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ON STATISTICAL DESCRIPTION
OF RANDOM STRUCTURES

Tom4s Pospisil*

Mathematical modeling of fibre composite materials is very difficult because of their
random values of the coefficient describing mechanical properties of their separate
phases. For the computational reasons, the real materials, i.e. materials with non-
periodic structure are replaced by ‘equivalent’ structures having almost the same
mechanical properties. To the implementation of this, the various algorithms were
developed for generating an ‘equivalent’ structures, which will be similar to the real
one as much as possible. Therefore some simple methodology for a statistical com-
paring of different structures developed by different algorithms is needed.

Keywords: non-periodic structures, spatial randomness

1. Introduction

The use of the homogenization theory in a mathematical modeling of composites, which
is suitable for numerical computations, see e.g. [1], [2] or [6], assumes a periodic structure
of the considered medium, which is not often true in reality. Therefore the algorithms
for generating similar structures are developed. To the comparing the results obtained by
different methods we need some simple tool, which will be able to intercept deviations from
the statistical viewpoint. In other words, we introduce methods for statistical comparing of
random structures.

The content of the paper is as follows. We start with a characterization of two-phase fiber
composite materials together with its brief description. In Section 3 we give a statistical
description of the structures including descriptive statistics and spatial randomness. The
next three sections are devoted to the separate branches of the comparisons: the quadrat
tests of randomness, second order methods and distance methods. In the last section we
arrive to the conclusion.

2. Random structures

The essential requisition for developing a methodology for comparing structures of fiber
composite material is to keep real samples(i.e. photos) of such material at disposition. We
used the data obtained from the Czech Technical University in Prague, Klokner Institute,
Department of Engineering Mechanics. Those are bitmaps of a dimension 1144x1144. From
the image analysis of these data, we chose normal distribution of the fibre diameters with
expected value of the diameter 71.87 and standard deviation 4.58. The average amount of
the fibres in selected rectangular area was 164.60 and the average volume fraction 48.69 %.
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Fig.1: Real sample (left) and its correction for computation (right)

For further information about the samples, see [7]. Next figures represent an example of the
obtained data and corrected ones used to the experiments.

Now, having the set of bitmaps of the real or simulated composite media at disposal, it
is suitable to compare it.

3. Statistical description

In this section we introduce some statistical indicators used to the correct description of
differences between separate instances of a composite media. These instances can be taken
from the real material or they can be simulated computationally.

3.1. Descriptive statistics

In order to use methods of descriptive statistics, we have to create some kind of a set of
parameters for each sample, which we use for next computations. The simplest way is to
divide each sample by a regular n x n abstract rectangular grid. In our samples we choose
n = 10, i.e. 10x10 grid. Then, in every cell ¢; we compute an elementary volume fraction f;
(in percentages) and this obtained set of elementary volume fractions {f;}72|" serves us as
a base for next computations. It is also very important to choose an optimal ratio between
the size of n and average diameter of fibres. It is clear, that choosing n to be very large
is meaningless, because many of f; should have the value zero and some of them one. On
the other hand, choosing n to be very small causes not taking into account the randomness

c-th cell

Fig.2: Dividing the sample by an abstract regular grid
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of the distribution of the fibres in the matrix. Denote by the symbol fij7 i1=1...nxn,
J =1...15, the elementary volume fraction in the i—th cell of a realization j. The results
of descriptive statistics for f; are presented in Table 1.

Mean | Median | Min. | Max. | Range | Var. |Std. dev. | Kurt. | Skew.
No. 1 51.63 53.35 |17.38 | 92.39 | 75.01 |215.32 14.67 2.97 | —0.04
No. 2 51.13 54.21 0.00 | 86.84 | 86.84 |295.23 17.18 2.99 | —0.49
No. 3 47.93 48.53 0.28 | 86.17 | 85.90 |326.10 18.06 2.85 | —0.34
No. 4 44.32 46.51 0.00 | 74.44 | 74.44 |277.27 16.65 291 | —0.55
No. 5 53.79 54.44 |15.86 | 93.25 | 77.39 |242.45 15.57 2.60 0.05
No. 6 52.48 54.16 0.00 | 81.10 | 81.10 |240.03 15.49 3.51 | —0.62
No. 7 42.76 | 44.50 | 0.00 | 78.95 | 78.95 |364.05 19.08 2.72 | —0.55
No. 8 49.66 | 52.33 |14.79| 80.69 | 65.90 |227.93 15.10 2.10 | —0.09
No. 9 44.74 | 45.71 0.00 | 73.06 | 73.06 |226.27 15.04 2.93 | —0.37
No. 10 4247 | 41.95 | 0.00 | 78.55 | 78.55 |295.63 17.19 2.78 | —0.09
No. 11 52.48 53.91 20.09 | 80.31 | 60.22 |200.27 14.15 2.43 | —0.32
No. 12 50.20 52.14 0.00 | 82.89 | 82.89 |350.25 18.72 3.08 | —0.70
No. 13 52.43 51.26 5.76 | 89.63 | 83.87 [296.10 17.21 2.84 | —0.24
No. 14 46.40 46.18 | 11.48 | 92.29 | 80.81 |229.73 15.16 2.99 0.19
No. 15 47.90 47.36 0.00 | 86.14 | 86.14 |275.41 16.60 2.81 | —=0.15
Average | 48.69 49.77 5.71 | 83.78 | 78.07 |270.80 16.39 2.83 | —0.29

Tab.1: Computed values of descriptive statistics of all volume
fractions for all samples and their averages

Next, we present descriptive statistics for the amount of fibres in the real samples, see
the table 2.

Mean | Median | Min. | Max. | Range | Var. | Std. dev. | Kurt. | Skew.
Real | 164.60 164 145 189 44 167.40 12.94 2.04 0.14

Tab.2: Computed values of descriptive statistics for
a total amount of fibres for all samples

3.2. Spatial randomness

The complete spatial randomness (CSR), see e.g. [4] or [3] for its definition, is of limited
scientific interest in itself in the theory of composites. The reason is due to the real physical
aspects(e.g. an impossibility of overlapping of the particular fibres), see e.g. [4]. But on the
other hand there are several good reasons why we might begin an analysis with a test of
the CSR: rejection of CSR is a minimal prerequisite to any serious attempt to model an
observed pattern; tests are used to explore a set of data and to assist in the formulation of
plausible alternatives to the CSR. Of course, CSR operates as a dividing hypothesis between
regular and clustered (aggregated) patterns, see [4].

Several different approaches will be taken to quantify types of spatial point pattern. The
general goal in the following subsections is to reduce the spatial data to the informative
descriptives statistics that can help elucidate models that might be used for the simulating
of the real structures.
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Randomness tests of CSR are commonly based on the following three branches of the
methods:
— Quadrat tests,
— Second-order methods,
— Distance methods.

Methods of the first type are the most appropriate in preliminary studies and they should
always be backed up by other tests. Problems of edge correction are avoided here for the
sake of simplicity.

4. The quadrat test of randomness

It is the simplest and the most widely used method to investigate deviations from ran-
domness and it is based on counting the numbers of points (centers of fibers) in each quadrat
of a grid overlaid on the section of interest. The approach used to calculate the quadrat test
involves analyzing the variation in the numbers of points in selected sub-areas of the region
under investigation. This is called a quadrat method. The comparison will be as follows:
For each sample we compute Pearson’s test statistic

(1 —7)° s° 2 IR —\2
= — = -1)— h Sc=—— i — ,
Q ; - (m—1) — where ;(n )
where m is the total number of fibres (centers) in the sample, n; denotes the number of
centers in a cell ¢; and 7 is the mean of n;. In our cases we chose n = 10, i.e. the 10x10
grid (an assumption n? > 6 should be fulfilled, see [11] for the explanation). The results
are in Table 4. It holds, under CSR, the Pearson’s test statistic has x2— distribution with

f=n%—-1=10% -1 =99 degrees of freedom, see e.g. [3].

No. | Pears | No. | Pears. | No. | Pears.
35.45 6 26.96 | 11 | 23.54
34.69 7 35.53 | 12 | 34.35
34.20 8 32.38 | 13 | 36.75
3997 9 36.89 | 14 | 30.39
5 | 26.70 | 10 | 38.95 | 15 | 39.09

W IN

Tab.3: Values of the Pearson’s statistics @

If the value for @ is less than the 100 a/2 percentile of the x? distribution with n? — 1
degrees of freedom, the test rejects the stationary Poisson point process hypothesis in favour
of regularity at level a. If it is greater than the 100 (1 — «/2) percentile, then the same
hypothesis is rejected at level «, this time in favour of clustering(meaning that the variability
in the process is greater than that for the Poisson process).

According to [8], a constant problem in designing a study using quadrats is to establish
what would be a suitable size for the quadrat. Various suggestions have been made as to
the optimal size, however, most authors agree that the size for the quadrats depends on the
specific problem in hand, like the type and range of the events’ interactions with each other.

In our case, n = 10, 50 x3¢(0.975) = 73.36 and x2,(0.025) = 128.42. Since in our case, all

values of Pearson’s test statistic () are smaller than 73.36, it indicates significant departure
from the CSR.
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5. Second-order methods

These tests are designed to detect deviation from randomness and consist of the use of
Monte-Carlo tests which are backed up by a graphical procedure.

5.1. Tests based on Ripley’s K function

Ripley’s K (t) function is a tool for analyzing a completely mapped spatial point pro-
cesses data, i.e. data on the locations of events. Here we describe K, (¢) function for two-
dimensional spatial data. Completely mapped data include the locations of all events in a
predefined study area. Ripley’s K,(¢) function can be used to summarize a point pattern,
estimate parameters and fit models. The K (¢) function is defined as

K, (t) = A 'E[number of events within distance ¢ of a randomly chosen event] ,

where \ is the intensity (number of fibres per unit area) of events, see e.g. [11]. So, K,(¢)
describes characteristics of the point process at many distances scales.

K (t) does not uniquely define the point process in the sense that the two different
processes can have the same K (¢) function. Also, processes with the same K (t) function
can be different.

For many point processes the expectation in the numerator of the K (¢) function can be
analytically evaluated, so the K (¢) function can be written in a close form. The simplest
and most commonly used, is K () for a homogeneous Poisson process (CSR):

K,\(t) =7t .

Values of K,(t) for a process are often compared with those for the Poisson process.
Values larger or smaller than mt? respectively indicate a more clustered or more regular
process than the Poisson process. In [5] are presented K (t) functions for various types of
process in details.

5.1.1. Estimating K) ()

Given the locations of all events within a defined study area, K(t) is a ratio of a nu-
merator and the density of events X. The density can be estimated as A = n/ |A|, where n
is the observed number of points and |A| is the area of the study region. If edge effects are
ignored, then the numerator can be estimated by

1 n n
EZZI(dU < t) s
=1 j=1

where d;; is the distance between the ith and jth points, and I(z) is the indicator function
with the value 1 if x is true and 0 otherwise. Edge effects arise because points outside the
boundary are not counted in the numerator, even if they are within distance ¢ of a point in
the study area. Ignoring edge effects biases the estimator K(t), especially at large values of
t. A variety of edge-corrected estimators have been proposed, see e.g. [8],[4], [3] or [9].

The simplest use of Ripley’s K (¢) function is to test a CSR. If CSR of a studied process
holds, then K (t) = 72 for all . In practice, it is easier to use
. K(t
L(t) = _() ,

™
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CSR is then L(t) = t. K(t) is an estimation of K(t). Deviations from the expected value
at each distance ¢ are used to construct tests of CSR. One approach is to test L(t) —t = 0 at
each distance t. For a given spatial point pattern, D(t) = K (t)— 7 2 can be used to evaluate
its compatibility with the CSR assumption. The sampling distribution of K () under the
CSR assumption is analytically intractable. However, when A is a rectangle, the variance
of K(t) can be explicitly expressed, see [4] (Lotwick & Silverman) as

Els
’UCLTLS(t) = m(2 b(t) — al(t) + (n — 2) a2(t)) y
where
an(t) = 0.21 Pt* +1.3t* a(t) = 0.24 Pt° 4 2.62¢°
1 AP S AP ’
2 12 1.0716 Pt3 + 2.2375¢*
b(t):L(l—L> 0716 J; 375 7
Al | Al |A|

where P denotes the perimeter of A. All the above four equations are exact when ¢ is
smaller than or equal to a quarter of the length of the shorter side of A. As suggested
in [4], £21/varps(t) can be used as the upper/lower limits for D(t). If D(t) lies within
these limits for all the valid values of ¢, then the spatial point pattern under investigation
can be regarded as compatible to the CSR assumption; otherwise, a deviation from CSR is
suggested. In [4] it is suggested to draw a D-curve (D(t) and £2+/varps(t) against t) to
visualize the CSR test result. Whether D(t) is smaller than the lower bound, the pattern
tends to regularity; if ﬁ(t) is bigger than the upper bound, the pattern tends to cluster;
otherwise, the CSR assumption becomes applicable.

D@ x10*
4,

Real

Fig.3 Comparison of D-functions

6. Distance methods

Distance methods, also known as plotless sampling techniques, were introduced because
of the practical difficulties caused by quadrat sampling sometimes. Distance methods make
use of precise information on the locations of events and have the advantage of not depending
on arbitrary choices of quadrat size or shape.
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6.1. Skellam’s Statistic

To make ideas of nearest-neighbor distances precise, we have to determine the probability
distribution of a nearest neighbor distance under CSR and compare the observed nearest
neighbor distances with this distribution. To begin, suppose that the implicit reference
region A is large, so that for any given point density A\, we may assume that cell-counts are
Poisson distributed under CSR. Now suppose that s is a randomly selected point in a pattern
realization of this CSR process and let the random variable, say D, denote nearest neighbor

C

Fig.4: Cell of radius d

distance from s to the rest of the pattern. To determine the distribution of D, we next
consider a circular region Cy of radius d around s, as shown in Figure 4. Then, according
to the picture, the probability that D is at least equal to d is precisely the probability that
there are no other points in Cy. Hence, it can be shown, see [10], that this probability is
given by

P(D>d)=e ™% (1)

and that’s why we finally obtain the distribution function of D

Fp(d)=1—e 74" (2)

As we can see, this is an instance of the Rayleigh distribution. Next, for a random sample of

m nearest-neighbor distances (D1, ..., D;,) from this distribution, the scaled sum (Skellam’s
statistics)

Sa=2A7 Y D} (3)

i=1
is x? distributed with 2n degrees of freedom, see [10]. So, finally, this statistic provides
a test of the CSR hypothesis based on nearest neighbors. If we choose a significant level
a = 0.05 and approximately n = 165 and then x3,(0.025) = x33,(0.025) = 281.6 and
X330(0.975) = 382.2. From the values in the previous table and the value of x25,(0.975), we
can deduce rejecting CSR, because the minimum values are greater than the critical value.
The only exceptions are samples 4, 7 and 10.

No.1|445.96 | No.6 |459.40 | No. 11 | 496.99
No.2|468.99 | No.7 |364.61 | No.12|427.88
No.3|390.72 | No.8 |541.02 | No. 13 | 523.05
No.4|362.57 | No.9 |489.81 | No. 14 | 404.41
No. 5|481.53 | No. 10| 366.78 | No. 15 | 435.36

Tab.4: Extremes of the Skellam’s statistic for all samples
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6.2. Clark-Evans test

The Clark-Evans test, see e.g. [10], is based on the index of the degree of the non-random-
ness for a spatial configuration. It consists of comparing the observed mean nearest neighbor
distance to that expected for a random configuration of the same density. It was introduced
by Clark and Evans (1954). These authors stated that the distance from a point to its
nearest neighbor, irrespective of a direction, provides the basis for a measure of spacing.

Let us denote for a random sample set of independent nearest-neighbor distances
{D1,..., Dy} (more information about choosing an independent set of samples, see
e.g. [3],[4],[9] or [10]). It follows from the central limit theorem, that independent sums
of identically distributed random variables are approximately normally distributed. Hence,
the most common test of the CSR hypothesis based on nearest neighbors involves a normal
approximation to the sample mean of D;, i = 1...m, as defined by

_ 1 &
Dm:E;Di. (4)

It can be shown, see [10], that mean and variance of this distribution are given respectively
by
1 4—7
E[D]=——= DDl=—.
D= 5= D=2
Next we observe from the properties of iid random samples that for the sample mean D,,
in (4) it holds

(5)

_ 1 1 1
E|D,|=— E[D;)]=— (mEI[D{]) =E[D{] = —— 6
[Dn] = 5 2_BID] = - (mBID) =E[Di] = ;o (6)
and similarly
_ 1\ & 1 4—7
D|D,|=|— D[D;| = — DD{))= —. 7
[P} (m)g [Di} = 27 mDIDiD) = 23 ™
From the central limit theorem we obtain
_ 1 4 —7
Dy ~N|——, — 8
(2\/X 4Mm> ®)
and after standardization we can write
DnL_E Dm
T, = 7[ ]NN(O,l), (9)
D [Dy,]

so Zp, has standardized normal distribution.

In the following table we can see the extremes of the Z-means of all samples.

Minimum Maximum
Real 10.316 14.067

Tab.5: Extremes of the mean values obtained by Monte-Carlo
simulation of the Clark-Evans test
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Similarly, as in the case of the Skellam’s statistic, we choose a significant level of 0.05,
the critical value z,/2 = 20.025 = 1.96 and thus we reject the hypothesis of CSR. Since
Za = 20.05 = 1.65, we conclude significant uniformity of the patterns.

6.3. Conclusion

In this contribution we came from the well-known result that replacing random structure
of two-phase fiber composite material leads to incorrect results on mathematical modeling.
This fact can be e.g. demonstrated on a problem of a torsion of a bar that can be modeled
by an elliptic PDE —div(a Vu) = f with a random coefficient a and Dirichlet boundary
condition.

To obtain more accurate results using computational methods are being developed various
algorithms generating structures similar to the real ones. Therefore, we summarized a simple
collection of methods, which can be used for a statistical comparison of separate samples(real
or simulated). The real samples(bitmaps) were obtained from the Czech Technical University
in Prague, Klokner Institute. From such obtained samples the basic statistical descriptors
were computed.

Very important question is about the complete spatial randomness(CSR). To find out
this fact, Clark-Evans test and Skellam’s statistic were determined. In both cases, the CSR
was rejected. This implies from the reality, that no two fibres cannot be nearer than the
sum of their radii. In other words, penetration of fibres can not occur in the real situation.
Also, quadrat test of randomness and distance methods were discussed.

Acknowledgments:

The paper was supported by research project from MSMT of the Czech Republic
No. 1M06047 ‘Center for Quality and Reliability of Production’, research plan from MSMT
of the Czech Republic No. MSM0021630519 ‘Progressive reliable and durable structures’,
by grant from Grant Agency of the Czech Republic (Czech Science Foundation) Reg.
No. 103/08/1658 ‘Advanced optimum design of composed concrete structures’, and by grant
Reg. No. 201/08/0874 from Grant Agency of the Czech Republic (Czech Science Foundation)

References

[1] Bensoussans A., Lions J.L., Papanicolaou G.: Asymptotic Analysis for Periodic Structures,
North-Holland, Amsterdam (1978)

[2] Bourgat J.F., Lanchon H.: Application of the homogenization method to composite materials
with periodic structure, Raport de Recherche No. 208, (1976), IRRIA, Paris

[3] Cressie N.A.C.: Statistics for Spatial Data, John Wiley & Sons, New York, (1993)

[4] Diggle P.J.: Statistical Analysis of Spatial Point Patterns Oxford University Press Inc., New
York, (2003)

[5] Dixon P.M.: Ripley’s K-function, Encyklopedia of Environmetrics 3 (2002), pp. 1796-1803

[6] Francu J.: Homogenization (in Czech) Proceedings of 6th seminar from P.D.E., Manétin 1981,
JCSMF (1982), pp. 21-66

[7] Gajdosik J.: Quantitative Analysis of Fiber Composite Microstructure, Master Thesis, Czech
Technical University in Prague, (2004)

[8] Sofia Mucharreira de Azeredo Lopes: Statistical Analysis of Particle Distributions in Composite
Materials, Doctoral Thesis, University of Sheffield, (2000)



392 Pospisil T. On Statistical Description of Random Structures

[9] Ripley B.D.: Spatial Statistics, John Wiley & Sons, New Jersey, (2004)
[10] Smith T.E.: Notebook On Spatial Data Analysis, http://www.seas.upenn.edu/~ese502/
[11] Torquato S.: Random Heterogeneous Materials, Microstructure and Microscopic Properties,
Springer-Verlag, (2002)

Received in editor’s office: April 1, 2010
Approved for publishing: August 30, 2010

Note: This paper is an extended version of the contribution presented at the international
conference STOPTIMA 2007 in Brno.



