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LEVEL OF CREEP SENSITIVITY IN COMPOSITE
STEEL-CONCRETE BEAMS ACCORDING TO ACI 209R-92

MODEL, COMPARISON WITH EUROCODE-4 (CEB MC90-99)

Doncho Partov*, Vesselin Kantchev*

The paper presents analysis of the stress and deflections changes due to creep in stat-
ically determinate composite steel-concrete beam. The mathematical model involves
the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic
law for the steel part and an integral-type creep law of Boltzmann-Volterra for the
concrete part. On the basis of the theory of the viscoelastic body of Arutyunian-
Trost-Bažant for determining the redistribution of stresses in beam section between
concrete plate and steel beam with respect to time ‘t’, two independent Volterra
integral equations of the second kind have been derived. Numerical method based
on linear approximation of the singular kernal function in the integral equation is
presented. Example with the model proposed is investigated. The creep functions is
suggested by the ACI 209R-92 model. The elastic modulus of concrete Ec(t) is as-
sumed to be constant in time ‘t’. The obtained results are compared with the results
from the model CEB MC90-99.

Keywords : composite steel-concrete section, Volterra integral equations, rheology, lin-
ear approximation, ACI209R-92, EUROCODE-4, singular kernal function

1. Introduction

Steel-concrete composite beams are wide spread form of construction in both buildings
and bridges.

The time-varying behavior of composite steel-concrete members under sustained service
loads drawn the attention of engineers who were dealing with the problems of their design
more than 60 years [56].

The solution of structural problems involving creep and shrinkage phenomena in composi-
te steel-concrete beams has been an important task for engineers since the first formulation of
the mathematical model of linear viscoelasticity. If on one hand the definition of a suitable
formulation of creep laws involved scientists and researchers in past decades and many
prediction models have been developed, starting from experimental data and from the direct
observation of the long term behavior of concrete structures (Branson & Christiason [38],
Müller [70], Bažant & Baweja 2000 [12, 13], Gardner & Lockman 2001 [57]), the development
of structural analysis procedures, based on the creep models, is on the other hand, of great
interest for engineers who need to investigate the effects of creep and shrinkage on the
structures they design.

Creep and shrinkage have a considerable impact upon the performance of composite
beams, causing increased deflection as well as affecting stress distribution. Creep in concrete
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represents dimensional change in the material under the influence of sustained loading.
Failure to include creep and shrinkage effects in the analysis of the composite steel-concrete
beams may lead to excessive deformation and caused significant redistribution of stress
between concrete plate and steel beam.

In general, time-dependent deformation of concrete may severely affect the service-
ability, durability and stability of structures (Chiorino, M., Sassone, M., Bigaran, D.,
Casalegno, C. [43].

The first works, which give the answer to this problem are based on the Law of Dischinger
[49, 50] (theory of aging), who had first formulated a time-dependent stress-strain differential
relationship for concrete, using the following equation :

dεct
dt

=
σct

Ec0

dϕt
dt

+
1
Ect

dσct

dt
, (1)

where ϕt is called creep function.

These books and papers connected with the names of Fröhlich [56], Esslinger [54], Klöp-
pel [64], Sonntag [94], Kunert [67], Dimitrov [48], Mrazik [69] and Bujňák [39] represent one
independent group for which it is characteristic that by writing equilibrium and compati-
bility equations and the constitutive laws for the two materials, the problem is governed by
a system of two simultaneous differential equations, which have been derived and solved.

As known in this differential equations it exists a group of normal forces Nc,r(t), Na,r(t)
and bending moments Mc,r(t), Ma,r(t), which influence the general stress conditions of the
statically determinate composite plate beam is expressed by the decrease of the stresses in
the concrete plate and in the increase of stresses in the steel beam (Fig. 1).

All these methods have been collected and analyzed by Sattler [88] and by the first author
of this paper [72].

In parallel with the developed analytical methods, Blaszkowiak [36], Bradford [37],
Fritz [55] and Wippel [101] have developed approximate methods, which use Dischinger’s
idea for applying in the calculation the ideal (fictitious) modulus of elasticity [49, 50] :

Eci =
Ec0

1 + ϕn
, (2)

where ϕn is the ultimate value of creep.

Another method of the estimate design calculation as described in Schrader [91] has been
based on the creep fibred method by Busemann [40].

With Wippel’s methods [101] the first stage of the development of the analytical methods
is based entirely on the works of Dischinger [49, 50], has been completed.

Further development of rheology as a fundamental science and its application to con-
crete [3, 5, 81, 86, 98] as well as a great number of investigations in the field of creep of concrete
have led to new formulations of the time-dependent behavior of concrete [22, 41, 42, 61, 80].

These new formulations give the relationship between σc(t) and εc(t) are formulated by
integral equations, which present the basis of the theory of linear viscoelastic bodies.

The integral-type creep law, i.e., the superposition equation for uniaxial prescribed stress
history σ(t), is expressed by :

εc(t, t0) = εsh(t) + σ(t0)J(t, t0) +

t∫
t0

dσ(t)
dτ

J(t, τ) dτ . (3)
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By using algebraic methods, simpler forms for (3) are obtained. These methods are based
on the hypothesis that the strain in the concrete fibers can be considered as a linear function
of the creep coefficient (Trost [96], Bažant [8]). This permits transforming (3) into

εc(t, t0) = εsh(t) + σc(t0)
[

1
Ec(t0)

+
ϕ(t, t0)
Ec

]
+

+ [σc(t) − σc(t0)]
[

1
Ec(t0)

+
χ(t, t0)ϕ(t, t0)

Ec

]
,

(4)

where

χ(t, t0) =
Ec(t0)

Ec(t0) −R(t, t0)
− Ec

Ec(t0)ϕ(t, t0)
(5)

is the aging coefficient; ϕ(t, t0) – the creep coefficient; R(t, t0) – relaxation function, i.e., the
stress response to a constant unit strain applied at the time t0; Ec – the elastic modulus of
concrete at 28 days.

The age-adjusted effective method (AAEM) directly assumed the expression provided
by (5) for the aging coefficient. In this case, it is necessary to evaluate previously the
relaxation function R(t, t0). This function is calculated numerically by applying the step-
by-step procedure of the general method to the integral type relation between the creep
and the relaxation function Bažant [7]. However, for some standard parameters, diagrams
of the χ coefficient are available from model codes Chiorino [41]). Moreover, a number of
empiric expressions were recently proposed that provide final values of the χ coefficient with
sufficient precision.

Using the effective modulus method (EMM), (4) becomes

εc(t, t0) = εsh(t) + σ(t0)J(t, t0) , (6)

where χ(t, t0) = 1 and Ec(t0) = Ec. In this case, the variation of the stress in the interval
(t−t0) is neglected and the stress is always considered equal to its final value. Consequently,
this method underestimates the creep effects when the stress decreases with time. The
time dependent analysis can be performed as an equivalent elastic analysis, where Young’s
modulus Ec is multiplied by the coefficient 1/[1 + ϕ(t, t0)].

When the Mean Stress Method (MSM) is applied (4) can be written as

εc(t, t0) = εsh(t) + σ(t0)J(t, t0) + [σc(t) − σc(t0)]
J(t, t) + J(t, t0)

2
, (7)

where χ(t, t0) = 0.5 and Ec(t0) = Ec.

Equations (4), (6) and (7) represent the essence of the algebraic methods. It needs
to be pointed out, however, that these algebraic equations used in structural analysis as
constitutive laws for concrete in substitution of the integral-type creep law, as presented
still cannot give realistic pictures of the stresses and deflections.

However, in order to avoid the mathematical problems in solving of the integral equa-
tions of Volterra for treating the problem connected with the creep of concrete structures,
Trost [96] and Zerna [99], have revised the integral relationship into new algebraic stress-
strain relationship :

εct =
σc0

Ec0
[1 + ϕt] +

σct − σc0

Ec0
[1 + �ϕt] , (8)
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where � is the relaxation coefficient. From the same considerations another revision of inte-
gral relationship into new algebraic stress-strain relationship has been made by Krüger [65]
and Wolff [103] :

Ec0 εcϕ,t = σc0
ϕt0 − ϕt1

2
+ σct

[
1 +

ϕt(t−1)

2

]
+

t−1∑
i=1

σc,i
ϕt,i−1 − ϕt,i+1

2
. (9)

On the basis of that algebraic stress-strain relationship, new methods have been de-
veloped connected with the names Wappenhans [100], Wolff [103], Trost [97], Heim [62],
Amadio [2], Dezi [45–47,95] ( by preposition that the connectors are deformationsable) and
Gilbert [58, 59], for solving the problem raised by Fröhlich [56].

In parallel with the methods developed by Kindman [63], Lapos [68], Pachla [71], Par-
tov [75], on the basis of the theory of linear viscoelastic bodies, Sattler [89], Haenzel [60],
and Profanter [79] have recently developed new methods, which are based on the ‘modified
theory’ of Dischinger, called also the theory of Rüsch-Jungwirt [85]. This theory is described
by the following equations :

dεct
dt

=
σct

Ecv

dϕf,v
dt

+
1
Ecv

dσct

dt
, (10)

where

Ecv =
Ec(t0)

1.4
, ϕf,v =

ϕf,0 [Kf(t) −Kf (t0)]
1.4

.

Different approach to the solving of the formulated problems is applying the FEM by,
Cumbo [44], Sassone [87] and Wissman [102].

Since the theory of Rüsch-Jungwirt [85] has been subjected to serious criticism in the
works of Alexandrovski-Arutyunyan [3, 52, 93] and [6–21, 23, 24, 27–35] the authors of the
present paper make an attempt for a new step toward deriving more precise solution of the
problem. An effort is made to give an answer to the dispute between Bažant and Rüsch-
Jungwirt in [25, 26].

The first works [73–76], which give the answer to this dispute [25, 26], using the integral
equation of Volterra, are based on the Law of by Bolztmann-Volterra [3, 21, 93] who first
formulated a time-dependent stress-strain differential relationship for concrete, described by
the following integral equation :

εc(t) =
σc(t0)
Ec(t0)

[1 + φ(t− t0)] +

t∫
t0

dσc(τ)
dτ

1
Ec(τ)

[1 + φ(t− τ)] dτ , (11)

where φ(t − τ) = ϕNK(τ) f(t − τ) is the so called the creep function and ϕN the ultimate
value of creep coefficient, K(τ) depends on the age increase of concrete. It is called the
function of aging, and it characterizes the process of the aging. The increase of τ makes
K(τ) monotonously decrease. The functions

K(τ) =

⎧⎨
⎩

10.28
5 +

√
τ

τ ≤ 857

0.3 τ > 857
and f(t− τ) = 1 − e

�
−0.6( t−τ

30 +0.0025)0.4−0.091
�
, (12)

(where t is the time interval during which the structure is under observation, τ is the running
coordinate of time) – characterizes the process of creeping.
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A practical method for solving of composite constructions based on Volterra integral
equations are reported in [73]. A new idea for development of the above mentioned method
is the investigation of the tangent modulus of concrete elasticity besides invariant in time t
i.e. Ec(τ) = Ec(t0) = Econst and also for the case when it depends on time t [38, 92] :

Ec(τ) = Ec(t0)
√

τ

4 + 0.86 τ
. (13)

A practical example with time-dependent elasticity modulus of concrete is considered
in [77].

Since the new norms suggested by EUROCODE-4 [52, 53] in analysis of composite steel-
concrete beams regarding rheology, required a new ‘CEB-FIP’ creep models code 1990, which
leads to completely different approach for solving of the above formulated problems in was
made attempt [78] to reformulate and solve these problems taking into account the new
mathematical formulas in CEB MC90.

The CEB MC90 (Müller and Hilsdorf 1990, [70]) is intended to predict the time-
dependent mean cross-section behavior of a concrete member. It has concept similar to
ACI209R-92 model in the sense that it gives a hyperbolic change with time for creep and
shrinkage, and also uses an ultimate value corrected according mixture proportioning and
environmental conditions. The models are valid for normal weight plain structural concrete
having an average compressive strength in the range of 20 MPa ≤ fcm28 ≤ 90 MPa. The
age of loading t0 should be at least 1 day, and the sustained stress should not exceed 40%
of the mean concrete strength fcmt0 at the time of loading t0. The CEB model does not
require any information regarding the duration of curing and curing condition, but takes
into account the average relative humidity and member size. Required parameters are: age
of concrete when drying starts, usually taken as the age at the end of moist curing (day); age
of concrete at loading (days);concrete mean compressive strength at 28 days (MPa); relative
humidity expressed as a decimal; volume-surface ratio or effective cross-section thickness of
a member (mm) and cement type.

The creep (compliance) function proposed by the 1990 CEB Model Code (‘CEB-FIP’
1991) defined the strain at time t caused by a constant stress acting from time τ to time t,
is given by relationsship

J(t, t0) =
1

Ecmt0(t0)
+
φ28(t, t0)
Ecm28

, (14)

where φ(t, t0) gives the ratio of the creep strain since the start of loading at the age t0 to
the elastic strain due to a constant stress applied at a concrete age of 28 days; Ecmt0 is the
modulus of elasticity of concrete at the time of loading t0 and Ecm28 is the mean modulus
of elasticity concrete at 28 days (MPa). Hence 1/Ecmt0 represents the initial strain per unit
stress at loading.

The creep coefficient is evaluated with following formula :

φ(t, t0) = φ0 βc(t− t0) ,

where
φ0 = φRH β(fcm)β(t0)

or
φ(t, t0) = φRH β(fcm)β(t0)βc(t− t0) , φ(t, τ) = φRH β(fcm)β(τ)βc(t− τ) ,
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where

φRH = 1 +
1 − RH

100

0.46 3

√
h0

100
is a factor to allow for the effect of relative humidity on the notional creep coefficient. RH
is the relative humidity of the ambient environment in %.

β(fcm) =
5.3(

fcm
10

)0.5

is a factor to allow for the effect of concrete strength on the notional creep coefficient.

β(t0) =
1

0.1 + t0.20

is a factor to allow for the effect of concrete age at loading on the notional creep coefficient
(for continuous process we consider the function).

β(τ) =
1

0.1 + τ0.2

is a function of aging, depending on the age of concrete and it characterizes the process of
aging.

βc(t− t0) =
[

t− t0
βH + (t− t0)

]0.3

is a function to describe the development of creep with time after loading.

βH = 150

[
1 +

(
1.2

RH

100

)18
]
h0

100
+ 250 ≤ 1500

is a coefficient depending on the relative humidity (RH in %) and notional member size (h0

in mm). fcm28 = fck + 8 if the mean compressive strength of concrete at the age of 28 days
(megapascals) and h0 = 2Ac/u the notional size of member (millimeters) (Ac – the cross
section; and u – the perimeter of member in contact with the atmosphere); is the speci-
fied characteristic compressive cylindrical strength (MPa) below which 5% of all possible
strength measurement for the specified concrete may by expected to fall.

Constant Young’s modulus is given by :

Ecm28 = 104 (fcm28)
1
3 .

Variable Young’s modulus is given by :

Ecm(t) = β0.5
cc Ecm28 ,

where

Ecm28 = 104 (fcm28)
1
3 and βcc = exp

[
s

(
1 − 5.3

t0.5

)]
,
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where s = 0.25 for normal and rapid hardening cements. So

Ecm(t) = 336190 e0.5
�
0.25

�
1− 5.3√

t

��

is a final creep coefficient of concrete.

In this paper we try to solve this problem according the mathematical model developed
by (Branson and Christiason) [38], incorporated in developed model in ACI Committee
209R-92 and the results obtained comparing with this obtained from model CEB90-99 [78].

2. Basic equations for determining the creep coefficient according ACI 209R-92

This is an empirical model developed by (Branson and Christiason) [38] 1971, with minor
modification introduced in ACI 209R-92. The models for predicting creep and shrinkage
strains as a function of time have the same principle : a hyperbolic curve that tends to
an asymptotic value called the ultimate value. The form of these equations is thought to
be convenient for design purpose in which the concept of the ultimate (in time) value is
modified by the time-ratio (time-dependent development) to yield the desired results. The
shape of the curve and ultimate value depend on several factors such as curing conditions,
age of application of load, mixture proportioning, ambient temperature and humidity.

The design approach presented for predicting creep refers to standard condition and
correction factors for other than – standard condition. The corrections factors are applied
to ultimate values. Because creep equation for any period is linear function of the ultimate
values, however, the correction factors in this procedure may be applied to short-term creep.

Required parameters are : age of concrete when drying starts, usually taken as the age
at the end of moist curing (day); age of concrete at loading (days); curing methods; ambient
relative humidity expressed as a decimal; volume-surface ratio or average cross-section thick-
ness of a member (mm); cement type; concrete slump in mm; fine aggregate percentage (%);
cement content (kg/m3) and air content of concrete expressed in percent (%). The last four
parameters are not included in CEB MC90 model.

The creep (compliance) function proposed by the ACI 209R-92 model [1], that presents
the total stress-dependent strain by unit stress is given by the relationship :

J(t, t0) =
1

Ecmt0
+
φ(t, t0)
Ecmt0

=
1 + φ(t, t0)
Ecmt0

, (15)

where φ(t, t0) is the creep coefficient as the ratio of the creep strain to the elastic strain at
the start of loading at the age t0 (days) and Ecmt0 is the modulus of elasticity at the time
of loading t0 (MPa), respectively.

The creep model proposed by ACI 209R-92 has two components that determine the
ultimate asymptotic value and the time development of creep. The predicted parameter is
not creep strain, but creep coefficient φ(t, t0), (defined as the ratio of the creep strain to the
initial elastic strain).

The creep coefficient is evaluated with the following formula :

φ(t, t0) = φu βc(t− t0) ,

where φ(t, t0) is the creep coefficient at the concrete age t0 due to a load applied at the
age t0; (t− t0) is the time since application of load; φu is the ultimate creep coefficient.
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For the standard conditions in the absence of specific creep date for local aggregates and
conditions, the average value proposed for the ultimate creep coefficient φu is equal to 2.35 .

For conditions other than standard conditions the value of the ultimate creep coefficient
φu = 2.35 needs to be modified by six correction factors, depending on particular conditions

φu = 2.35 γc ,

where :
γc = γc,t0 γc,RH γc,vs γc,s γc,ψ γc,α

and : γc,t0 = 1.25 t−0.118
0 corresponds to β(t0) in CEB MC90, is a function of aging, depen-

ding on the age of concrete and it characterizes the process of aging;
γc,RH = 1.27−0.67 h for h ≥ 0.40 is the ambient humidity factor, where the relative humidity
h is in decimal – corresponds to φRH CEB MC90;

γc,vs =
2
3

(
1 + 1.13 e−0.0213(V/S)

)
corresponds to βH in CEB MC90), where V is the specimen volume in mm3 and S the
specimen surface area in mm2, allows to consider the size of member in terms of the volume-
surface ratio;
γc,s = 0.82 + 0.00624 s is slump factor, where s = 75mm is the slump of fresh concrete;
γc,ψ = 0.88 + 0.0024ψ is fine aggregate factor, where ψ = 40 is the ratio of fine aggregate
to total aggregate by weight expressed as percentage;
γc,α = 0.46 + 0.09α ≥ 1 is air content factor, where α = 2 is the air content in percentage.

βc(t− t0) =
(t− t0)0.6

10 + (t− t0)0.6

is a function to describe the development of creep with time after loading.

The secant modulus of elasticity of concrete Ecmt0 at any time t0 of loading is given by
Ecmt0 = 0.043 �1.5

c

√
fcmt0 MPa, where �c is the unit weight of concrete (kg/m3) and fcmt0 is

the mean concrete compressive strength at the time of loading (MPa). The general equation
for predicting compressive strength at an time t is given by fcmt = fcm28 t/(a + b t), where
fcm28 is the concrete mean compressive strength of 28 days in MPa; a (in days) and b are
constant and t is the age of the concrete.

3. Basic assumption and material constitutive relationship

The hypotheses (essentially based on those introduced in initial studies of [6, 56, 59, 63,
64, 79, 90] in the elastic analysis of composite steel-concrete sections with stiff (rigid) shear
connectors are assumed as following :

a) Bernoulli’s concerning plane strain of cross-sections (Preservation of the plane cross
section for the two elements considered compositely).

b) No vertical separation between parts, in other words identical vertical displacement
at the slab-beam interface is assumed.

c) The connection system is distributed continuously along the axis of the beam.

d) The cross sections are free to deform (because they belong to statically determinate
structures)



Engineering MECHANICS 99

e) Concrete is not cracked σc ≤ (0.4 ÷ 0.5)Rc .

f) For the service load analysis of these cross sections the stress levels are small and,
therefore , linear elastic behavior may be assumed for the steel beam, in another
words Hooke’s law applies to steel as well as to concrete under short-time loads.

g) Moreover , for the concrete part, if the dependence of strains and stresses upon his-
tories of water content and temperature is disregarded, with the exclusion of large
strain reversals, and under normal environment conditions, the strain can be consid-
ered as a linear functional of the previous stress history alone. This linearity implies
the principle of superposition [8, 9, 41, 42, 43, 80, 82, 83, 84, 92, 97], which states that
strain response due to stress increments applied at different times may be added.

h) In the range of service ability loads concrete behaves in a way allowing to be treated
as a linear viscoelastic body. On the basis of our assumptions for the purpose of
structure analysis the total strain for concrete subjected to initial loading at time t0
with a stress σ(t0) and subjected to subsequent stress variations Δσ(ti) at time ti
may be expressed as follows :

εtot(t, t0) − εsh(t, t0) = σ(t0)J(t, t0) +

t∫
t0

dσ(τ)
dτ

J(t, τ) dτ ,

where t is the time elapsed from casting of concrete; εtot(t, t0) total axial strain;
εsh(t, t0) strain due to shrinkage, i.e. an elastic strain. Then the stress-strain behavior
of concrete can be described with sufficient accuracy by the integral equations (1) by
Bolztmann-Volterra [3, 21]

εc(t) =
σc(t0)
Ec(t0)

[1 + φ(t, t0)] +

t∫
t0

dσc(τ)
dτ

1
Ec(τ)

[1 + φ(t, τ)] dτ

or according to ACI209R-92 we get

εc(t) =
σc(t0)
Ec(t0)

[1 + 2.35 γc,RH γc,vs γc,s γc,ψ γsh,α β(t0)βc(t− t0)] +

+

t∫
t0

dσc(τ)
dτ

1
Ec(τ)

[1 + 2.35 γc,RH γc,vs γc,s γc,ψ γsh,α β(τ)βc(t− τ)] dτ ,
(16)

where [2.35 γc,RH γc,vs γc,s γc,ψ γsh,α β(τ)βc(t− τ)] is the so called the creep function,
β(τ) depends on the age increase of concrete. It is called the function of aging, and
it characterizes the process of the aging. The increase of τ makes β(τ) monotonously
decrease. The function βc(t − τ) (where t is the time interval during which the
structure is under observation, τ is the running coordinate of time) characterizes the
process of creeping. The constitutive law expressed by (10), represents the stress-
strain-time relationship for the concrete slab.

i) The modulus of concrete elasticity is invariant in time t [38, 41, 92] i.e.

Ec(τ) = Ec(t0) = Econst = Ecmt0 = 0.043 �1.5
c

√
fcmt0 (MPa) ,

where �c is the weight of concrete (kg/m3) and fcmt0 (MPa) is the mean concrete
compressive strength at the time of loading. The general equation for prediction
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compressive strength at any time t is given by fcmt = fcm28 t/(a + b t), where fcm28

is the concrete mean compressive strength at 28 days in MPa; a = 4 in days, b = 0.85
is constants, t is the age of concrete.

j) According to a proposal by Sonntag [53], the influence of the development of the ben-
ding moment Mc,r(t) in the concrete member, upon the redistribution of the normal
force of concrete Nc,r(t) can be neglected.

k) For the service load analysis no slip and uplift effects occurs between the steel and
concrete.

l) A single theory of interaction ignoring shear lag effects is considered [66].

4. Basic equations of equilibrium

Let us denote both the normal forces and the bending moments in the cross-section of
the plate and the girder after the loading in the time t = 0 with Nc,0, Mc,0, Na,0, Ma,0 and
with Nc,r(t), Mc,r(t), Na,r(t), Ma,r(t) a new group of normal forces and bending moments,
arising due to creep and shrinkage of concrete.

For a composite bridge girder with Jc = Ac (n Ic)n/(As Is) ≤ 0.2 according to the sug-
gestion of Sonntag [94] we can write the equilibrium conditions in time t as follows

N(t) = 0 , Nc,r(t) = Na,r(t) , (17)∑
M(t) = 0 , Mc,r(t) +Nc,r(t) r = Ma,r(t) . (18)

Due to the fact that the problem is a twice internally statically indeterminate system,
the equilibrium equations (17), (18) are not sufficient to solve it.

It is necessary to produce two additional equations in the sense of compatibility of de-
formations of both steel girder and concrete slab in time t (Fig. 1).

Fig.1: Mechano-mathematical model for deformations in cross-section in composite
steel-concrete beam, regarding creep of the concrete
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5. Deriving of the mechano-mathematical model

5.1. Strain compatibility on the contact surfaces between the concrete and steel
members of composite girder

For constant elasticity module of concrete strain compatibility on the contact surfaces
between the concrete and steel members of composite girder is as following :

Nc,0

Ec(t0)Ac
[1 + 2.35 γc5 β(t0)βc(t− t0)] −

− 1
Ec(t0)Ac

t∫
t0

dNc,r(τ)
dτ

[1 + 2.35 γc5 β(τ)βc(t− τ)] dτ +

+
Na,0

EaAa
− 1
EaAa

t∫
t0

dNa,r(τ)
dτ

=
Ma,0

Ea Ia
r + r

1
Ea Ia

t∫
t0

dMa,r(τ)
dτ

dτ .

(19)

Compatibility of Curvatures when τ = t is :

Mc,0

Ec(t0) Ic
[1 + 2.35 γc5 β(t0)βc(t− t0)] −

− 1
Ec(t0) Ic

t∫
t0

dMc,r(τ)
dτ

[1 + 2.35 γc5 β(τ)βc(t− τ)] dτ =

=
Ma,0

Ea Ia
+

1
Ea Ia

t∫
t0

dMa,r(τ)
dτ

dτ .

(20)

After integrating the two equations by parts and using the (17) and (18) for assessment
of normal forces Nc,r(t) and bending moment Mc,r(t) two linear integral Volterra equations
of the second kind are derived.

Nc,r(t) = λN

t∫
t0

Nc,r(τ)
d
dτ

[1 + 2.35 γc5 β(τ)βc(t− τ)] dτ +

+ λNNc,0 2.35 γc5 β(t0)βc(t− t0) ,

(21)

Mc,r(t) = λM

t∫
t0

Mc,r(τ)
d
dτ

[1 + 2.35 γc5 β(τ)βc(t− τ)] dτ +

+ λMMc,0 2.35 γc5 β(t0)βc(t− t0) − λM
Ec Ic
Ea Ia

Nc,r(t) r .

(22)

in which

λN =
[
1 +

EcAc

EaAa

(
1 +

Aa r
2

Ia

)]−1

, (23)

λM =
[
1 +

Ec Ic
Ea Ia

]−1

. (24)
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In each of these equations the functions :

Nc,0 2.35 γc5 β(t0)βc(t− t0) , Mc,0 2.35 γc5 β(t0)βc(t− t0) ,
d
dτ

[1 + 2.35 γc5 β(τ)βc(t− τ)] , γc5 = γc,RH γc,vs γc,s γc,ψ γc,α

are given.

6. Numerical method

The integral equations (21, 22) are weakly singular Volterra integral equation of the
second kind :

y(t) = g(t) + λ

t∫
t0

K(t, τ) y(τ) dτ , t ∈ [t0, T ] , 0 < t0 < T <∞ ,

where

g(t) = λNNc,0 2.35 γc5 β(t0)βc(t− t0) , λ = λN =
[
1 +

EcAc

EaAa

(
1 +

Aa r
2

Ia

)]−1

for (21) and

g(t) = λNNc,0 2.35 γc5 β(t0)βc(t− t0) − λM
Ec Ic
Ea Ia

Nc,r(t) , λ = λM =
[
1 +

Ec Ic
Ea I

]−1

for (22) and

K(t, τ) =
d
dτ

[1 + 2.35 γc5 β(τ)βc(t− τ)] = 2.35 γc5

[
βc(t− τ)

dβ(τ)
dτ

+ β(τ)
dβc(t− τ)

dτ

]
.

The singular kernel function can be written in the form :

K(t, τ) = L(t, τ) (t− τ)−0.4 ,

where

L(t, τ) = −1.25 · 2.35 γc5

[
0.118 τ−1.118

10 + (t− τ)0.6
(t− τ) +

6 τ−0.118

[10 + (t− τ)0.6]2

]
.

So in our case discontinuous kernel function K(t, τ) has an infinite singularity of type
(t− τ)γ−1, γ > 0.

In order to solve (21, 22), we use the idea of product integration by considering the special
case of :

y(t) = g(t)+λ

t∫
t0

L(t, τ) (t−τ)γ−1 y(τ) dτ , t ∈ [t0, T ] , 0 < t0 < T <∞ , 0 < γ < 1 , (25)

where the given functions g(t) and L(t, τ) are sufficiently smooth which guarantee the exis-
tence and uniqueness of the solution (see Yosida, (1960), Miller & Feldstein, (1971)).
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To solve (25) we use the method called product trapezoidal rule.

Let n ≥ 1 be an integer and points {tj = t0 + j h}nj=0 ∈ [t0, T ]. Then for general
y(t) ∈ C[t0,T ] we define

(L(t, τ) y(τ))n =
1
h

[(tj − τ)L(t, tj−1) y(tj−1) + (τ − tj−1)L(t, tj) y(tj)] (26)

for tj−1 ≤ τ ≤ tj , t ∈ [t0, T ].

This is piecewise linear in τ and it interpolates L(t, τ) y(τ) at τ = t0, . . . , tn. Using
numerical approximation (26) we obtain the following method for solving the integral equa-
tion (25) :

ỹn(ti) = g(ti) + λ

i∑
j=0

ωn,j(ti) [L(ti, tj) ỹn(tj)] for i = 0, 1, . . . , n . (27)

with weights

ωn,0(ti) =
1
h

t1∫
t0

(t1 − τ) (ti − τ)γ−1 dτ ,

ωn,n(tn) =
1
h

tn∫
tn−1

(τ − tn−1) (tn − τ)γ−1 dτ ,

ωn,j(ti) =
1
h

tj∫
tj−1

(τ − tj−1) (ti − τ)γ−1 dτ +
1
h

tj+1∫
tj

(tj+1 − τ) (ti − τ)γ−1 dτ ,

for i = 0, 1, . . . , n.

Calculating analytically the weights, we compute the approximate solution values yn(ti)
from the system (27).

Theorem 1. Consider the numerical approximation defined with piecewise linear inter-
polation (26). Then for all sufficiently large n, the equation (25) is uniquely solvable and
moreover if y(t) ∈ C2

[t0,T ], then we have

||y − yn|| ≤ c h2

8
max

t0≤t, τ≤T

∣∣∣∣∂2L(t, τ) y(τ)
∂τ2

∣∣∣∣ . (28)

Since L(t, .) ∈ C2
[t0,T ], t0 ≤ t ≤ T the estimate (28) is immediate consequence of theorem

4.2.1 in Atkinson [4].

7. Numerical example

The method presented in the previous paragraph is now applied to a simply supported
beam, subjected to a uniform load, whose cross section is shown in Fig. 2.

On the base of numerous solved examples the optimal step of one day for solving the
integral equations (21, 22) is found. The elapsed time for solving the problem (27) for the
period of twenty years (7300days) is about up to ten minutes. For the period of forty years
(14600days) the elapsed time increases up to forty minutes.
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Fig.2: Composite beam with cross-section characteristic

Ec = 2.8178×104 MPa , Ea = 2.1×105 MPa , Ac = 8820 cm2 , Aa = 383.25 cm2 ,

n =
Ea

Ec
= 7.452 , Ic = 661500 cm4 , Ia = 1207963.7 cm4 , rc = 25.407 cm ,

ra = 78.463 cm , r = 103.870 cm , Ai = 1566.8248 cm2 , Ii = 4420140.76 cm4 ,

M0 = 1237 kNm , Nc,0 = 837.286 kN , Mc,0 = 24.716 kNm , Ma,0 = 338.05 kNm ,

λN =
[
1 +

EcAc

Ea Aa

(
1 +

Aa r
2

Ia

)]−1

= 0.068220902 , λM =
[
1 +

Ec Ic
Ea I

]−1

= 0.931550028 ,

RH = 08 % (humidity).

Mean 28-day strength : fcm28 = 33.3 MPa ,

(fcm28 = 33.0 MPa according to CEB MC90-99),

Mean 28-day elastic modulus : Ecm28 = 28178 MPa ,

(Ecm28 = 32009 MPa according to CEB MC90-99).

�c = 2345 kg/m3 ,

Ec(τ) = Ec(t0) = Econst = Ecmt0 = 0.043 · 23451.5
√

33.30 = 28178 MPa

according to ACI 209R-92 ,

γc,t0 = 1.25 t−0.118
0 corresponds to β(t0) = 0.61684 for t = 60 days ,

γc,RH = 1.27 − 0.67 h = 0.734 for h = 0.8 ,

γc,vs =
2
3

(
1 + 1.13 e−0.0213(V/S)

)
= 0.6975 , where V/S = 150 ,

γc,s = 0.82 + 0.00624 s = 1.018 , where s = 75 mm ,

γc,ψ = 0.88 + 0.0024ψ = 0.976 , where ψ = 40 ,

γc,α = 0.46 + 0.09α ≥ 1 is air content factor, where α = 2 , γc,α = 1 ,

βc(36500− 60) = 0.982004 .
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8. Stress history analysis in midspan section of composite beam

In the concrete plate the normal component Nc(t∞) = Nc,0 − Nc,r(t) and the ben-
ding moment Mc(t∞) = Mc,0 −Mc,r(t) decrease by effect of creep (Figs. 3, 4). In the steel
beam, the normal component Na(t∞) = Na,0 − Na,r(t) decreases and the bending moment
Ma(t∞) = Nc,r(t) r +Mc,r(t) increases by the effect of creep (Fig. 5).

Fig.3: Values of normal forces Nc,r(t) = Na,r(t) in time t when loading is applied
in time t0 = 28, 60, 90, 180, 365 and 730 days (humidity 80 %)

Fig.4: Values of bending moments Mc,r(t) in time t when loading is applied in
time t0 = 28, 60, 90, 180, 365 and 730 days (humidity 80 %)
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The decrease of the stresses in concrete slab is accompanied by a gradual migration of
stresses from the concrete slab to the steel beam. The decreasing of the stresses in the
concrete slab is about 25% from the initial values (Figs. 6, 7).

Fig.5: Values of bending moments Ma,r(t) in time t when loading is applied in
time t0 = 28, 60, 90, 180, 365 and 730 days (humidity 80 %)

Fig.6: Values of normal stresses in upper fiber of concrete plate σup
c (t) in

time t∞ when loading is applied in time t0 = 28, 60, 90, 180, 365
and 730 days (humidity 80 %)
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Fig.7: Values of normal stresses in down fiber of concrete plate σdown
c (t) in

time t∞ when loading is applied in time t0 = 28, 60, 90, 180, 365
and 730 days (humidity 80 %)

Fig.8: Values of normal stresses in upper fiber of steel girder σup
a (t) in

time t∞ when loading is applied in time t0 = 28, 60, 90, 180, 365
and 730 days (humidity 80 %)
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Fig.9: Values of normal stresses in down fiber of steel girder σdown
a (t) in

time t∞ when loading is applied in time t0 = 28, 60, 90, 180, 365
and 730 days (humidity 80 %)

Forces, moments, stresses RH = 90% RH = 80 % RH = 70 % RH = 60% RH = 50 %

Mc,r (Nm) 9052.1 9569 10049 10491 10902

Ma,r (Nm) 54475 59318 64091 68779 73396

Nc,r (N) 43730 47895 52029 56116 60165

σup
c (MPa) −1.25961 −1.2431 −1.2276 −1.21294 −1.199

σdown
c (MPa) −0.5495 −0.5565 −0.56269 −0.56809 −0.57283

σup
a (MPa) −8.06051 −8.5258 −8.9849 −9.43643 −9.88173

σdown
a (MPa) 40.68127 40.8177 40.95138 41.08196 41.20995

Tab.1: Values of normal forces, bending moments and normal stresses in time t∞
when loading is applied in time t0 = 60 for different humidity RH

The analysis of the obtained results show a very strong increase in the upper flange
(Fig. 8), which final values are two to three times higher than the initial values and small
increase (less than 6 % of the initial stress) of the stress in the bottom flange (Fig. 9). Figure 8
shows how the stress at the top fibers of the steel section undergoes strong increases in time.

Consequently, the stress history in the top flange of the steel beam becomes the most
interesting aspect of this study.

These graphs also show how important is the age of concrete at loading. The later we
impose the load on composite beam, the less is the influence of the concrete creep on the
time behavior of the beam.

According to the proposed numerical method, we can conclude that the stresses in the
top flange of the steel beam, for low values of parameter t0 = 28days and t0 = 60days,
increase more for young concrete and less for old one for t0 = 365days and t0 = 730days.
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Above all the influence of concrete age at loading time t0 is significant only when its
values are very low (i.e. with young concrete).

For the five standard cases assumed by ACI209R-92 : RH = 50% corresponds to dry
conditions (inside) and RH = 90% corresponds to humid conditions (outside) is made
analysis for stress level in composite beams, performance in table 1.

9. Time development of deflections according to the received numerical results

When the distribution of the bending moments in steel section Ma(t∞) = Mc,r(t)+
+Nc,r(t) r is known, it is possible to calculate the change of the vertical deflections in
time t. The Figure 10 shows the values of deflection in midspan section of composite beams
in time t∞. As it can be observed the change of the initial time when the loading momentM0

is applied, has very considerable influence in the time development of deflections.

Fig.10: Values of deflection of steel girder (composite steel-concrete) delta(t)
in time t∞ when loading is applied in time t0 = 28, 60, 90, 180, 365
and 730 days (humidity 80 %)

In practice the deflection in time t∞ is determined by the following formulae :

δ(t∞) =
5
48

M0L
2

Ea Ii,y
=

5 · 1237×106 · 340002

48 · 210000 · 37.641838420×109
= 18.844 mm .

According to the described above numerical method we get the following formulae for
calculating the deflection. If the moment M0 and the inertia moment Ii,y are replaced with
Ma(t∞) and Ia respectively we get :

δ(t∞) =
5
48

Ma(t∞)L2

Ea Ia
=

5 · (338.05 + 59.2863)×106 · 340002

48 · 210000 · 12.079×109
= 18.861 mm .
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In every case considered above the elastic deflection δ(t) in time t0 is the same we receive
from the formulas :

δ(t0 = 0) =
5
48

M0L
2

Ea Ii,y(t0)
=

5 · 1237×106 · 340002

48 · 210000 · 44.2014076×109
= 16.047 mm ,

δ(t0 = 0) =
5
48

Ma,0 L
2

Ea Ia
=

5 · (338.05)×106 · 340002

48 · 210000 · 12.079×109
= 16.047 mm .

according to our proposal.

10. Comparision with effective modulus methods (EMM)

This method uses the Dischinger’s idea for applying in the calculation the ideal (fictitious)
modulus of elasticity [36, 37, 49–51,54, 55, 101] :

Eci =
Ecm

1 + ψL φt
=

Ecm

1 + 1.1φt
,

where φt is a final creep coefficient of concrete.

It is applied to solve practical case shown in figure 2. The results obtained by manual
method according ACI209R-92 model in comparison with CEB MC90-99 are illustrated in
tables 2 and 3.

Type of beams Characteristic Steel Composite Composite Dimensions
(in t0 = 0) (in t = ∞)

Height hi 1500 1800 1800 mm

Area Ai 38325 156682 92635 mm2

Static moment
to down surface

Sy0 23428688 218728072 115052670 mm3

Gravity center etop 888.7 404 558 mm

Gravity center ebottom 611.3 1396 1242 mm

Moment of inertia Ii,y 12079015497 44201407600 37641838420 mm4

Section modulus Wi,y,ct — 109409425 −67458492 mm3

Section modulus Wi,y,cb — 425013535 −145898598 mm3

Section modulus Wi,y,at −13592026 −425013535 −145898598 mm3

Section modulus Wi,y,ab 19759036 31662899 30307438 mm3

Tab.2: Dimensions of steel and composite beams

Stress in time t0 t0 = 60 days Unit Stress in time t∞ t∞ = 36500 days

M0 1237 kNm M0 1237

n0 = Ea/Ecm 7.452 (6.36) —
nL = n0 (1 + ψL φt) ,

ψL = 1.1
14.87 (18.62)

σtop
c = M/Wi,y,ct/n0 −1.517 (−1.600) MPa σtop

c = M/Wi,y,ct/nL −1.233 (−1.200)

σbottom
c = M/Wi,y,cb/n0 −0.390 (−0.300) MPa σbottom

c = M/Wi,y,cb/nL −0.57 (−0.60)

σtop
a = M/Wi,y,at −2.91 (−2.20) MPa σtop

a = M/Wi,y,at −8.47 (−11.00)

σbottom
a = M/Wi,y,ab 39.06 (38.80) MPa σbottom

a = M/Wi,y,ab 40.81 (41.50)

Tab.3: Level of stresses of composite beams according ACI209R-92
model, in comparison with CEB MC90-99
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11. Conclusion

A numerical method for time-dependent analysis of composite steel-concrete sections
according ACI 209R-92 model is presented. Using MATLAB code a numerical algorithm
was developed and subsequently applied to a simple supported beam. These numerical
procedures, suited to a PC, are employed to better understand the influence of the creep of
the concrete in time-dependent behavior of composite section.

For the service load analysis, this method makes it possible to follow with great precision
the migration of the stresses from the concrete slab to the steel beam, which occurs gradually
during the time as a result of the creep of the concrete. At the same time, it is possible
to calculate the deflections in the half-span section according to ACI 209R-92. Both these
effects have a considerable importance in time-dependent response of composite beams.

The results obtained by this numerical method according to the ACI 209R-92 provision
are completely comparable with the results based on effective modulus method (EMM)
proposed by EUROCODE 4. The values in the figures 6–10 shown in brackets are obtained
by numerical method according to CEB MC90-99 [78]. They differ from the corresponding
results of ACI 209R-92 slightly from practical point of view.

The numerical aging linear viscoelastic solution presented in § 6 and 7 allows some in-
teresting consideration on the general trends of the time dependent effects on composite
beams, that may be useful in the preliminary and conceptual design stages of all structures
of this type.

A gradual migration of stresses from the concrete slab to the steel beam is observed
as a consequence of the decrease of the stresses in concrete slab. The decreasing of the
stresses in the concrete slab in upper fibers is about 25% from the initial values according
to ENV 1992-1-1 and ACI 209R-92 (Fig. 6). The values of migration stresses in the concrete
slab depend on the age of the concrete at loading time t0.

It results in a very strong increase in the upper flange (Fig. 8) and small increase of the
stress in the bottom flange (less than 8% of the initial stress, Fig. 9). Figure 8 shows how
the stress at the top fibers of the steel section undergoes strong increases in time : the final
values are four to six times higher than the initial values. The stress in the steel part of the
composite beam increases more for young concrete and little for old one.

The relative humidity causes considerable variations to the final stress (see table 1) in
comparison with CEB MC90-99. The lower is the value of humidity, the higher is the stresses
in the steel beam.

According to our results based on numerous practical examples we can state that about
90–92% of the maximum values of the stressed in concrete or steel in time t∞ are reached
after about three years. Besides that 98% are reached after about twenty years in comparison
with the period of hundred years obtained by the EM Method [51, 52].

In our opinion the influence of creep on time dependent behavior of composite steel-
concrete beams according to ACI 209R-92 code provisions, in comparison with CEB FIB
model code-1990 is underestimated. It is observed from the numerical results shown on
figures 3–10.

Finally, the creep effect must be carefully evaluated in order to fully understand the
behavior of the structure. The numerical methods proposed in this paper can used to
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control the deflection in every test in composite beams sustained at service loads during the
time t. It means that we can proof the regulars of the theory of the concrete creep.

The most important conclusion of our investigation is that considering the creep effect,
using the fundamental integral equations (16) of the aging linear viscoelasticity problem,
a universal numerical method has been elaborated for statically determinate bridge com-
posite plate girder according to the ACI 209R-92 model. This method allows the use of
a perfect linear theory of concrete creep i.e. the theory of the viscoelastic body of Boltzman-
Volttera-Maslov-Arutyunyan-Trost-Bazant.
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London, (1982), pp. 163–256
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[20] Bažant Z.P., Kim J.-K.: Improved prediction model for time-dependent deformations of con-
crete: Part 2 – Basic creep, Materials and Structures (RILEM), Vol. 24, No. 144, (1991),
pp. 409–421
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[34] Bažant Z.P., Wu S.T.: Rate-type creep law of aging concrete based on Maxwell chain, Materials
and Structures (RILEM), Vol. 7, No. 37, (1974), pp. 45–60
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[65] Krüger W.: Kriechberechnung bei Stahlbetonelementen, Bauakademie der DDR, Bauinforma-
tion, Reihe Stahlbeton, (1973)

[66] Křistek V., Bažant Z.P.: Shear lag effect and uncertainty in concrete box girder creep, J. of
Structural Engrg., ASCE, Vol. 32, (1987), No. 3, pp. 557–574

[67] Kunert K.: Beitrag zur Berechnung der Verbundkonstruktion. Dissertation, TU West Berlin
(1955)

[68] Lapos J.: The Effects of Creep and Shrinkage in Composite Continuous Bridges, proceedings
of 17th Czech-Slovak Intern. Conf. 09, 1994, Bratislava, pp. II-169–II-164



Engineering MECHANICS 115

[69] Mrazik A.: The effect of creep and shrinkage of concrete of statically determinate composite
plate beams (in Slovak), Staveb. Cas., 10, (1962)
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