14 , (6)

where Ki = diag[kξi , kηi , kζi ], i = 3, 14 are diagonal bearing stiffness matrices, whereas
kξ14 = 0. The transver of the bearing centres caused by stator vibration in the coordinate
system of the rotor is described by the vector TS,RM(u20 + RT

i ϕ20), where

TS,RM =

⎡⎣−1 0 0
0 1 0
0 0 −1

⎤⎦
and components of the vector u20 = [u20, v20, w20]T represent displacements of bearing
centres (centre gravity of stator) and the vector ϕ20 = [ϕ20, ϑ20, ψ20]T describes angle dis-
placements of the stator. Operators Ri of cross product are defined by radius vectors of
bearing centres in coordinate system x20, y20, z20. Deformation vectors of the bearings in
coordinate systems ξi, ηi, ζi of the main stiffness directions of the bearings can be expressed
as

di = Ti [ui − TS,RM (u20 + RT
i ϕ20)] , i = 3, 14 , (7)

where

Ti =

⎡⎣ 1 0 0
0 cosαi sinαi

0 − sinαi cosαi

⎤⎦ , i = 3, 14 (8)

are transformation matrices between vectors in coordinate systems ξi, ηi, ζi and xi, yi, zi,
i = 3, 14 and ui = [ui, vi, wi]T. The stiffness matrix results from the identity

∂EB

∂q
= KRM,S q

and in the compressed form is

KRM,S =

⎡⎣ TT
3 K3 T3 0 −TT

3 K3 T3,20

0 TT
14 K14 T14 −TT

14 K14 T14,20

−TT
3,20 K3 T3 −TT

14,20 K14 T14 TT
3,20 K3 T3,20 + TT

14,20K14T14,20

⎤⎦ , (9)

where
Ti,20 = Ti TS,RM [E3,RT

i ] ∈ R3,6 , i = 3, 14 . (10)

The block matrices in (9) are localized in the full stiffness matrix KRM,S ∈ R187,187 in
accordance with subvectors u3, u14 and q20 in the global vector q of generalized coordinates.

The general configuration of spur helical gears (Fig. 4) is described by pinion gear and
gearbox wheel vectors of displacements qi (i = 16, 19) defined in (3).

In the coordinate system ξ, η, ζ, the vector of relative deviation of the central interaction
gearing point can be expressed in the form

(d)ξ,η,ζ =

⎡⎣ (v16 − v19) cos γ + (w16 + w19) sinγ − rP ϕ16 + rG ϕ19

−(v16 − v19) sin γ + (w16 + w19) cos γ
u16 + u19 + rP cos γ ϑ16 + rG cos γ ϑ19 + rP sin γ ψ16 − rG sinγ ψ19

⎤⎦ , (11)
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Fig.4: Scheme of a gearing coupling

where rP is rolling radius of the driving pinion gear (driven gearbox wheel rG) and γ is angle
of position. The gearing deformation is given by vector (d)ξ,η,ζ projection to normal line of
the tooth faces

dn = eT
n (d)ξ,η,ζ = [cosα cosβ, sinα, cosα sinβ] (d)ξ,η,ζ , (12)

where α is normal pressure angle and β is angle of inclination of the teeth. In accordance
with (11) and (12) the gearing deformation is

dn = δT
16 q16 + δT

19 q19 , (13)

where vectors of geometrical parameters of the gear pair are expressed as

δ16 =

⎡⎢⎢⎢⎢⎢⎣
cosα sinβ

cosα cosβ cos γ − sinα sin γ
cosα cosβ sin γ + sinα cos γ

−rP cosα cosβ
rP cosα sinβ cos γ
rP cosα sinβ sinγ

⎤⎥⎥⎥⎥⎥⎦ , δ19 =

⎡⎢⎢⎢⎢⎢⎣
cosα sinβ

− cosα cosβ cos γ + sinα sin γ
cosα cosβ sin γ + sinα cos γ

rG cosα cosβ
rG cosα sinβ cos γ
−rG cosα sinβ sin γ

⎤⎥⎥⎥⎥⎥⎦ . (14)

The displacement vector q19 of the gearbox wheel can be expressed by its torsional angular
displacement ϕ19 and gearbox displacements as

q19 = T19,20 q20 + [0, 0, 0, ϕ19, 0, 0]T , (15)

where transformation matrix

T19,20 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 zk −yk

0 1 0 −zk 0 xk

0 0 1 yk −xk 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
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is defined by coordinates xk, yk, zk of the nodal point 19 in the space x20, y20, z20.
According to (13) and (15) the gearing deformation is

dn = δT
16 q16 + δT

19 T19,20 q20 + rG cosα cosβ ϕ19 . (16)

Under the condition of uninterrupted gear mesh and main stiffness kG of gearing in normal
direction, the stiffness gear coupling matrix results from identity

∂Ed

∂q
= KP,G q ,

where Ed = 1
2 kG d

2
n is deformation energy of the gear coupling. This matrix in the com-

pressed form is

KP,G = kG

⎡⎣ δ16 δT
16 RG δ16 δ16 δT

19 T19,20

RG δT
16 R2

G RG δT
19 T19,20

TT
19,20 δ19 δT

16 RG TT
19,20 δ19 TT

19,20 δ19 δT
19 T19,20

⎤⎦ , (17)

where RG = rG cosα sinβ. The block matrices in (17) are localized in the full stiffness
matrix KP,G ∈ R187,187 in accordance with subvector q16, angular displacement ϕ19 and
subvector q20 in the global vector q of generalized coordinates.

4. Mathematical model of the individual wheelset drive

To analyze the dynamic response of the wheelset drive caused by the sudden short-circuit
traction motor torque, we neglect track and wheel irregularities which are source of kinematic
excitation [7]. Let us suppose an operational state of the locomotive running on the straight
track before short-circuit which is given by the longitudinal creepage s0 of both wheels, by
forward velocity v [m/s] and by vertical wheel forces N0 [N].

Fig.5: Creep characteristics
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Longitudinal Ti ad, lateral Ai ad creep forces and spin torque Mi ad acting at the contact
patches between rails and wheels can be expressed as [12]

Ti ad = μ(si, v)Ni , Ai ad = b22 (u̇i+r ψ̇i)+b23 ϑ̇i , Mi ad = −b23 (u̇i+r ψ̇i)+b33 ϑ̇i . (18)

The longitudinal creep coefficient μ(si, v) depends on longitudinal creepage defined by

si = s0 +
r ϕ̇i − ẇi

v
; s0 =

r ωW − v

v
, (19)

where r is wheel radius. The lateral creep force and the spin torque about vertical axis
depend on linearized creep coefficients bij , calculated using Kalker’s theory [5] for static ver-
tical wheel force before short-circuit. The creep force vectors in coordinate system xi, yi, zi

of corresponding wheel can be expressed in the form

fT
i = [−Ai ad, Ni, Ti ad,−Ti ad r,−Mi ad,−Ai ad r] , i = 28, 30 . (20)

To analyze the wheelset drive vibration the longitudinal creep characteristics are presented
in Fig. 5. These characteristics express longitudinal creep coefficient depending up longi-
tudinal creepage between the wheel and rail and the forward locomotive velocity v [km/h]
(v = 40, 80, 120, 160, 200). The characteristics in Fig. 5 are calculated for standard adhesion
conditions and maximal normal pressure in wheel-rail contact ellipse according to Hertz’s
theory on the basis of experimentally derived formula presented in [2], [10]. The longitudinal
creep coefficient will be linearized in the neighbourhood of a state before short-circuit in the
form

μ(si, v) = μ(s0, v) +
[
∂μ

∂si

]
si=s0

(s− s0) . (21)

The linearized longitudinal creep forces can be then expressed as

Ti ad = μ(s0, v)N0 + b11 (r ϕ̇i − ẇi) ; b11 =
3.6
v
N0

[
∂μ

∂si

]
si=s0

. (22)

According to (20) and (22) the linearized creep force vectors is

fi = −Bad q̇i + f0 , (23)

where matrix Bad and the static force vector f0 are in the form

Bad =

⎡⎢⎢⎢⎢⎢⎣
b22 0 0 0 b23 r b22
0 0 0 0 0 0
0 0 b11 −r b11 0 0
0 0 −r b11 r2 b11 0 0

−b23 0 0 0 b33 −r b23
r b22 0 0 0 r b23 r2 b22

⎤⎥⎥⎥⎥⎥⎦ ; f0 =

⎡⎢⎢⎢⎢⎢⎣
0
N0

μ0N0

−μ0N0 r
0
0

⎤⎥⎥⎥⎥⎥⎦ . (24)

The vector of global linearized creep forces acting on both wheels in the configuration space
of generalized coordinates is than

fad = −Bad(s0, v) q̇ + f0 , (25)

where
Bad(s0, v) = diag[ . . . ,Bad, . . . ,Bad, . . . ] ; f0 = [ . . . , f

T

0 , . . . , f
T

0 , . . . ]
T (26)
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with blocks Bad and subvectors f0 localized on positions corresponding to displacement qi,
i = 28, 30 in the vector of generalized coordinates q(t). Other blocks and subvectors in (26)
are zero.

According to the wheelset drive decomposition into 5 subsystems, modelling of the inter-
nal couplings between subsystems and linearized creep forces in the neighbourhood of the
static equilibrium before perturbation, the mathematical model of the wheelset drive can be
written as

Mq̈ + [B + BRM,S + BP,G + BS,BF + BDS + BCC + Bad(s0, v)] q̇ +

+ [K + KRM,S + KP,G(dn) + KS,BF + KDS + KCC]q = fM(t) + f0 .
(27)

Individual damping and stiffness matrices with subscripts correspond to coupling between
subsystems (see Fig. 1) :

– RM,S – rotor, stator of the traction motor,
– P,G – pinion gear, gearbox wheel,
– S,BF – stator, bogie frame,
– DS – disc clutch between gearbox wheel and hollow shaft,
– CC – claw clutch between hollow shaft and wheelset.

Fig.6: Correction nonlinear stiffness function in gearing

The structure of global damping matrix B corresponds to stiffness matrix K in the block
diagonal form presented in (4), whereas damping matrices are considered as proportional to
corresponding stiffness matrices

BRM = βRM KRM ; BH = βH KH ; BW = βW KW

and damping matrices of couplings have the same structure as stiffness coupling matrices.
Under the assumption of viscous-elastic gearing including the gear mesh backlash, the re-
sultant force FG transmitted by gearing can be approximately expressed in the following
form

F (dn) = kG dn + ΔF (dn) + bG ḋn , (28)

where bG approximately expresses viscous damping of oil film between teeth. Mathemati-
cally, correction stiffness nonlinear function ΔF (dn) can be described over three piecewise
linear regimes [1] (see Fig. 6)

ΔF (dn) =

⎧⎪⎨⎪⎩
0 for dn ≥ −dst ,

−kG(dn + dst) for − (dst + uG) ≤ dn ≤ −dst ,

kG uG for dn ≤ −(dst + uG) ,
(29)
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where uG is gear mesh backlash and dst is the static gearing deformation at the time instant
of the short-circuit beginning.

The global force vector of gear coupling in general coordinate space (5) can be written
as

fG(t,q, q̇) = KP,G(dn)q + BP,G q̇ , (30)

where
KP,G(dn)q = KP,G q + ΔF (dn) cG (31)

and vector cG meets the relation dn = cT
G q. According to (16)

cG = [ . . . , δT
16, . . . , rG cosα cosβ, δT

19 T19,20, . . . ]T . (32)

The damping matrix BP,G of gear coupling has the same structure as stiffness matrix KP,G

defined in (17), only stiffness coefficient kG is replaced by damping coefficient bG.

The motor torque during the short-circuit in the air-space of the traction motor is ap-
proximated in the form [13]

M(t) = M(s0, v) −MC(t) , M(s0, v) = 2μ(s0, v)N0 r
ωW

ωM
, (33)

where, using Heaviside function H(t), we can write

MC(t) = M(s0, v)H(t) +M0 e−DΩt sin[Ω(t− Δt)] . (34)

Fig.7: Function approximating the short-circuit torque

The oscillating short-circuit torque MC(t) (Fig. 7) is defined by amplitude M0, fre-
quency Ω, shift phase Ω Δt and torque decay DΩ. The total motor torque after short
time (here 0.2 [s]) is equal zero (MC = M(s0, v)).

The packet of sheet metals is modelled as a set of five rigid bodies mutually connected
with translational, flexural and torsional springs identified on the basis of certain measure-
ment [6]. The motor torque M(t) is described during the short-circuit in mathematical
model (27) in the form

fM(t) =
M(t)

5
[ . . . , 1, . . . , 1, . . . , 1, . . . , 1, . . . , 1, . . . , 5, . . . ]T (35)
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whereas digits 1 are localized on the positions corresponding to torsional displacements of
the shaft nodal points 6 to 10 and digit 5 corresponds to stator torsional displacement ϕ20.
Other coordinates symbolized by dots are zero. An opposite sense of the motor torque acting
on stator is respected by the stator coordinate system (see Fig. 1).

5. Results of computer simulations

The condensed mathematical model of the wheelset drive with reduced DOF number is
used for computer simulations. The DOF number reduction is based on modal transforma-
tion of generalized coordinates

q(t) = mVx(t) , (36)

where mV ∈ Rn,m, m < n is modal submatrix of a conservative part of the linearized
mathematical model (27)

Mq̈(t) + (K + KRM,S + KP,G + KS,BF + KDS + KCC)q(t) = 0 (37)

satisfying the orthonormality conditions mVT M mV = E. The number of chosen master
eigenvectors included in modal submatrix is denoted m (m < n) and E is identity ma-
trix of order m. The model (27) in new configuration space of dimension m by using the
transformation (36) and relation (31) can be then rewritten in the condensed form

ẍ(t) + mVT BΣ(s0, v) mV ẋ(t) + Λx(t) = mVT [fM(t) + f0 − ΔF (dn) cG] , (38)

where BΣ(s0, v) is the shortly marked global damping matrix in the model (27).

The condensed model has to fulfil desired demands on the accuracy. Although this
model is nonlinear, we compare the dynamic response of the linearized condensed model
(for uninterrupted gear mesh) with the dynamic response of noncondensed model using
average relative error

Δm,J =
1
nJ

N∑
i=1

J∑
j=1

|qi(tj) − q
(m)
i (tj)|

|qi(tj)| , tj ∈ 〈0;T 〉 . (39)

The influence of the DOF number m and of simulation time interval T [s] is visible in
Fig. 8. It is obvious that the condensation level given by m = 80 is suitable for a computer
simulation.

Fig.8: Relative error
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Fig.9: Force transmitted by gearing

Fig.10: Dynamic force transmitted by silent block B

As an illustration, the time behaviour of chosen values in interval t ∈ 〈0; 0.2〉 [s] for
operational parameters s0 = 0.005, v = 200 [km/h] and N0 = 105 [N] at the instant of the
short-circuit are presented in Fig. 9 to Fig. 12. The frequency f = Ω/(2π) = 90 [Hz] of the
oscilating short-circuit torque and lowest eigenfrequency f1 = 2.88 [Hz], corresponding to
couple of complex eigenvalues −0.0258±i·2.88 [Hz], show up as dominant. At the moment of
interrupted gear mesh (t .= 0.08 [s]) the system becomes nonlinear. The dynamic response
of linearized (without of gear backlash) and real nonlinear model with gear backlash are
more (e.g. force transmitted by gearing in Fig. 9 and dynamic force transmitted by silent
block B in Fig. 10) or less (e.g. dynamic torsion deformation of the coupling between the
ring in nodal point 17 and the packet of sheet metals in Fig. 11 and dynamic radial force
transmitted by bearing B2 in Fig. 12) different.

6. Conclusions

The paper describes the new method of mathematical modelling and computer simulation
of the individual wheelset drive vibration of the electric locomotive caused by short-circuit
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Fig.11: Dynamic torsion deformation of the coupling between
ring in nodal point 17 and the packet of sheet metals

Fig.12: Dynamic component of the radial force transmitted by bearing B2 (see Fig. 1)

traction motor torque. The torsion, flexure and axial deformations of the motor shaft,
flexibility of cooper bars connected sheet metal packet with short-circuit rings and flexibility
of the bearings of the rotor are newly respected. The sudden short-circuit in traction motor
produces a short-time, but large dynamic load of the wheelset drive components especially in
the driving part in front of the disc clutch. In view an extreme short-time internal loading
can cause the gear mesh interruption in the gear transmission. This state is dangerous
especially for elastic supports of the stator to the bogie frame by silent blocks.

The developed software in MATLAB code enables graphically record the time behaviour
of the arbitrary generalized coordinate and the forces transmitted by linkages between
wheelset drive components. The dynamic response depends on operational parameters
(especially on longitudinal creepage) at the instant just before the short-circuit. Funda-
mentally worseness arises in the event of the short-circuit at large longitudinal creepage in
the downward section of the creep characteristics (see Fig. 5), when the system is unstable.
The wheelset drive condensed mathematical model with reduced DOF number is a suitable
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instrument for computer simulations of the large nonlinear system in the case of interrupted
gear mesh.

Acknowledgement

This paper has been elaborated in a framework of the projects MŠMT 1M0519 – Research
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