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OPTIMISATION OF BUILDING STRUCTURES I (DBSO)

Jan Pľsek*, Petr Štěpánek*

This contribution deals with a deterministic-based structural optimisation (DBSO).
The introductory part of the paper covers a short overview of optimisation algorithms
applicable to deterministic-based problems, general DBSO formulation and a target
function(s) pattern for structural design. The following part gives attention to par-
ticular problem of general RC (reinforced concrete) cross-sectional design subjected
to normal force and bending moments (ULS, i.e. ultimate limit state), where ba-
sic cross-sectional characteristics (cross-sectional dimensions, steel bars profiles and
types of materials) constitute an optimisation space with discrete attributes. The
target function (including economical and ecological aspects) and principle problem
solution(s) is defined and an illustrative numerical example of a simple rectangular
cross-section design is presented. The solution approach is further augmented to
RC frame structures problems and a numerical example of a collector tube design is
presented.
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1. Introduction

The modern concept of structural design should not be result of predetermined material
and geometric requirements, but of the assessment of overall design quality. It is necessary to
assess structural quality from the point of view of structural reliability, service life, durability,
economy and ecology, and this while considering the whole structural lifetime. Therefore,
structural design is a matter of complex evaluation based on pre-selected criteria, which then
functions as a guideline in the search for a high-quality (optimal) solution. However, even
a simple structural design task is commonly, especially in the case of conflicting criteria,
so very complicated that the finding of an optimal design is beyond the bounds of human
ability. This problem is the subject of optimisation theory, which is inherently connected
with computer technology.

The very beginning of optimisation algorithm evolution merely concerned so-called deter-
ministic optimisation (DBSO : Deterministic-Based Structural Optimisation). The DBSO
approach is relatively trouble-free and computationally undemanding, which are positive
aspects; on the other hand, this is at the cost of the suppression of all the inevitable un-
certainties in the mathematical model. The uncertainties are taken into account by the
developmentally younger RBSO (Reliability-Based Structural Optimisation) approach. The
introduction of uncertainties makes the task of optimisation appreciably more difficult, both
from the theoretical and computational point of view (the volume of computational require-
ments rapidly increases). Nowadays, RBSO is the object of intensive research because its
applicability for real structures has only been possible for the last decade, due to the growing
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power and capacity of computers. Even though theoretically RBSO provides qualitatively
more valuable results then DBSO, practical arguments guarantee DBSO its significance both
now and in the future. The following text is concerned with DBSO, while RBSO issues are
dealt with in a follow-up article.

DBSO algorithms can be classified according to computational principle in two classes :
standard and stochastic algorithms (stochastic algorithm to solve DBSO tasks). Standard
algorithms have their origins in the early period of development, when the small computa-
tional capacity available was a substantial factor influencing their fundamental nature. They
make demands on the task definition (e.g, the occurrence of constraints, the linearity/non-
linearity of target function(s) and constraints, smoothness etc.) to reach maximal effectivity
(speed) and minimal resources (memory) utilising required assumptions. By contrast, sto-
chastic algorithms are very robust, slow and require a huge computational effort because
they utilise a semi-random search of a design space (space of allowed solutions).

Conventional methods have an invariable calculation progression, as well as results which
depend solely on the initial solution. Each iteration improves on the currently achieved
solution, usually taking advantage of derivatives, until a locally non-improveable point is
reached. Therefore, the search process usually finishes with the detection of local optima,
instead of global optima. Tasks without restrictive conditions can be solved with the ‘line
search’ technique, where an originally multi-dimensional problem is transformed via direc-
tion vector into a one-dimensional problem which is subsequently solved with appropriate
methods such as Fibonacci’s Comparision Sequence, Regula Falsi and Newton’s methods to
achieve an extreme value. The technique of direction vector determination specifies the par-
ticular method (e.g. permissible directions method, gradient projection method). Newton’s
methods approximate functions with first or second order Taylor polynomials; algorithms
for linear or quadratic programming can be applied to them (e.g. the well known simplex
algorithm for purely linear tasks). Problems with constraints can be mathematically refor-
mulated so that the resulting formulation is constraint-free, and the constraints are taken
into account by attaching them into a target function to worsen a target function value if the
constraints are violated (penalty method) or close to violation (barrier method). Probably
the most successful method for optimisation of smooth non-linear tasks is the GRG-based
method (Generalized Reduced Gradient method). For linear integer tasks, there are well
known methods like the Bounding Hyperspheres (Hyperplanes) method, Gomory’s method
and the ‘Branch and Bound’ method (also applicable to non-linear tasks).

Stochastic algorithms (SA) demonstrate great robustness and the capability to avoid lo-
cal minima captures; theoretically, some SA algorithms can guarantee the detection of the
global optimum by assuming an infinite number of iterations. SA are based on evaluations
of randomly generated trial designs. With help of specific techniques (strategies), there is
a tendency (not a strict rule) to achieve successively better designs, thus the global optimum
should be found in the case of unlimited resources (impossible). These strategies found in-
spiration in processes observed in nature (biological, physical, chemical), and this is partially
reflected in their names. Among the best known algorithms are Genetic Algorithms, Evo-
lution Strategies and Simulated Annealing. Newer ones are e.g. Ant Colony Optimisation,
Particle Swarm Optimisation, Greedy Randomized Adaptive Search Procedure algorithm
and Harmony Search.



Engineering MECHANICS 309

2. General DBSO formulation

2.1. DBSO – monocriterial

DBSO problematics can be formulated as a mathematical programming task. Let the
following be valid

	x ∈ Ω ⊂ �
m(�m) , 	f : Ω −→ � .

Let’s find such a vector 	xopt ∈ Ω, so that (assuming minimisation) the following requirement
holds true

	xopt = arg
{

min
�x
f(	x)

}
, (1)

where all restrictive conditions in the form of equalities

	h(	xopt) = 0 (2)

and in the form of inequalities
	g(	xopt) ≤ 0 (3)

are satisfied. Symbols in (1)–(3) mean
	x . . . . . . . vector of design variables, generally either continuous or discrete (or both

kinds), defined for the design space Ω,
f(	x) . . . . target function, which serves to measure the quality of individual designs,
	h(	x) . . . . vector of restrictive conditions in the form of equalities,
	g(	x) . . . . vector of restrictive conditions in the form of inequalities.

2.2. DBSO – multicriterial

In real situations, more then one criterion is taken into account, so a multi-criteria task
(MLT)

	f : Ω −→ �
n

is obtained. The optimal solution cannot be understood as a simple minimum or maximum of
a single function as in the case of mono-criteria tasks (MNT). Symbolically, the requirement
can be written as follows

	xopt = arg
{

bal
�x

	f(	x)
}
, (4)

where the operator ‘bal’ means the requirement for mutually balanced criteria; however, it is
not explicitly defined, and thus such formulation lacks definition. To circumvent the lack of
task definition, the solution can be required as a pareto-optimal set, consisting of so-called
pareto-optimas. A pareto-optimum is a feasible design point, compared with which any

Fig.1: An example of a pareto-optimal set in the case of two design
variables and two criteria which are supposed to be minimised
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other feasible design point is worse in at least one criterion (e.g. example in Fig. 1). Solution
methods consist in the transformation of a MLT into a corresponding MNT. In this manner
it is possible to find elements of the pareto-optimal set.

2.3. Target function for building structures

A practical optimisation tool must remember and incorporate all essential aspects. The
following multi-criteria objective function fulfils such a principle

	f =

⎧⎪⎨⎪⎩
maxRtot

minCtot

minEtot

maxStot

⎫⎪⎬⎪⎭ , (5)

where the stated quantities mean
Rtot . . . . . . . the total reliability of the structure under design,
Ctot . . . . . . . investment and operating costs,
Etot . . . . . . . total impact on the environment,
Stot . . . . . . . social and cultural quality index.

The term ‘cost of building’ is often understood as meaning investment cost only, and
not the total cost, which consists of items related to the constituent phases of the concrete
structure’s life cycle

Ctot = Cini + Coper + Cm + Cdemol + Crecycl +
∑

pfCrepair +
∑

prenovCrenov , (6)

where the constituent elements represent partial costs related to :
Cini . . . . . . . plan, projection and construction,
Coper . . . . . . structure operation,
Cm . . . . . . . . structure maintenance,
Cdemol . . . . . structure demolition,
Crecycl . . . . . recycling of structural material,
Crepair . . . . . repair costs with failure probability pf,
Crenov . . . . . reconstruction costs with probability of reconstruction prenov.

A similar formula as in the case of total costs, related to the life-cycle, can be assembled
for environmental impacts Etot as well

Etot = Eini + Eoper + Em + Edemol + Erecycl +
∑

pfErepair +
∑

prenovErenov, (7)

where the constituent elements represent environmental impacts related to:
Eini . . . . . . . plan, projection and construction,
Eoper . . . . . . structure operation,
Em . . . . . . . . structure maintenance,
Edemol . . . . . structure demolition,
Erecycl . . . . . recycling of structural material,
Erepair . . . . . repair costs with failure probability pf,
Erenov . . . . . reconstruction costs with probability of reconstruction prenov.

The structural reliability Rtot need not necessarily be taken as one design criterion inside
the objective function, but it can play the role of restrictive conditions, where a minimal
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reliability level is given. Consideration of the probability quantities Rtot, pf and prenov as
optimisation tasks is part of the problematics of RBSO. Some components of socio-cultural
criterion Stot, e.g. aesthetics, represent a very soft problem, which is hard to determine well
algorithmically, therefore a verbal description is used and their inclusion is not recommended.

3. Formulation of a DBSO RC cross-section task

Let’s assume a reinforced concrete (RC) cross-section of any shape and reinforcement,
which is allowed to contain inner openings and whose perimeter is approximated by closed
polygons, located in a Cartesian coordinate system Oyz. It consists of a region filled with
concrete Ωc and a region filled with reinforcement bars Ωs. The shape of Ωc depends
on geometrical parameters 	r, where the reinforcement bars are approximately circular in
cross-section, thus are characterised with diameters φi, where i ∈ {1,2, . . . , Nφ}, and their
locations are defined e.g. by the vector of axial cover 	c, see Fig. 2. Due to Ωc size, Ωs is
considered to be a set of ‘mass points’ characterised by the cross-sectional area of reinforce-
ment rebar. Material characteristics depend on real numbers Rc (concrete) and Rs (steel)
representing strength classes. Cross-sectional parameters 	r, 	φ, Rc and Rs have not yet been
determined, therefore they constitute the vector of design variables 	x, i.e. 	x = (	r, 	φ,Rc, Rs)T.
The design feasibility is governed by definition domains of design variables and constraints
(see Sect. 3.2); the design quality is measured by the target function (see Sect. 3.1). The
cross-section is stressed by a set of given load effects 	LE, where 	LEj = (Nj ,My,j ,Mz,j)T,
j ∈ {1,2, . . . , NLE}, i.e. by the interaction of normal force N and bending moments My

and Mz; positive orientations depicted in Fig. 3. 	LEj represent possible inner forces acting
inside a bar member of a structure subjected to load. The designed cross-section must be
strong enough to bear each of the load effects.

Briefly, we are looking for such a design (	xopt), which :
– minimizes target function (see Sect. 3.1),
– bears given load effects 	LEj (see Sect. 3.2),
– must meet all additional restrictive conditions.

Fig.2: General cross-section; the size is given geometric parameters �r,

the amount of reinforcement by bar diameters �φ and bar positions
by e.g. axial cover �c (number of bars is pre-selected)

3.1. Target function

We are interested in economic and ecological aspects (acquisition costs and CO2 and
SOX emissions associated with concrete member formation, respectively). The problem is
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Fig.3: The Cartesian coordinate system and the selected convention of inner
forces and moments are for the sake of better aptness both pictured
as vectors (double vectors) and arcs in the plane of bending

multi-criteria and all the above-mentioned aspects should be minimised. The method of
weighted sums is applied to obtain a single objective function, so the original and resulting
tasks are not quite equivalent. The terms of the objective function have different units and
thus cannot be directly summed, and for that reason they must first be normalized by chosen
reference values. The resulting target function is as follows

Tf(	x) = αc
C(	x)
C0

+ αco
CO(	x)
CO0

+ αso
SO(	x)
SO0

, (8)

C(	x) = Vc(	x)U c
c (Rc) +ms(	x)U c

s (Rs) + Sf(	x)U c
f , (9)

CO(	x) = Vc(	x)U co
c +ms(	x)U co

s , (10)

SO(	x) = Vc(	x)U so
c +ms(	x)U so

s , (11)

where the quantities included in the functions are :
Tf(	x) . . . . . . . . . . . . . . . . . . . the target function dependent on the vector of design vari-

ables 	x,
C(	x), CO(	x), SO(	x) . . . . acquisition costs, amount of CO2 and SOX emissions,
C0, CO0, SO0 . . . . . . . . . . reference values set by the problem designer (constants),
αc, αco, αso . . . . . . . . . . . . summation weights in the objective function for C, CO2 and

SOX , respectively,
Vc(	x), ms(	x), Sf(	x) . . . . . concrete volume, steel weight and form area of a 1m′ long beam

fragment,
U c

c (Rc), U c
s (Rs), U c

f . . . . unit costs of concrete, steel and form, respectively,
U co

c , U co
s . . . . . . . . . . . . . . . unit amounts of CO2 emissions from concrete and steel, re-

spectively,
U so

c , U so
s . . . . . . . . . . . . . . . . unit amounts of SOX emissions from concrete and steel, re-

spectively.

3.2. Restrictive conditions

In addition to fundamental restrictions following from from the definition domains of
design variables, the ultimate limit state (ULS) conditions of a cross-section stressed by the
interaction of normal forceN and bending momentsMy,Mz must be met for every load effect
	LEj = (N◦

j ,M
◦
yj ,M

◦
zj)

T, kde j ∈ {1, 2, . . . , NLE}. The assessment methodology proceeds
from the concrete standard [3] (possibly from [4], provided methodologies are similar). ULS
conditions constitute the main group of constraints and consists of the following system

N◦
j = NR(εj

c,K
j
y,K

j
z , 	x) =

∫∫
Ωc(�r)

σc(εj(y,z), Rc) dy dz +
Nφ∑
i=1

F j
s,i , (12)
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M◦
z,j = MR

z (εj
c,K

j
y,K

j
z , 	x) = −

∫∫
Ωc(�r)

y σc(εj(y,z), Rc) dy dz −
Nφ∑
i=1

yi F
j
s,i , (13)

M◦
y,j = MR

y (εj
c,K

j
y,K

j
z , 	x) =

∫∫
Ωc(�r)

z σc(εj(y,z), Rc) dy dz +
Nφ∑
i=1

zi F
j
s,i , (14)

F j
s,i = As,i σs(εj(yi, zi), Rs) , (15)

εj(y, z) = εj
c +Kj

y y +Kj
z z , (16)

εj
c,min = min

Ωc(�r)
(εj(y, z)) ≥ ε◦c,min(Rc) , (17)

εj
s, min =

Nφ

min
i=1

(εj(yi, zi)) ≥ ε◦s, min(Rs) , (18)

εj
s,max =

Nφ

max
i=1

(εj(yi, zi)) ≤ ε◦s,max(Rs) , (19)

yi = yi(	r) , (20)

zi = zi(	r) , (21)

As,i =
π φ2

i

4
, (22)

for each j ∈ {1, 2, . . . , NLE}. Variables εj
c, K

j
y, Kj

z are so-called strain parameters cor-
responding to each load effect 	LEj . The function (16) is linear, which comes from the
assumption that the cross-section remains planar after deformation. With steel, both ten-
sile and compressive strain are restricted by inequalities (18) and (19), where ε◦s,min and
ε◦s,max are perimissible extremes. With concrete, just compressive strain is restricted by an
inequality (17), where ε◦c,min is the permissible extreme. Functions σc(ε) and σs(ε), used in
equations (12) to (15) mathematically describe the shape of stress-strain diagrams of con-

Fig.4: Idealized design stress-strain diagram of concrete used for ULS; the
particular characteristic values of the trilinear curve depend on the
concrete strength class (represented by the design variable Rc)

Fig.5: Idealized design stress-strain diagram of steel used for ULS; the
particular characteristic values of the trilinear curve depend on
the steel strength class (represented by the design variable Rs)
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crete and steel, respectively, see Fig. 4 and 5. The variable F j
s,i is normal force induced in

reinforcement rebar i, i ∈ {1, 2, . . . , Nφ}, corresponding to load effect 	LEj . Reinforcement
is characterised by coordinates [yi, zi] and the cross-sectional area As,i.

The remaining constraints are additional, and have mainly geometrical significance, re-
lated to particular cases, e.g. the maximal permissible ratio of rectangular shape dimensions,
the specification of rebar positions in reference to the cross-section border, the diameter uni-
formity of selected bars etc.

4. Problem solution

The solution was implemented in the GAMS programmatic system (General Algebraic
Modelling System, see [1]). GAMS is generally designed for mathematical programming
tasks, it provides an IDE (integrated development environment) for task definition according
to a special syntax and a set of various optimisation solvers (licences are required). A solver
which proved itself effective was Conopt, see [2]. Conopt is one of the so-called GRG (General
Reduced Gradient) solvers, which are applicable to continuous (and smooth) nonlinear tasks
(continuous definition domains of design variables and smooth continuous functions). With
the help of Conopt, tasks with discrete demands were also solved (see 4.2).

4.1. Continuous reformulation

GRG solvers assume the connectivity of all quantities and smoothness of included func-
tions. This requirement is predominantly met, though a problem occurs with the inequali-
ties (17), (19) and (18), because they incorporate the nonsmooth functions ‘min’ and ‘max’.
They can be replaced with an equivalent set of inequalities

εj(yk, zk) ≥ ε◦c,min(Rc) , k ∈ {1, . . . , NP } , (23)

εj(yi, zi) ≥ ε◦s,min(Rs) , i ∈ {1, . . . , Nφ} , (24)

εj(yi, zi) ≤ ε◦s,max(Rs) , i ∈ {1, . . . , Nφ} , (25)

where [yk, zk], k ∈ {1, . . . , NP } are vertexes of the Ωc polygonal border. Integral functions
in (12), (13) and (14) were replaced with numerical integration (Gauss’s quadrature). When
neglecting the discrete nature of the design variables by substitution of original definition
domains with corresponding continuous intervals, a relaxed formulation of the task is ob-
tained. The relaxed form can be solved with standard nonlinear solvers, such as GRG-based
Conopt. The relevant ‘relaxed’ results are then utilised when seeking the correct discrete
solution (see 4.2). In the simplest cases, the ‘relaxed’ results can be rounded to the closest
discrete values.

4.2. Satisfaction of discrete demands

For the sake of satisfaction of discrete demands on design variables, the relaxed form of the
task and related ‘relaxed’ results are used, see 4.1. Two strategies were tested, symbolically
denoted as ‘P-to-S’ and ‘S-to-P’, where ‘S-to-P’ was designed just for comparative reasons.
The calculation consists of cycles which lead to gradual specification of the final solution
in the ‘variable by variable’ manner. In each cycle, the resulting discrete value of one
design variable is determined (‘fixed’) and in the succeeding cycles it acts as a constant.
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The number of ‘fixed’ variables increases until all variables are ‘fixed’ and the calculation
is finished. The order of ‘fixations’ depends on the influence of the design variables on
the target function. The most influential variables (primary) are preferred to the rest of
the variables (secondary), thereof comes the denomination ‘P-to-S’. Denomination ‘S-to-P’
expresses the total opposite (secondary variables are preferred to primary); the relevant
results should be worse.

5. Example 1 : Cross-section optimisation

Let’s assume a rectangular cross-section as shown in Fig. 6, which must sustain three
load cases as stated in table 2. For the sake of simplicity fixed materials are considered,
i.e. concrete C16/20 and steel B245(K). The rebar numbering is obvious from Fig. 6, the
available rebar profile assortment for corner rebars (numbers 1, 3, 5, 7) are 10, 12, 16, 18
and 20mm, and for inner rebars (numbers 2, 4, 6, 8) they are 0, 10, 12, 16, 18 and 20mm; for
further diameter uniformity φ5 = φ7 and φ6 = φ8 is required. The cross-sectional dimensions
b and h range from 400mm to 600mm with a difference of 50mm (400mm, 450mm etc.).
Multi-criteria optimisation was performed with the target function according to section 3.1,
where the summation weights are αc = 0.50 and αco = αso = 0.25 and the reference values
obtained from the mono-criteria optimisation (see table of results 3). For the comparative
reasons, four computational methods were utilised. The ‘Comb’ method denotes searching
the design space by testing all possible combinations of the discrete values of the variables.
The ‘Cont’, ‘P-to-S’ and ‘S-to-P’ methods denote optimisation as described in sections 4.2.

Fig.6: Considered cross-section, design variables are apparent

C16/20 B245(K)
Item Unit 1m3 1 ton

Price CZK 1926 12
CO2 kg 290 768
SO2 kg 1.01 3.63

εmin
0/00 −3.5 −3.5

εmin
0/00 − 10.0

Tab.1: Parameters of the job (constants)

LE N My Mz

kN kNm kNm

1 −350 −50 80
2 −200 −90 −120
3 −150 40 −80

Tab.2: Values of loading effects

6. Example 2 : Collector tube optimisation

A collector tube according to Fig. 8 is optimised. The collector is a linear structure
and allows a simplified tube analysis, where a 1m-wide slice of the structure is regarded
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Criterion Price CO2 SO2 Weights 50 – 25 – 25
Optim Cont Cont Cont Cont Comb P-to-S S-to-P

φ1 15.1 20 19.2 17.2 12 20 18
φ3 20 20 20 20 20 12 20
φ5 20 20 20 20 20 20 20
φ7 20 20 20 20 20 20 20
φ2 mm 0 10.9 0 0 0 0 0
φ4 0 16.0 0 0 0 0 0
φ6 20 20 20 20 20 20 20
φ8 20 20 20 20 20 20 20
b mm 584.9 530.5 546.6 559.6 600 550 550
h mm 400 419.2 420.6 414.11939 400 450 450

StArea mm2 1750 2180 1861 1804 1684 1684 1825
CcArea mm2 233974 222387 229926 231730 240000 247500 247500
Price Kč 615.5 633.6 618.1 616.2 620.9 635.3 648.6
CO2 kg 78.4 77.6 77.9 78.1 79.8 81.9 82.8
SO2 kg 0.286 0.287 0.285 0.285 0.290 0.298 0.302

Target funct. 615.5 77.6 0.285 1.0022 1.0157 1.0411 1.0582

Tab.3: Results of multi-criteria optimisation; reference values for the target function
were obtained in the first three columns with the help of mono-criteria opti-
misation; computational methods and summation weights α are stated in the
column headings

a) P-to-S

Variable assigned / φ6=φ8 φ5=φ7 b h φ2 φ4 φ3 φ1

Value mm / 20 20 550 450 0 0 12 20

Target function 1.0022 1.0022 1.0022 1.0024 1.0369 1.0369 1.0369 1.0373 1.0411

b) S-to-P

Variable assigned / φ5=φ7 φ3 φ2 φ6=φ8 φ4 φ1 b h
Value mm / 20 20 0 20 0 18 550 450

Target function 1.0022 1.0022 1.0022 1.0022 1.0022 1.0022 1.0024 1.0024 1.0582

Fig.7: A detailed comparison between the P-to-S (a) and S-to-P (b) methods;
the sequential growth in the amount of fixed design variables causes
a gradual target function increase (the degree of freedom descends)

as a 2D frame (Fig. 9). The tube’s design lies in the determination of the thickness of
the walls ts, ceiling slab th and bottom slab td, including the reinforcement design of the
cross-sections A1, . . . , A7 (or more precisely rebar diameters φ1, . . . , φ7), see Fig. 9. The
frame is vertically symmetrical, including the envelope of inner forces, therefore it is possi-
ble to only analyse cross-sections of half of the structure (see Fig. 9). The target function
criteria involve both economical, ecological and structural aspects (see Sect. 4.1). Three
types of reinforcement were considered – metallic (ordinary reinforcing steel and stainless
steel) and also non-metallic GFRP (Glass Fibre Reinforced Polymer). The ultimate collec-
tor bearing capacity (ultimate limit state) is evaluated in seven critical cross-sections (see
Fig. 9), which are stressed by the interaction of normal force and bending moment. With
regards to the serviceability limit state, the flexural rigidity of the same cross-sections is
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monitored. The problem thus involves the extension of the task of optimising a single RC
cross-section to deal with a structure where more cross-sections are optimised in parallel.
Considerable modification has occurred to loading effects, i.e. the internal forces of certain
bars at given cross-sections (see Fig. 9). These forces are not constant, because their distri-
bution in statically indeterminate structures depends on cross-sectional rigidities, thus on
their heights (the thickness of the wall’s heights). These heights are, however, the object of
optimisation, therefore structural analysis has to be a constituent of the optimisation model.
Design variables are considered to be continuous and range over given intervals, i.e. td, th,
ts ∈ 〈100, 600〉mm, φi ∈ 〈6, 30〉mm. The mutual axial distance of load-bearing rebars is
fixed at 100mm.

Fig.8: Transversal cross-section of a collector tube; wall, ceiling and
bottom thicknesses are chosen for illustrative purposes

6.1. Target function

The target function involves 5 criteria in total (multi-criteria optimisation), i.e. econo-
mical (1×), ecological (3×) and structural (1×). Economical criteria include the cost of the
concrete necessary for the manufacture of 1m′ of collector tube, i.e. concrete and reinforce-
ment. In the cost calculation for non-metallic reinforcement, the dependence of unit cost on
diameter must be taken into account, unlike with metallic reinforcement. From the ecologi-
cal point of view, the amounts of emitted CO2, SOX and consumed energy E are monitored.
The structural aspect is represented by the flexural rigidities Bi of selected critical cross-
sections (see Fig. 9). Flexural rigidities are dependent on crack occurrence/development and
the strain affecting materials that is caused by loads. In contrast to the other criteria, where
we are aiming to minimise costs and ecological impacts, the target is to maximise rigidity,
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so that structural deformations are reduced. For the sake of integration of the directions of
optimisation of the target function, the inverse value 1/B is taken into account (should be
minimised). The resulting target function is obtained as follows

minT (	x) = αc
C

C0
+ αco

CO

CO0
+ αso

SO

SO0
+ αE

E

E0
+ αB

7∑
i

βi
B0,i

Bi
, (26)

where C denotes initial costs, CO2 and SOX stand for emissions, E denotes consumed
energy and Bi is the flexural rigidity of the cross-section number i, i ∈ {1, 2 . . . , 7}, see
Fig. 9. Quantities marked with a lower index ‘0’ are corresponding normalising constants,
which were derived (calculated) from collector tube at maximal allowable values of the design
variables. Factors α and βi are weighting coefficients, where βi = 1/7 and α-s were varied
for the sake of parametrical study.

Fig.9: Optimised frame; ts, th, td, A1, . . . , A5 are design variables; critical
sections 1 to 7 are monitored regarding bearing capacity (ultimate
limit state) and their flexural rigidities (serviceability limit state)

Material Energy CO2 SOx Unit cost
MJ/kg kgCO2/kg g SOx/kg

Concrete C35/45 0.8 0.13 0.5 2385 CZK/m3

Reinf. steel B490 49 3.2 14.6 23.7 CZK/kg
Stainless steel 113 6.7 303.6 200 CZK/kg
FRP glass 41.6 1.92 14.66 acc. to diam. CZK/m′

Tab.4: Unit costs and environmental impacts of considered building materials

Material Diameter Cost Strength Cost Relative cost
mm CZK/mm2 MPa CZK/kN to B490

Steel B490 / 0.186 426 0.437 1.0
Stainless st. / 1.570 183 8.579 19.6

FRP glass 100 %
5 1.630 423 3.855 8.8
30 0.308 0.727 1.7

FRP glass 38 %
5 1.630 161 10.143 23.2
30 0.308 1.914 4.4

Tab.5: Economical-physical comparison of reinforcements; if FRP rein-
forcement is bent (in corners), its strength is reduced to 38%
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6.2. Scope of parametrical calculations and results

Parametrical study is two-dimensional; on the one hand the types of reinforcement are
changed, but on the other hand weight coefficients α are varied (the sum of all α-s is
always equal to 1). With respect to α coefficients, the results are divided into two groups.
The first group, called ‘Cost vs. Rigidity’ includes only economical and structural criteria,
thus αB ∈ 〈0, 1〉, αc = 1 − αB and αco = αso = αE = 0 (the environmental criteria are
omitted). The second group, called ‘Eco vs. Rigidity’, includes analogically only economical
and ecological criteria, thus αc = 0 a αco = αso = αE = (1−B)/3 (the economical criterion
is omitted).

The comparison of ‘Cost vs. Rigidity’ with ”Eco vs. Rigidity” has shown a close correspon-
dence, i.e. both criteria minimise a quantity of a building material. The results practically
overlap, therefore only the resulting charts for ‘Cost vs. Rigidity’ are presented hereinafter.
The difference lies in the αB values at which corresponding results were reached. When
gradually decreasing αB (and increasing the rest of the weight coefficients), i.e. descending
cross-section rigidities, four phases were detected both in the ‘Cost vs. Rigidity’ and the
‘Eco vs. Rigidity’ variants; only αB boundary values were different.

The phases are distinguished with regard to the ‘behaviour’ of the optimum results of
design variables. Up to values αB = 1 to αB = αB,X max < 1 no changes took place, and so
the optimal design corresponded with the maximal possible values (phase 1). By a further
αB decrease, the reinforcement amount dropped at the constant maximal cross-sectional
heights (thicknesses of walls, ceiling and bottom), up to the value αB = αB,reinf (phase 2).
Phase 3 was characterised by the second stagnation of results, when cross-sectional heights
were maximised and reinforcement amounts were constant. This stagnation remained until
αB = αB,t+reinf; after this value changes occurred to both the cross-sectional reinforcements
themselves, and their heights (phase four). The results presented in the charts are arranged
uniformly with regards to the number of testing points, not in accordance with real αB

values.

The initial stagnation was caused by a high preference for cross-section rigidities. In
phase 2, the cross-section thicknesses remained unchanged (maximal), because the rigidity
is primarily influenced by the height of the cross-section. In the second stagnation (phase 3),
the reinforcement rate dropped to a level which was regulated by restrictive conditions
(cross-section bearing capacity, minimal diameters) and no further drop was possible. In
phase 4, ecological and economical criteria dominated and rigidity was no longer critical,
thus cross-section heights didn’t remain at their maximums.

Fig.10: Dependence of total acquisition costs on αB
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7. Conclusions

Every algebraic optimisation task with discrete requirements on design variables can be
relaxed, i.e. discrete definition domains are extended by an intermediate region. The re-
laxed task is solvable with help of standard non-linear solvers and it is the basis for various
strategies which were designed to satisfy the original discrete requirements (such as the
branch and bound method or the proposed P-to-S method; see Sect. 4.2). In cases when
the task cannot be relaxed, it is necessary to use stochastic algorithms or some special
method (at worst the combinatory approach). Standard algorithms are fast, but are often
trapped by local optima and the final results depend on the initial design. Although the
optimisation example of a RC cross-section didn’t result in a global optimum determination
(verified by a complete combinatorial calculation), the savings considering the achieved so-
lution are practically negligible. As a consequence of the stress-strain diagram modification
(relationship σ(ε)), various material types can be simulated (as in the case of the collector
– metallic and non-metallic materials). On the basis of the proposed cross-section optimisa-
tion and choice of critical sections, it is possible to accomplish the optimisation of a structure
without significant obstacles; simply the computational requirements are increased.
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and bending moment (in Czech), Stavebnický časopis, vol. 38, 1990, issue 11, p. 801–818
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