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STOCHASTIC PROGRAMMING MODELS
FOR ENGINEERING DESIGN PROBLEMS

Pavel Popela*

The purpose of the paper is to introduce various stochastic programs and related de-
terministic reformulations that are suitable for engineering design problems. Firstly,
several application areas of engineering design are introduced and cited. Then, moti-
vation ideas and basic concepts are presented. Later, various types of reformulations
are introduced for decision problems involving uncertainty. In addition, short notes
on comparison of optimal solutions are included.

Keywords : underlying program, stochastic program, deterministic reformulation,
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1. Introduction

Many optimization problems belong to the area of engineering design. Quite a lot of
them can be modeled by mathematical programs. Recently studied problems frequently
include uncertain parameters, a complicated structure, and the need to find optimal or
suboptimal values of design variables. They can be found, e.g., in traditional mechanical or
civil engineering design problems, see [43] and [15] or in the design of transportation and
generally logistic networks [23] or in the problems of plant parameter design, see [24], [25], [7]
and [29]. In the case of design problems, the uncertain parameters can be modeled by random
elements (material characteristics, loads, etc.) must also be considered, see, e.g., [42] for
reliability computations; [21], [22] for hedging against failures of steel production system; [14]
and [41] for various concrete design problems and considered uncertain loads. Many optimum
design problems in civil and mechanical engineering lead to optimization models constrained
by differential equations, see [10] and [3]. In general, these problems can be modeled by
using stochastic optimal control formulations. However, the discussion about these problems
identified their stage-related decision structure and the need for robust modeling and solution
approaches i.e. there is a need among engineers to allow significant changes of the model
without necessity to choose or develop another algorithm (e.g., in the case of additional
constraints and modified terms in the model). Hence, because of these requests and our
experience, we mostly suggest and utilize scenario-based stochastic programs.

While mathematical programs constrained by PDE are frequently studied and applied
in deterministic situations, see [10], stochastic programming was firstly used for the case of
shape optimization by [6]. The development of suitable computational schemes for above
mentioned application areas had began a few yeas ago at the Brno University of Technology
(BUT) by Žampachová, Popela et al., see [28] for modeling, [46] and [47] for various cases.
Firstly, stochastic programs constrained by hyperbolic and parabolic PDEs were built and
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solved, see Žampachová [48] for details. Then, the case of a random load on the beam
has been studied in [49]. These problems lead to large-scale optimization models invol-
ving random parameters, see [4] and [38]. Therefore, the efficient decomposition techniques
(PHA) have been developed by Wets and Rockafellar, see [36] and implemented at the BUT,
see [49] and [16]. The applicability of suitable decomposition algorithms [32] and heuristic
algorithms regarding scenario generation [37] and global optimum search for nonlinear cases
is further studied, see [20] and [19].

There are often discussions among engineers that for the given optimization problem
there must be the best model found. However, modelers may follow various optimization
paradigms (e.g., model uncertainty by using either stochastic or fuzzy concepts), choose
different levels of abstraction (e.g., time continuous or discretized), define various approxi-
mations of the ideal model (e.g., nonlinear convex or its piece-wise approximation), have
distinct optimization goals (cf. multicriteria optimization), and even their understanding of
the request ‘find an optimal solution’ can be diverse (e.g., search for the global optimum
contrary to the enough good feasible solution). Therefore, the same problem is modeled
in different ways. Fortunately, the recent development of hardware power and software
flexibility allows modelers to utilize multimodeling ideas instead of guessing, which of the
model alternatives to choose as the best one. Hence, we list several general models for the
aforementioned problems inspired by [34].

2. Basic Concepts

Traditional deterministic decision problems in engineering are often modeled by so called
mathematical programs, see [1] and [2].

Definition 1 (Mathematical program) We define mathematical program (MP) as :

? ∈ argmin
x

{f(x) | x ∈ C} , (1)

where C ⊆ �
n is called a feasible set, n ∈ � , f : C → � is called an objective function, and

x ∈ C describes a decision (vector) variable.

Many decision problems are modelled as MPs. MPs (1) often involve important constant
(deterministic) parameters. We may emphasize this fact by writing parameters explicitly
in the MP formulation. Applications of optimization also show that it is important to use
more than one MP. So, the approach of using more than one model is called multimodeling.
Multiplicity of models can also be formally introduced by parametric MPs as follows.

Definition 2 (Parametric MP) We define parametric MP (PMP) as :

? ∈ argmin
x

{f(x,a) | x ∈ C(a)} , (2)

where a ∈ �
K is a constant parameter, K ∈ � .

So, the complex application problems can be modeled in various ways and also different
optimal solutions are obtained. The natural question appears : ‘Which of these optimal
solutions is the most suitable one?’ In the rare case, we may be lucky and the optimal
solution will be the same for various programs. However, we have to consider a frequent
case when the optimal solution changes with the model change (described by the change of
parameter a).
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We have already mentioned that many real-world complex problems include various levels
of uncertainties, and they can be modeled in different ways [13]. One of them is stochastic
optimization. We concentrate on the cases where the program parameters are influenced
by random variables. The probabilistic interpretation of the uncertain parameters in the
mathematical program is known as stochastic programming. The mathematical program
involving random parameters is called an underlying program [13]. From the parametric
mathematical program, we obtain an underlying program by replacing some constant pa-
rameters by random variables. We ask what is the meaning of the underlying program. It
is understood as a syntactically correct description, for which semantics is given later.

Definition 3 (Underlying program) We define an underlying (stochastic) program (UP) as :

? ∈ argmin
x

{f(x, ξ) | x ∈ C(ξ)} ,

where ξ : Ω → �
K is a random vector, for (Ω,F , P ) given probability space. As ξ is an

F -measurable mapping, it induces a probability distribution on �K . We denote a probability
space as (�K ,B,P) or (Ξ,B,P), where Ξ is a support of P (the smallest set by ⊆ such that
P(Ξ) = 1). B is a σ-field of Borel’s sets on �

K . Derived probabilities are computed by the
rule ∀B ∈ B : P(B) := P ({ω | ξ(ω) ∈ B}). Because of F -measurability {ω | ξ(ω) ∈ B} ∈ F ,
and hence, P domain is specified fully and consistently. To emphasize the use of ran-
dom vector ξ, we often write P (ξ ∈ B) instead of P(B). P (ξ ∈ B) is a short version of
P ({ω | ξ(ω) ∈ B}). ∀ωs ∈ Ω : ξ(ωs) ∈ �

K is a realization (observation) of ξ. In short, we
write ξs.

Although the UP description is syntactically correct, it is unclear from the semantical
point of view. Therefore, we have to introduce its deterministic reformulation that correctly
interprets the presence of random parameters. One of the important questions is whether
the deterministic reformulation can be expressed in an explicit form of a traditional ma-
thematical program. Such an explicit form is often called an algebraic equivalent and we
suggest to focus on it in case of using discretization. All these programs that involve random
parameters in syntactically correct ways are called stochastic programs, see [28].

3. Objective Function Deterministic Reformulations

The main further question that should be answered is when the decision will be made
– before the random parameters are observed or after the observations are known. According
to Madansky [13], when the decision is made after the observing the randomness, this case
is called a wait-and-see (WS) approach. This approach is valuable when we know the
realization of ξ before making our decision, and it assumes the perfect information about
the future. In this case, we may modify our decision by observation, and hence, the decision x
is a function x(ξ) of the random vector ξ. Also, the outcome f(x(ξ); ξ) is a random variable.

Definition 4 (WS deterministic reformulation) Let the UP (see Definition 3) be given. We
define its wait-and-see (WS) deterministic reformulation :

? ∈ argmin
x(ξ)

{f(x(ξ), ξ) | x(ξ) ∈ C(ξ)} , (4)

where x(ξ) denotes a (measurable) mapping x : �K → �
n. We emphasize the relation of

the solution to WS reformulation (4) by using superscripts WS i.e. xWS
min(ξ) and zWS

min(ξ).
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We denote the set of all optimal solutions by Xmin(ξ) (or XWS
min(ξ)) i.e.

Xmin(ξ) = argmin
x(ξ)

{f(x(ξ), ξ) | x(ξ) ∈ C(ξ)} . (5)

Therefore, WS deterministic reformulation (4) could be interpreted as a special parametric
mathematical program (cf. (2)1) with ‘probability-based weights’. To emphasize the fact that
not only one xmin is computed, we may also write :

∀ξ ∈ Ξ : ? ∈ argmin
x(ξ)

{f(x(ξ), ξ) | x(ξ) ∈ C(ξ)} . (6)

In the WS case we apply sensitivity analysis ideas, we study how the optimal solution
changes when it is allowed to follow the changes of model parameters or a model structure
or even a qualitatively different model.

Decision makers must often make decisions before the observations of random parameters
are known. In this case, they are using a so called here-and-now (HN) approach. The decision
x must be the same for any future realization of ξ. Stochastic programming deals primarily
with here-and-now decisions, because the typical decision situation is described by the lack
of observations. The first general idea for the HN case is to utilize knowledge we already have
i.e. to apply one of known WS solutions for certain realization ξs i.e. to choose xmin(ξs). We
will further denote xmin(ξs) shortly as xs

min. Those realizations ξs are often called scenarios

in application problems. So, we solve the problem for one selected scenario.

Definition 5 (IS deterministic reformulation) Let the UP (see Definition 3) be given. We
define its here-and-now individual scenario (IS) deterministic reformulation (IS program) :

? ∈ argmin
x

{f(x, ξs) | x ∈ C(ξs)} , (7)

where ξs ∈ Ξ is a specified individual scenario. We denote the minimal objective function
value as zIS

min and minimum as xIS
min.

To learn how good is the obtained solution, it is reasonable to evaluate f(x, ξ) for xs
min

in general i.e. to compute f(xs
min, ξ).

Till now, we have assumed that we have to rely only on already existing realizations (see
IS above). There is the question : ‘How to improve the IS solution?’ Inspiration coming from
stochastic programming suggests that we may derive new models by certain aggregation of
original models to hedge against uncertainty that comes either from the fact that we do not
know which model is right one or we want to be ready for all considered models. So, as
one reasonable possibility how to improve the IS solution looks the idea to replace ξ with
some compromise real values. It could be a convex combination or weighted average, and
hence, precisely E[ξ], shortly Eξ. However, this possibility is meaningless for models that
are qualitatively too different with change of a or ξ.

Definition 6 (EV deterministic reformulation) Let the UP (underlying program) be given.
We define its here-and-now expected value (EV) deterministic reformulation :

? ∈ argmin
x

{f(x, Eξ) | x ∈ C(Eξ)} , (8)

1 In (2), we did not emphasize dependence of x on a because we use (2) in more general syntactical sense.
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where Eξ denotes the expected value, zEV
min the minimal objective function value, and xEV

min

minimum.

The natural question appears : How good is the solution xEV
min for the underlying objective

function?

Definition 7 (EEV) For the EV deterministic reformulation, we define EEV :

EEV = Eξ[f(xEV
min, ξ)] = E[ζEV] . (9)

We use the abbreviation EEV for the expected objective function value for the optimal
solution of the Expected Value deterministic reformulation (the EEV abbreviation is tradi-
tionally used for this concept in stochastic programming literature.).

Using the previous paragraphs, we derive the idea of comparison of optimal solutions :
‘Take the characteristic used for comparisons of ζ� as an objective function.’ Symbol ζ�

is used to denote the UP objective function value for any optimal solution of deterministic
reformulation, even for this that will appear later. By this idea, we may choose E[f(x, ξ)]
when we want to find a solution that is good in average for all considered models. In
dependence on the application needs, further characteristics of ζ� random variables could
be utilized, e.g., modes, medians, quantiles, and sums of the expected value and multiple of
standard deviation.

The EEV characteristic can be used to measure whether zEV
min looks realistic by compu-

ting the difference between the optimistic forecasted objective function value zEV
min and true

average cost computed by EEV :

EEV − zEV
min , for the maximum case : zEV

max − EEV .

So, we have found the way, how the optimal solutions of the different deterministic refor-
mulations can be compared. It must be also emphasized that it would be too optimistic
to make any conclusions about suitability of programs (deterministic reformulations) from
conclusions made only about the optimal solutions of some instances of programs. Using
the previous paragraphs, we derive the idea : ‘Take the characteristic used for comparisons
of ζ� as an objective function.’ By this idea, we choose E[f(x, ξ)].

Definition 8 (EO deterministic reformulation) Let the UP be given. We define its here-and-
now expected objective (EO) deterministic reformulation :

? ∈ argmin
x

{E[f(x, ξ)] | x ∈ �
n} . (10)

We denote the minimal objective function value as zEO
min and minimum as xEO

min. As before,
for comparisons, we introduce ζEO i.e. ζEO = f(xEO

min, ξ).

In general, the question is about the difference between E[f(x, ξ)] and f(x, Eξ). After
the discussion about the optimal solutions, we may learn more about the relation of values
of objective functions, and hence, about the difference E[f(x, ξ)]−f(x, Eξ). The conclusion
may be obtained by using known Jensen’s inequality (1906) saying that for f(x, ξ) convex
at ξ, E[f(x, ξ)] ≥ f(x, Eξ).

At the end, we have to say something about the relation between EEV and the optimal
EO objective function value. We know that zEO

min = E[f(xmin, ξ)] = globminx{E[f(x, ξ)] |
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x ∈ �
n} in general. As it is a global minimum, then ∀x ∈ �

n : E[f(xEO
min, ξ)] ≤ E[f(x, ξ)]

in general. Then, specifically :

E[ζEO] = E[f(xEO
min, ξ)] ≤ E[f(xEV

min, ξ)] = E[ζEV] = EEV .

We have to note that those and previous inequalities require the existence of Eξ and
E[f(x, ξ)].

Then, wee define the Value of Stochastic Solution (the VSS abbreviation is traditionally
used in stochastic programming literature for the case.) as : VSS = EEV−zEO

min. The concept
is introduced to compare the here-and-now EO optimal solution and EV optimal solution
by expectations of objective function values. The VSS measures how much can be saved
when the true HN approach is used instead of the EV approach. A small value of the VSS
means that the approximation of the stochastic program by the EV program is a good one.

We have introduced the way how to compare optimal solutions of two here-and-now de-
terministic reformulations EV and EO by means of the VSS. In the similar way, we may find
how to compare optimal solutions of WS and EO (HN) programs. We have used ζ� only for
HN programs. However, there is no restriction that does not allow us to use it also for the
WS programs. Although xmin(ξ) value changes randomly, it still can be applied to compu-
tation of the values of true objective function f(x, ξ) as before. We define a random variable
ζWS = zWS

min(ξ) = f(xWS
min(ξ), ξ). We define the Expected Value of Perfect Information (the

EVPI abbreviation is traditionally used in stochastic programming literature and in sto-
chastic models of operations research as well.) as : EVPI = zEO

min − E[zWS
min(ξ)]. The concept

is introduced to compare the here-and-now EO optimal solution and WS optimal solution
by expectations of objective function values. The EVPI measures how much it is reasonable
to pay to obtain perfect information about the future. A small value of EVPI informs about
little savings when we reach perfect information; the large EVPI says that the information
about the future is valuable. If we obtain only sample information, the improvement on the
optimum value is called the expected value of sample information (EVSI).

4. Risk Averse Objective Function Reformulations

Till now, we have used the expected value of f(x, ξ) as a good criterion to compare and
find optimal solutions. The basic idea was to minimize ‘average costs’. The idea is realistic
when we have the opportunity to apply such a policy many times in the future. However,
the average costs do not guarantee that there are no outlying costs. Therefore, we may
think about some other criteria that are more ‘risk averse’.

Definition 9 (VO deterministic reformulation) Let the UP be given. We define its here-and-
now variance objective (VO) deterministic reformulation :

? ∈ argmin
x

{var[f(x, ξ)] | x ∈ �
n} . (11)

We denote the minimal objective function value as zVO
min and minimum as xVO

min. As before,
for comparisons, we introduce ζVO i.e. ζVO = f(xVO

min, ξ).

In dependence on the application problem needs, further characteristics of ζ� random
variables in addition to E and var can be utilized. For example, we may choose the solution
that behaves better for another than its own model i.e. we have introduced the VO program
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to avoid large fluctuations of f(x, ξ). We can be even more strict and we can decide to
minimize the maximum of fluctuations, therefore, minimize maxξ{f(x, ξ)}. We introduce :

Definition 10 (MM deterministic reformulation) Let the UP be given. We define its here-
and-now min-max (MM) deterministic reformulation :

? ∈ argmin
x

{max
ξs

{f(x, ξs) | ξs ∈ Ξ} | x ∈ �
n} . (12)

We denote the minimal objective function value as zMM
min and minimum as xMM

min . As before,
for comparisons, we introduce ζMM i.e. ζMM = f(xMM

min , ξ).

We have seen various optimization criteria for HN deterministic reformulations (and
hence for comparison of number of models). The question is what to do if we would like to
follow several criteria at once. In fact, it is the same question as we have solved till now,
however, on the higher level of abstraction. Previously, we have discussed the problem how to
decide in front of future realizations ξs. With discrete and finite probability distribution of ξ,
we could interpret it as a multicriteria optimization problem with many objective functions
f(x, ξs), ξs ∈ Ξ and their importance is weighted by ps = P (ξ = ξs). In such a situation,
our EO deterministic reformulation is equivalent to the choice of scalar reformulation based
on the weighted average in multicriteria optimization. For some of other deterministic
reformulations, we may find also its counterparts among scalar reformulations in multicriteria
optimization. Underlying multicriteria optimization program (see [39]) is usually specified
as ? ∈ argmin{f(x) | x ∈ C}, where f : �n → �

m is a vector objective function. Again the
description is syntactically correct, however, without semantics as for the UP. Therefore, to
solve the problem, at first, we have to specify a scalar reformulation. It is often based on
some aggregation of f components as, e.g., weighted average again. Applying the idea on
the higher level, we may try to think how to aggregate, e.g., EO and VO objective functions
in the same program : ? ∈ argmin{(E[f(x, ξ)], var[f(x, ξ)]) | x ∈ �

n}. We may find the
following formulation often used : min{λE[f(x, ξ)] + (1 − λ) var[f(x, ξ)] | x ∈ �

n}, where
λ ∈ [0, 1] is a weighting parameter chosen by the wish of the modeler to prefer either low
costs or small fluctuations. In addition to the choice of convex combination, we have to
mention that aggregation may be formulated in more general way. The utility function can
also unify the scales for different models.

As we have seen, different solutions (IS) can be compared also by building new derived
models (EV, EO, VO, MM) that could be further combined to increase robustness of the
optimal solution implemented. As we want to know how good is the optimal solution
obtained for one model for other considered models then the question becomes : ‘How the
first model solution behaves in the second model?’ When various models are considered and
all their optimal solutions are collected, there is a question how any obtained solution can
be evaluated for any listed model. The realization is quite simple. Following the ideas of
EEV, VSS, and EVPI, we may compute ζ� and then its necessary characteristic. We may
further denote, e.g., E[f(xEV

min, ξ)] as xEV
min at fEO or even shortly : EV@EO, see [33] for

further details.

We may extend and apply previous ideas also to the cases with probability and quantile
objective functions introduced now. In applications, you may find various requirements,
e.g., to increase reliability of some design. Therefore, we discuss how to optimize probability
that is how to minimize probability of high costs and maximize probability of low costs.
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Definition 11 (PO deterministic reformulation) Let the UP (see Definition 3 for details) be
given : ? ∈ argminx{f(x, ξ) | x ∈ �

n}. We define its here-and-now probabilistic objective

(PO) deterministic reformulation (PO program) :

? ∈ argmin
x

{P (f(x, ξ) > b) | x ∈ �
n} , (13)

where b ∈ � is a certain upper bound for the optimal objective function value (costs) that
we do not want to exceed. We denote the minimal objective function value as zPO

min and
the minimum as xPO

min. As before, for comparisons, we introduce ζPO i.e. ζPO = f(xPO
min, ξ).

Notice please that the PO program (13) is the unconstrained one.

Theorem 1 (PO discrete case) We have the PO program with a discrete finite distribution
of ξ :

? ∈ argmin
x

{P (f(x, ξ) > b) | x ∈ �
n} , (14)

and ∀x ∈ �
n we denote P (f(x, ξ) = f(x, ξs)) = p(ξs) = ps. We further assume that

∀x ∈ �
n, ∀ξs ∈ Ξ : f(x, ξs) − b is bounded from above by M . Then, the following

0-1 mathematical program solves the PO program :

? ∈ argmin
z, x

{
z | ∀s ∈ S : δs = 1 ⇒ f(x, ξs) ≤ b,∑

s∈S
ps (1 − δs) = z, δs ∈ {0, 1}, s ∈ S

}
,

(15)

where S is a set of indices of realizations from Ξ. In addition, the constraint :

δs = 1 ⇒ f(x, ξs) ≤ b can be replaced by f(x, ξs) ≤ b+M(1 − δs) .

Corollary 1 (Maximizing probability) For maximization : ? ∈ argmax
x

{P (f(x, ξ) ≤ b) |
x ∈ �

n}, we write :

? ∈ argmax
z, x

{
z | ∀s ∈ S : δs = 1 ⇒ f(x, ξs) ≤ b,

∑
s∈S

ps δs = z, δs ∈ {0, 1}, s ∈ S
}
, (16)

and we replace the implication constraints :

δs = 1 ⇒ f(x, ξs) ≤ b, f(x, ξs) ≤ b+M (1 − δs) . (17)

The quantile in statistics is usually considered as a more robust characteristic in com-
parison with the mean. Therefore, it could be interesting to learn what we can expect when
we minimize the quantile as a representative bound for the objective function level.

Definition 12 (QO deterministic reformulation) Let the UP (see Definition 3 for details) be
given : ? ∈ argminx{f(x, ξ) | x ∈ �

n}. We define its here-and-now quantile objective (QO)

deterministic reformulation (QO program) :

? ∈ argmin
x, z

{z | P (f(x, ξ) ≤ z) ≥ α} , (18)
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where α ∈ [0, 1] is a certain significance level for the objective function f(x, ξ) value that
we want to have guaranteed. We denote the minimal objective function value as zQO

min and
the minimum as xQO

min. As before, for comparisons, we introduce ζQO i.e. ζQO = f(xQO
min, ξ).

Notice please that the QO program (18) is an unconstrained one.

Theorem 2 (QO discrete case) We have the QO program with a discrete finite distribution
of ξ :

? ∈ argmin
x, z

{z | P (f(x, ξ) ≤ z) ≥ α} , (19)

and ∀x ∈ �
n we denote P (f(x, ξ) = f(x, ξs)) = p(ξs) = ps. We further assume that

∀x ∈ �
n, ∀ξs ∈ Ξ : f(x, ξs) − b is bounded from above by M .

Then, the following 0-1 mathematical program solves the QO program:

? ∈ argmin
z, x

{
z | ∀s ∈ S : δs = 1 ⇒ f(x, ξs) ≤ z,

∑
s∈S

ps δs ≥ α, δs ∈ {0, 1}, s ∈ S
}
, (20)

where S is a set of indices of realizations from Ξ. In addition, the constraint :

δs = 1 ⇒ f(x, ξs) ≤ z can be replaced by f(x, ξs) ≤ z +M (1 − δs) . (21)

5. Conclusions

The typical engineering design applications have been listed and their requirements ad-
dressed to the optimization modeling have been emphasized. We have introduced basic
concepts (MP, PMP, UP) in a unified way that allows a reader easily realize the shift from
simplified deterministic cases to stochastic ones. Then, we have motivated and formally
specified several deterministic reformulations. We have restricted ourselves to the objective
functions in the first key step of the development of deterministic reformulations of appli-
cable stochastic programs and also only to one-stage problems. We assume that these cases
will be presented in detail and illustrated by engineering design examples in the subsequent
papers. The presented reformulations are firstly linked to the traditional expected value
(or individual scenario) cases that are suitable for the designs with less importance of risk
evaluation. More advanced risk averse cases are also introduced and compared. For the im-
portant reliability linked PO model, discretization is introduced and a model is transformed
into the one computable by modelling languages as GAMS. Several paragraph within the
text have discussed the ideas of solution comparison from the original author’s viewpoint.
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[7] Drápela T., et al.: Energy Conception of an Integrated System – I. Analysis of Available Data

and Its Processing, Chemical Engineering Transactions, Klemeš, AIDIC, Italy, 18, pp. 635–640,
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[26] Pľsek J., Štěpánek P.: Optimisation of reinforced concrete cross-section, Eng. Est. e Pesq. 1
(2007), 24–36
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[49] Žampachová E., Popela P., Mrázek M.: Optimum beam design via stochastic programming,
Kybernetika 46, 3 (2010), 575–586

Received in editor’s office : April 1, 2010
Approved for publishing : January 20, 2011

Note : This paper is an extended version of the contribution presented at the international
conference STOPTIMA 2007 in Brno.


