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OPTIMISATION OF BUILDING STRUCTURES II (RBSO)

Jan Pľsek*, Petr Štěpánek*

Reliability-Based Structural Optimisation (RBSO) incorporates probabilistic struc-
tural reliability analysis into structural optimisation. A sample definition of an RBSO
problem and its solution are presented for the optimisation of an RC cross-section,
which is subjected to combinations of normal force and bending moments. The pre-
sented RBSO algorithm utilizes the LHS (Latin Hypercube Sampling) approximate
simulation method for reliability computations. Numerical results for the particular
data set are presented.
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1. Introduction

The principal task of RBSO is the calculation of reliability (failure probability), which is
computationally demanding (due to the inherent multidimensional integrals), requires ad-
vanced knowledge, computer skills and entails more work for the designer. This is the cost of
attaining a higher quality of structural design based on RBSO (in comparison with DBSO).
Furthermore, the optimisation of real problems requires repeated computations involving
updated design values, which, especially in the case of probability computations, implies a
huge amount of calculation effort and time; therefore, a compromise between accuracy and
computational claims must be accepted. It is advantageous to consider a minimal number
of uncertainty sources, i.e. to identify those sources which most of all affect structural relia-
bility, and possibly to replace the aggregate impacts of less significant sources. A number of
approximate methods for failure probability assessment exist, e.g. FORM (First Order Reli-
ability Method), SORM (Second Order Reliability Method) and Monte Carlo type methods
(simulative).

The majority of existing studies attempt to use standard nonlinear optimisation algo-
rithms to solve reliability-based optimal structural design problems. In the following list
of studies probability quantities were involved as constraints or in target functions. These
efforts include e.g. Murotsu and Shao [18], Kim and Kwak [19] regarding shape optimiza-
tion; Mahadevan [20] concerning the design of frames; Liu and Moses [21] on the design
of trusses; Lin and Frangopol [22] on the design of reinforced concrete structures. Mainte-
nance planning for deteriorating structures was dealt with by Mori and Ellingwood [23] and
Frangopol [24]. No attempts were made in these works to show that the resulting design
problems satisfy the necessary requirements for the use of the standard nonlinear optimiza-
tion algorithms which were employed. These requirements are that all the functions in
the problem are continuously differentiable (smooth) and can be evaluated exactly in finite
computational time. In the case of failure probability, which is generally defined as a multi-
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dimensional integral over an implicitly defined region, possibly discontinuous, these condi-
tions are apparently not fulfilled. While one cannot prove that the exact failure probability
is differentiable with respect to the design variables (Polak et al. [16]), one can easily show
that approximations of the failure probability as obtained by first-order or second-order re-
liability methods (FORM, SORM) or Monte Carlo simulation are not differentiable. Under
such conditions, standard nonlinear optimization algorithms may fail and may not converge
to a solution of the problem.

In the FORM, an approximation of the failure probability is itself given by an opti-
misation problem, which is an unpleasant complication, therefore designers Madsen and
Hansen [25], and later Kuschel and Rackwitz [26] replaced this inner optimisation prob-
lem with its necessary first-order optimality conditions and solved the resulting reliability-
based optimal design problem by employing standard nonlinear algorithms. The transcribed
problem requires second-order derivatives even for the solution of the first-order reliability
approximating problem, which may be costly to compute. Furthermore, according to Luo
et al. [27] this transcription may result in an optimization problem with a problematic
constraint set. Researchers Moses [28] and Smilowitz and Madanat [29] have used Markov
models to describe the evolution of system performance over time, leading to design problems
of linear programming. Augusti et al. [30] considered a probabilistic model for a highway
network, which led to a discrete nonlinear optimisation problem solvable by dynamic pro-
gramming techniques. These formulations, though convenient from a computational stand-
point, impose severe restrictions on the probabilistic models that can be used to describe
structural behaviour.

Kirjner-Neto et al. [31] showed the equivalence between a special case of RBSO involving
multiple component failure probabilities defined by affine limit-state functions and a semi-
infinite optimisation problem; the presented outer approximation algorithm converges to
stationary points. Kiureghian and Polak [32], Polak et al. [16] proved a similar equivalence
for other cases of RBSO. To account for non-affine limit-state functions, they parameterised
the semi-infinite optimization problem and solved a sequence of such semi-infinite problems
for a range of parameter values. The parameter values were determined by separate calcula-
tions of the failure (by arbitrary method). These parameters serve as a FORM correction of
such semi-infinite problems. Royset et al. [33, 34] contains an application of this technique
to a series of structural systems.

Gasser and Schueller [35], Liaw and DeVries [36] used the ‘response surface’ method to
approximate the failure probability via a smooth function defined in the space of design
variables. This approach is numerically robust since the response surface is smooth and,
unlike the real failure probability function, this substitute function is easily differentiated.
However, the overall efficiency of the method strongly depends on the accuracy of the re-
sponse surface and the computational cost of establishing it, which tends to be high for
problems with many design variables.

There have also been attempts to apply gradient-free algorithms to solve optimal design
problems with uncertainty. Genetic algorithms were used by e.g. Itoh a Liu [37], Nakamura
et al. [38], Cheng and Ang [39], Thampan and Krishnamoorthy [40]. These algorithms are
applicable to most reliability-based optimal design problems, including those that contain
non-differentiable functions. However, they are known to have slow convergence, and the
computational effort required to achieve a solution can be extremely high. On the boundary
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between stochastic and deterministic optimization, there is some important literature on
robust or worst-case scenario design, see e.g. Gu et al. [41, 42]. However, no probabilistic
characterisations of uncertainties are employed in these approaches.

2. General formulation of RBSO

The general formulation of RBSO is analogical to DBSO formulation; see the preced-
ing paper Optimisation of building structures I, differing in the occurrence of probabilistic
quantities, i.e.

	xopt = arg
{
bal
�x

	f (	x, 	pf(	x))
}
, (1)

where all restrictive conditions in the form of equalities

	h (	xopt, 	pf(	xopt)) = 0 , (2)

and in the form of inequalities

	g (	xopt, 	pf(	xopt)) ≤ 0 , (3)

pf,j(	xopt) ≤ p0 f,j , (4)

are satisfied. Symbols in (1)–(4) mean
bal . . . symbolic operator calling for mutual criteria balance,
	f (	x, 	pf(	x)) . . . vector of target functions with possible inclusion of probability quantities

	pf(	x),
	h (	x, 	pf(	x)) . . . vector of restrictive conditions in the form of equalities with the possible

inclusion of 	pf(	x),
	g (	x, 	pf(	x)) . . . vector of restrictive conditions in the form of inequalities with the possible

inclusion of 	pf(	x),
pf,j(	xopt) . . . j-th member of the vector 	pf(	x) expressing the j-th probability of an

inadmissible structural condition (e.g. failure),
p0 f,j . . . upper bound of the probability quantity 	pf,j(	x).

3. Formulation of a DBSO RC cross-section task

The purpose of the task is quite identical with the RC cross-section optimisation for-
mulated in the preceding paper Optimisation of building structures I (DBSO), section 4.
This time, the cross-sectional bearing capacity against the interaction of normal force and
bending moments will be evaluated in a probabilistic manner, thus it is an RBSO problem
which must be solved. It is unnecessary to repeat the whole formulation in detail; it will
suffice to note the differences between this and the previous one.

The objective criteria remain unchanged and all design variables x = {rT, φT, fc, fs}T

are taken as continuous. The cross-section is stressed by a set of loading effects L 	Ej =
= (N,My,Mz)Tj , 1 ≤ j ≤ nL; they are described by random vectors with known joint
probability distributions. The dependencies of vector components are for simplicity specified
by second order cross moments, i.e. by correlation matrices. The design of the cross-section
must bear every loading effect L 	Ej safely. Cross-section reliability is expressed by the
probability of failure pf,j , which depends on 	Ej as well as on cross-section geometry, material
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parameters and their stochasticity. The principal formulation difference thus lies in the
enforcement of cross-section reliability (constraint), which is based on a direct probability
approach (unlike DBSO, which utilises a partial factors method).

3.1. Bounds and constraints

Primary constraints are based on the Ultimate Limit State (ULS) of the cross-section
exposed to normal force and bending moments. The primary set of restrictive conditions is
based on the ULS (Ultimate Limit State) capacity of a cross-section loaded by normal force
and bending moments during short-term stress, as described in [6]. The aim is to determine
the failure probability pf value. Let us consider the general ULS reliability condition with
random quantities:

E(ξ) ≤ R(ξ) , (5)

where E(ξ) is the unfavourable effect of actions and R(ξ) is the cross-section resistance,
and the formal quantity ξ symbolizes the randomness of the dependent quantity. If the
effect and resistance are expressed as vectors E(ξ) and R(ξ) instead of scalars E(ξ) and
R(ξ), respectively, it is possible to obtain expressions analogous with (5) by introducing
new scalar quantities KR, Z :

KR E (ξ) = R (ξ) , (6)

Z =
∣∣R (ξ)

∣∣− ∣∣E (ξ)
∣∣ = (KR − 1)

∣∣E (ξ)
∣∣ , (7)

Z ≥ 0 , (8)

where the same orientation of vectors E(ξ) and R(ξ) is assumed; KR is called the ULS
coefficient of capacity (KR > 0) and Z is called the safety margin. Both of these scalars are
random variables, because they depend on E(ξ) and R(ξ). Therefore, condition (6) is not
yet correct and it is necessary to reformulate the derived constraint (8) conveniently :

pf = P (Z < 0) , (9)

pf ≤ pmax
f , (10)

where pf is the failure probability restricted by the defined upper constraint pmax
f . Thus the

quartet of restrictive conditions (6), (7), (9) and (10) is obtained.

For the j-th loading case Lj(ξ), corresponding to the effect of actions E(ξ), the following
formulas are derived from equations of equilibrium of cross-sections in the ULS :

Nj (ξ) = NR
j

(
σM(y, z)(εj(y, z));D(ξ,x)

)
, (11a)

KR,j My,j (ξ) = MR
y,j

(
σM(y, z)(εj(y, z));D (ξ,x)

)
, (11b)

KR,j Mz,j (ξ) = MR
z,j

(
σM(y, z)(εj(y, z));D(ξ,x)

)
, (11c)

εj(y, z) = εj
c + Kj

y y + Kj
z z , (12)

Δεmin
j = min

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
Ωc

(εj(y, z) − εc,min)

min
q

(εj(yq, zq) − εst, min)

min
Ωc

(εc, max − εj(y, z))

min
q

(εst, max − εj(yq, zq))

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (13)

Δεmin
j = 0 , (14)
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Z = (KR,j − 1)
√
My,j(ξ)2 +Mz,j(ξ)2 , (15)

pf,j = P (Z < 0) , (16)

pf,j ≤ pmax
f,j , (17)

for each j ∈ {1 . . . nL}, where the symbols used have the following meanings :
Nj(ξ), My,j(ξ), Mz,j(ξ) . . . random components of loading effect L 	Ej(ξ),
NR

j , M
R
y,j, M

R
z,j . . . random components of internal forces of the cross-section, which are

determined as integral functions,
D(ξ,x) . . . a vector of all considered cross-section parameters; they may be random

and dependent on the design variables x, explained in Section 3.1,
εc,min, εc,max . . . boundaries of admissible strain for concrete,
εst, min, εst, max . . . boundaries of admissible strain for steel,
q . . . the index of the reinforcing bar, q ∈ {1 . . .Nφ},
Δεmin

j . . . the strain margin of the cross-section, generally a continuous non-smooth
function; if equal to zero, the cross-section is in the ULS.

The system of equations (11) represents equilibrium conditions between inner forces,
Lj(ξ) in terms of the external load and R(ξ) in terms of cross-section response. This response
appears as a change in the deformation state characterized by parameters of deformation
εj
c, Kj

y, Kj
z; formula (12) preserves cross-sectional planarity after its deformation. Including

KR,j , there are four independent quantities that occur in (11) and (12). The definiteness
of this system is assured by the additional limit state condition (14) (zero strain margin),
hence the system of equations (11)–(14), which contains stochastic items and characterizes
the joint probability distribution of the random vector (εc,Ky,Kz,KR, Z)Tj . Thus, the
random variable Z is statistically computable and formula (16) is meaningful. With respect
to j ∈ {1 . . . nL}, restrictive conditions (11)–(17) are linked just by the design variables x,
therefore (11)–(17) can be formally replaced by a single condition

pf,j(x) ≤ pmax
f,j . (18)

Fig.1: Illustration of a cross-section in the
ULS resulting from system (11),
where M stands for effect

Fig.2: Illustration of formula (15) and
the background of safety margin
Z, where M stands for effect

4. Comments and specifications regarding RBSO

4.1. Stochastic model of a cross-section for pf,j(x) calculation

Vector d denotes a set of cross-section parameters, e.g. the height and width of a rectan-
gular cross-section, reinforcement cover and diameters, material strengths and so on; the
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vector of design variables x is a subset of d; this fact is in (2) expressed by dependence d(x).
Cross-section parameters d are considered to be mean values of corresponding random quan-
tities D(ξ), which are a source of uncertainties in R(ξ). Letting Hj(ξ) be a vector of all
relevant random quantities which affect cross-section reliability, the equation then can be
written as

Hj(ξ) = (Lj(ξ)T,D(ξ)T)T . (19)

Hj(ξ) may depend on the design variables. Let us assume that each element of Hj(ξ)
depends on just a single corresponding design variable.

If both quantities (random variable and corresponding design variable) are marked by
the same letter and the previous assumption stands, it can be succinctly written as

X∗(ξ) ∼ FX∗(x∗;x) , (20)

where X∗(ξ) is a random variable with a distribution function, FX∗(x∗;x), and a mean
value, x. On the other hand, one design variable can be a parameter for more random quan-
tities, e.g. real strengths of reinforcement material are mutually independent, but usually
belong to the same material class. If there is a more parametric distribution, e.g. normal or
lognormal, where also a standard deviation occurs, dependence can be modified, for example,
by the formula

σ(X∗(ξ)) = γX∗ x , (21)

where σ is the standard deviation and γX∗ the coefficient of variation.

4.2. pf(x) calculation obstacles

The solution of the above-mentioned optimisation models requires the application of
nonlinear optimisation algorithms. A couple of assumptions must be held :

a) the existence of continuous derivatives at least of the first order with respect to all
design variables,

b) the computability of function values and their first order derivatives in the whole
domain.

Calculation of reliability generally involves the necessity of computing a multi-dimen-
sional integral over an implicitly defined region, so condition a) is practically never satisfied,
see for example [3]. Approximate methods such as the FORM (First Order Reliability
Method), SORM (Second Order Reliability Method) and Monte Carlo-like methods allow
the bypassing of this problem by replacing the exact value pf(x) by its estimation p̂f(x),
which is much easier to calculate. Despite the impossibility of proving that pf(x) is contin-
uously differentiable, it can be shown that the estimations based on the above-mentioned
approximate methods are not continuously differentiable (see [16]). This aspect results in
malfunctions in nonlinear algorithms. Therefore, an approximate computational algorithm
that meets both required conditions was proposed. It is based on LHS and makes several
demands regarding random quantities :

1) Uncertainties are specified by continuous random quantities.
2) Their probability distributions are known in the form of distribution functions.
3) Distribution function parameters can depend on design variables.
4) This functional dependence is first order continuously differentiable.
5) Stochastic dependence among random quantities is given by a correlation matrix,

independent of design variables.
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5. Problem solution

Both the DBSO and RBSO problems were processed in the GAMS (General Algebraic
Modelling System, see [7]), which is a high-level tool for mathematical programming. The
main advantages of GAMS are the possibility of defining the problem formally using mathe-
matical notation without a prescriptive definition of the solution method by choosing a sol-
ver, and the ability to implement any external programs or DLLs (Dynamic Link Libraries)
in the form of a ‘black box’. DLLs are utilized for the calculation of cross-section responses
by DBSO and for the calculation of cross-section reliability pf(x) by RBSO.

A standard nonlinear GRG algorithm (General Reduced Gradient, detailed for exam-
ple in [2]) is used for problem calculation; specifically, the CONOPT solver proved useful
(see [4]). The optimisation progress being iterative, each iteration improves the objective
function value, and therefore the initial solution matches the upper limits of the design va-
riables of the stiffest cross-section and proceeds ‘from the top downwards’. The principles of
the proposed approximate method for the calculation of pf(x) are described in the following
sections.

For the sake of transparency, let NL = 1 and the number of design variables be 1, with
random vector H1(ξ) thus being denotable as H(ξ) and the vector x as a scalar x.

5.1. Estimation of functional value pf(x)

Let H(ξ) be defined in accordance with demands 1) to 5) in Section 4.2 and contain NH

random quantities, i.e.

H(ξ) = {H1(ξ), . . . , Hi(ξ), . . . , HNH(ξ)}T , (22)

where i ∈ {1 . . .NH}, Hi(ξ) ∼ Fi(hi;x). We are interested in the probability distribution of
the random quantity Z, which is driven by the following relationship

u(Z,KR, εc,Ky,Kz;H(ξ)) = 0 , (23)

where u(·) = 0 is a system (11)–(15). The approximate solution will be achieved with the
help of the LHS method, see [1]. Following the LHS method, it is necessary to choose the
number of simulations NS, divide the definition domains of Hi(ξ) into NS subintervals of
the same probability 1/NS, and assign the k-th subinterval, k ∈ {1 . . .NS}, a representative
value hk

i (Fig. 3). Therefore, a set of NS deterministic values is obtained for all NH random
quantities.

Fig.3: Principle of LHS sample generation according to a given
cumulative distribution function Fi(hi; x)
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Each of the sets is submitted to permutation, and the representative values of random
quantities in the k-th position after permutation belong the to k-th simulation sk. It is
convenient to work with a permutation table, which contains in each of its NH columns
a permutation of numbers 1 . . .NS (the i-th column contains NS indexes of representative
values of the i-th random quantity Hi(ξ)), and each of the lines represents one simulation.
However, the permutations cannot be carried out arbitrarily, because they control statistical
dependence among simulated quantities, which should be in best accordance with the given
correlation matrix. It is advantageous to base the comparison between achieved and required
correlation on Spearman’s coefficients of consecutive correlation, which are not dependent
on representative values but only on the permutation table, the reason for which is explained
in the following section. Now the computation of simulations

u(zk, kR,k, εc, ky,k, kz,k; sk) = 0 , (24)

must be performed specially for all of k ∈ {1 . . .NS}. The set of zk values is statistically
computable and it is possible to obtain, for example, an estimation of mean value μ̂(Z)
standard deviation σ̂(Z) and estimates of higher order moments, and possibly to estimate the
distribution law via an empirical cumulative distribution function, F̂Z(z). If the probability
law of Z is known (or estimated) except for some parameters, we can use point estimations
instead and easily calculate p̂f. The calculation becomes more simplified if Gauss’s normal
distribution is assumed, and the following holds true :

β =
μ(Z(ξ))
σ(Z(ξ))

≈ μ̂(Z(ξ))
σ̂(Z(ξ))

, (25)

pf = Φ(−β) , (26)

where μ̂(·) and σ̂(·) are point estimations of mean value and standard deviation, β is Cornell’s
index of reliability, and Φ(·) is the normal distribution function.

5.2. Estimation of function value ∂pf(x)/∂x

A smooth change in design variable x causes, in accordance with assumption 4) in Sec-
tion 4.2, a smooth change in the shape of the distribution function Fi(hi;x), which results
in a smooth change in representative values hk

i for all of k ∈ {1 . . .Ns}. Furthermore, the
correlation matrix is independent of design variables x, hence the corresponding Spearman’s
coefficients and permutation table remain constant and the members of simulation sk remain
unchanged as well. As the functions in subsequent calculations (11)–(15), (25) and (26) are
also smooth or sufficiently smooth, the estimation of failure probability p̂f is continuously
differentiable with respect to x, and the condition a) in Section 4.2 is satisfied.

Fig.4: A smooth change in cumulative distribution function parameter(s)
results in a smooth change in sample representative values
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6. Numerical example

Let a simply supported beam be uniformly loaded all along its span l by its own weight g
and imposed load q; the beam is of constant RC rectangular cross-section.

Fig.5: Example cross-section

The objective is to design all unknown cross-section parameters with the help of the
proposed RBSO and DBSO algorithms and to compare the acquired results. Some of the
parameters are given: strength classes of materials (fc and fs), number of reinforcement
bars nφ, and their positions in the cross-section (covers c1 to c4, see Fig. 5). The cross-section
is made of concrete C25/30 and steel B500(R) and reinforced with Nφ = 8 reinforcement
bars, of which the diameter intervals are φ1,3,5,7 ∈ 〈10, 22〉mm, φ2,4,6,8 ∈ 〈0, 22〉mm and
cover c1...4 = 40mm. Reinforcement bar diameters φ and cross-section dimensions b and h

(width and height, respectively) are left for optimisation. The calculations are carried out
in 5 variants of weighted sums αp, αco, αso, see Table 5, and 2 variants of cross-section di-
mensions, which are either a) optimised b, h ∈ 〈200, 600〉mm or b) given (fixed) b = 300mm,
h = 500mm.

6.1. Loading case specifications

Number of loading cases, nL = 1. A simply supported beam is strained the most in the
middle of the span by simple bending, so

L1(ξ) = (0,My(ξ), 0)T , (27)

My(ξ) = −1
8

[g(ξ) − q(ξ)] l2 , (28)

where l is the effective span (8m), g(ξ) and q(ξ) are random variables with mean values g
and q, respectively, obtained from

g = gk = b h γcncr , (29)

q = qk , (30)

where b and h are the width and height of the cross-section (design variables), respectively,
γcncr is the reinforced concrete unit weight (25 kN/m3) and qk is the given characteristic
value of imposed load (14 kN/m).
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6.2. Stochastic model parameters

Vector H1(ξ) is transparently shown in Table 1; the values were adopted from [11].

γ or σ

H1(ξ) Random variable Mean value Unit Type Value

L1(ξ)
g(ξ) g kN/m γ 0.213
q(ξ) 9.333 kN/m γ 0.304
b(ξ), h(ξ) b, h mm γ 0.02
fc(ξ) 25 MPa γ 0.12

D1(ξ) fs,1(ξ) . . . fs,8(ξ) 490 MPa γ 0.06
c1(ξ) . . . c4(ξ) 40 mm σ 5
φ1(ξ) . . . φ8(ξ) φ1 . . . φ8 mm γ 0.05

Tab.1: Random quantities and their parameters

Each of the random quantities is assumed to be normally distributed without mutual
correlations. The mean value of q(ξ) is determined in such a way that value qk is its 95%
fractile. Multipliers γg and γq are relevant partial factors for permanent and variable loads
in accordance with [5], γg = 1.35 and γq = 1.50 .

6.3. Objective function parameters

All parameters needed in the objective function are contained in Tables 2–5, i.e. unit
emission amounts (Table 2), unit costs (Table 3), reference values (Table 4) and summation
weights (Table 5).

Amount CO2 SO2

Concr kg/m3 321 1.11

Steel kg/t 767 3.67

Tab.2: Unit emissions of cross-section construction materials (data from [8])

Concrete Steel Form

EUR/m3 EUR/kg EUR/m2

83.29 0.675 14.22

Tab.3: Unit costs of construction materials and form

Cost CO2 SO2

EUR kg kg
44.31 63.3 0.239

Tab.4: Reference values; derived from a 300×500 mm2 rectangular cross-section
reinforced by 8 bars of 22mm diameter (maximal allowable reinforcement)

Weight 1 2 3 4 5
Cost 1.00 0.750 0.500 0.250 0
CO2 0 0.125 0.250 0.375 0.500
SO2 0 0.125 0.250 0.375 0.500

Tab.5: Summation weights in objective function; five variants are considered
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6.4. Other parameters and specifications

ULS strain limits for steel are εSt
min = −3.5×10−3, εSt

max = 10×10−3 and those for concrete
are εCmin = −3.5×10−3, εCmax = ∞. The required cross-section reliability is given by the mi-
nimal Cornell safety index βmin = 3.8, which corresponds to the maximal failure probability
pmax
f ≈ 7.2×10−5. The number of simulations for pf estimation is set to NS = 100. Z(ξ) is

assumed to be normally distributed, therefore (25) and (26) are applicable. The proportion of
b to h is constrained by a lower bound of 0.4 . The cross-section is kept vertically symmetrical,
so additional constraints must be set up for bar diameters :

φ1 = φ3 , (31a)

φ4 = φ8 , (31b)

φ5 = φ7 . (31c)

DBSO load design values gd and qd are determined in accordance with code [1], i.e.

gd = γg gk , (32a)

qd = γq qk . (32b)

6.5. Results

The numerical results are listed in Tables 6 and 7 and graphically represented by the
accompanying Figures 6 to 11. The variant with fixed cross-section dimensions produced
the same results for DBSO without regard to summation weight changes, thus all five cases
are written in a single column, similarly as with RBSO.

Weight Weights 1–5 Weights 1 Weights 2 Weights 3 Weights 4 Weights 5
Dimensions Fixed Optimised Optimised Optimised Optimised Optimised

φ1 = φ3 10.0 10.0 10.0 10.0 10.0 10.0
φ5 = φ7 21.5 22.0 22.0 22.0 22.0 22.0
φ2 [mm] 0.0 0.0 0.0 0.0 0.0 0.0
φ4 = φ8 0.0 0.0 6.1 6.3 6.3 0.0
φ6 20.9 22.0 22.0 22.0 22.0 22.0
Width b [mm] 300 200 200 200 200 200
Height h [mm] 500 454 446 446 445 454
Steal Area [mm2] 1222 1297 1356 1361 1366 1297
Concrete Area [mm2] 150000 90752 89201 89105 88991 90752
Form Length [mm] 1300 1108 1092 1091 1090 1108
Cost of Steel [EUR] 6.48 6.88 7.19 7.21 7.24 6.88
Cost of Concrete [EUR] 12.49 7.56 7.43 7.42 7.41 7.56
Cost of Form [EUR] 18.49 15.75 15.53 15.51 15.50 15.75
Total Cost [EUR] 37.46 30.19 30.15 30.15 30.15 30.19
Amount of CO2 [kg] 55.510 36.943 36.800 36.795 36.788 36.943
Amount of SO2 [kg] 0.202 0.13811 0.13809 0.13810 0.13812 0.13811
Target function [–] 0.846 0.681 0.655 0.63 0.605 0.581
Reliability Index [–] 3.8 3.8 3.8 3.8 3.8 3.8

Tab.6: Results of DBSO; all ‘ b, h = const’ variants always led to the same results
as shown in first column; reliability indexes for DBSO were calculated
additionally after termination of the optimisation process
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Weight Weights 1–5 Weights 1 Weights 2 Weights 3 Weights 4 Weights 5
Dimensions Fixed Optimised Optimised Optimised Optimised Optimised

φ1 = φ3 10.0 17.1 16.5 22.0 21.9 22.0
φ5 = φ7 22.0 22.0 22.0 22.0 22.0 22.0
φ2 [mm] 0.0 14.8 22.0 15.8 20.6 21.5
φ4 = φ8 7.1 17.3 19.0 20.4 21.7 22.0
φ6 22.0 22.0 22.0 22.0 22.0 22.0
Width b [mm] 300 254 244 235 228 227
Height h [mm] 500 424 406 392 381 378
Steal Area [mm2] 1376 2244 2516 2753 2967 3024
Concrete Area [mm2] 150000 107693 99038 92326 86878 85507
Form Length [mm] 1300 1102 1056 1020 989 982
Cost of Steel [EUR] 7.29 11.90 13.34 14.60 15.73 16.04
Cost of Concrete [EUR] 12.49 8.97 8.25 7.69 7.24 7.12
Cost of Form [EUR] 18.49 15.66 15.02 14.50 14.07 13.96
Total Cost [EUR] 38.27 36.53 36.61 36.79 37.04 37.11
Amount of CO2 [kg] 56.433 48.081 46.937 46.213 45.752 45.567
Amount of SO2 [kg] 0.206 0.18419 0.18241 0.18180 0.18191 0.18204
Target function [–] 0.877 0.825 0.808 0.788 0.766 0.742
Reliability Index [–] 4.38 4.51 4.48 4.47 4.43 4.42

Tab.7: Results of RBSO; all ‘ b, h = const’ variants always led to the same results
shown in first column; the minimal required reliability index was 3.8
(main restrictive condition of the optimisation)

Fig.6: Costs of reinforcement :
DBSO and RBSO

Fig.7: Costs of concrete : DBSO
and RBSO

Fig.8: Form costs : DBSO and RBSO Fig.9: Total cross-section costs :
DBSO and RBSO
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Fig.10: Amounts of emitted SO2 :
DBSO and RBSO

Fig.11: Amounts of emitted CO2 :
DBSO and RBSO

The amount of steel computed by DBSO is always greater than that obtained by RBSO,
and the amount of concrete is almost equal in all cases. Modifications of summation weights
caused only small changes in the CO2 and SO2 emission results. There are substantial
differences in the reliability indexes (on average 17% for ‘optimised dimensions’ cases) and
total costs (on average 22% for ‘optimised dimensions’ cases).

1) Materially-optimised structures seem to be environmentally-friendly without there being
any explicitly prescribed goal of taking into account ecological aspects. This is because
material savings mean less pollution.

2) RBSO is more flexible in taking into account the varying contributions to the failure
probability (according to the particular case) created by constituent random elements.
Partial factors (used by corresponding DBSO problems) are fixed constants without
regard to a particular case and are assigned in a more or less transparent way; therefore
RBSO is a safer method than DBSO.

3) With the help of RBSO, it is possible to achieve a structural design with a well-
proportioned level of failure probability (with respect to various failure modes), therefore
the structure is economically and environmentally advantageous.

7. Summary

The RBSO approach for RC cross-section optimisation is presented and supported with
an illustrative numerical example to compare the proposed approaches. Models were solved
in GAMS (see [7]), which allows items such as arbitrary cross-section shape and structural
materials such as FRP reinforcement (Fibre Reinforced Polymer) to be flexibly dealt with.
The GAMS/CONOPT (see [4]) implementation of the GRG algorithm is used, as all design
variables are considered to be continuous. The cross-section reliability of RBSO is based on
failure probability pf, which is estimated via the LHS method with an acceptable number
of simulations NS, and which controls the design accuracy. Stochastic correlation between
random variables may be simply included. The results of the numerical examples document
the applicability of the proposed RBSO approach.

8. Conclusions

From the related theory of stochastic programming, it follows that in most cases that
involve random parameters, the stochastic approach is more advantageous than the de-
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terministic approach based on the use of expectations. As the proposed RBSO approach
represents one possible stochastic programming model, it is robust enough to be applicable
for RBSO optimisation of whole structures (in pre-chosen critical cross- sections), not just
in RC cross-sections, and the principles remain unchanged. The most important result of
the presented theory is the fact that the authors have shown how to deal with the principal
difficulties that must be solved when the stochastic programming approach is utilised in the
optimum structural design area (design and material-related constraints, multi-criteria ob-
jectives, complex dependency structures, reliability requirements, etc.). The main reference
(see [17]) shows that these difficulties have not allowed researchers to successfully apply the
stochastic programming approach to optimum structural design in a straightforward manner
as is typical in other application areas. An indirect approach combining specific techniques
and motivated by the application area has proved to be more suitable and equivalent in
terms of the stochastic programming interpretation of the final model.
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