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OPTIMISATION OF REINFORCEMENT
OF RC FRAMED STRUCTURES

Petr Štěpánek, Ivana Lańıková*

This paper presents the entire formulation of longitudinal reinforcement minimisation
in a concrete structure of known sections and shape under loading by normal force
and bending moment. Constraint conditions are given by the conditions of structure
reliability in accordance with the relevant codes for ultimate strength and applicability
of the sections specified by a designer. Linearization of the non-linear formulation is
described, and possibilities of applying linear programming algorithms are discussed.
The functioning of the process described is demonstrated on a plane frame structure
design.
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1. Introduction

The methods for optimising the design of linear elastic structures from the standpoint
of minimal cost, shape, or volume of materials are highly developed. The methods used are
based on linear methods of mathematical programming and they have been mostly applied
to steel structures. Recently, methods of optimisation design have also been developed in
the non-linear field [1–4]. These methods are based on the geometrical non-linear behaviour
of a structure and on the influence of possible geometrical imperfections.

Unlike in steel structures (especially slender structures), physical non-linear behaviour
has an important function in concrete structure design. The influence of geometric non-
linearity on the design optimisation of reinforcement is less important, as the minimum
slenderness of a pressured member is defined in most codes. Thus, we should formulate
reinforcement optimisation design not as minimising the critical load in relation to the parts
of a pressured structure, but as the search for minimum reinforcement for the recommended
values of load. The method of non-linear mathematical programming can be used to solve
this problem [5].

Reinforcement optimisation design of an RC frame structure for constraint conditions
based on load-carrying capacity according to Baldur’s method of inscribed hyper-spheres is
described in [6]. Design of reinforcement for use in columns loaded by eccentric normal force
by means of a genetic algorithm is described in [7].

This paper describes an application of the non-linear method of mathematical program-
ming for RC structure reinforcement design with reference to minimising its volume in
compliance with the criteria of load-carrying capacity and applicability. We present the
complete mathematical formulation of the non-linear problem of optimised reinforcement
design for concrete structures. This problem is linearized with the incremental method.
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The simplified method for calculating creep effects is used in order to eliminate the
solution of that time-dependent task. The response of a structure under constant load with
varying reinforcement is solved by a deformation variant of a FEM that takes physical and
geometrical non-linearity into account. The set-up programme enables simultaneous solution
of several loading states.

2. Calculation model

The task is defined as follows

a) the target function reaches the extreme

{f({As})} = extreme , (1a)

while keeping the restrictive conditions implicit in the form of

b) the equalities
{h({As})} = {01} , (1b)

c) the inequalities
{g({As})} ≤ {02} , (1c)

where {As} = {As1, . . . , Asnt}T are the design variables; {f({As})} = {f1({As}), . . . ,
ft({As})}T is the vector of the target functions; fi({As}) is the i-th target function;
{h({As})} is the vector of the restrictive conditions in the form of equations; {g({As})}
is the vector of the restrictive conditions in the form of inequalities, and {01} and {02} are
zero vectors of the relevant type.

2.1. Target function

The optimisation problem of the concrete structure may be, e.g. by [9], expressed by the
target function :

{f({As})} = f(minEtot, minCtot, maxStot) , (2)

where Etot is the gross environmental impact, Ctot is the gross cost and Stot is the gross
social-cultural quality.

The multi-criterion problem is possible to convert to the mono-criterion one by the weight
implementation among the individual criteria but it is evident that at the different weights
given to the individual criteria, obtained optimums can differ. Furthermore, it is not guar-
anteed that at the searching for optimum by the different method of multi-criterion optimi-
sation (selection strategy), the given method will always converge.

Longitudinal reinforcement optimisation in a plane frame structure is mathematically
defined as

f({As}) =
ne∑

e=1

le

ke∑
i=1

Ae
si = minimal , (3)

where f({As}) is the target function expressing the overall volume of reinforcement in an
RC framed structure; le is the length of finite element e; Asi is the area of reinforcement in
the i-th layer of the finite element e; ne is the number of finite elements of which the model
of the structure is composed; ke is the number of reinforcing layers in finite element e.
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For practical reasons, e.g. to make it possible either to reinforce several members identi-
cally or to reduce the number of the optimised quantities, a vector of the reinforcing types
As = {As1, As2, . . . , Asnt}T is introduced by means of which the reinforcement in each layer
of each finite member can be defined; nt is the number of reinforcing types in the structure.
It is generally valid that Ask �= Asl for k �= l; the components of vector As are optimised
variables.

When we denote {Ae
s} vector of the reinforcing areas of element e, type (1, ke), its

components can be determined from the relation

{Ae
s} = [Be] {As} , (4)

where [Be] is the matrix comprising 0 and 1; its elements are defined when a task is assigned.
The target function (3) of the optimisation is formulated as

f({As}) =
ne∑

e=1

le {ie}T [Be] {As} , (5)

where {ie} is a vector of type (1, ke) comprising only 1.

2.2. Constraint conditions

For an established vector of the design variables, the conditions of equilibrium of the
solved structure – with the application of discretion of the solved task via the FEM – can
be expressed in the form (1b), where

{h({As})} = [K({As})] {Δ} − {F} . (6)

[K({As})] is the global stiffness matrix of the solved structure; {Δ} is a vector of the nodal
parameter of deformation and {F} is the loading vector of a structure.

Restrictive conditions in the form of inequalities (1c) are possible to specify

gdi({As}) ≤ 0 for i = 1, 2, . . . , nd , (7a)

gsj({As}) ≤ 0 for j = 1, 2, . . . , nc , (7b)

{Asu} ≥ {As} ≥ {Asl} ≥ {0} , (7c)

where the function gdi({As}) expresses the constraint condition for the structural deforma-
tions; nd is the overall number of deforming constraint conditions; gsj({As}) is the function
expressing the condition of the reinforcement design reliability from the viewpoint of the
cross-section load-bearing capacity j (the force constraint condition); nc is the number of
sections in which the force condition is controlled.

The conditions (7c) guarantee the minimum reinforcement required by a designer.
{Asl} = {Asl,1, . . . , Asl,nt}T or {Asu} = {Asu,1, . . . , Asu,nt}T is the vector of the mini-
mum/maximum sectional area that restricts the vector components of the reinforcing type.

2.3. Deformation constraint conditions

The codes for concrete structure design or for the technology to be installed in a con-
struction generally require compliance with the conditions for deformations for specified
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combinations of loads at various time stages of a structural action and in various sections.
The i-th condition of deformation is expressed as

gdi({As}) = wi(Fi, ti1, tis) − wiu or (8a)

gdi({As}) = −wi(Fi, ti1, tis) + wiu , (8b)

where wi(Fi, ti1, tis) is the structure deformation at time tis in node (section) s from load
Fi, whose action begun at time ti1; wiu is the specified limit value of deformation. The
expression (8a) is valid for positive half-axis and (8b) for negative deformation value.

In order not to consider the problem as time-dependent the influence of creep on defor-
mation wi can be simplified by a transforming equation (8).

In accordance with the regulations for concrete structure design, it is considered to be
valid that

wi(Fi, ti1, tis) = wip(Fi, ti1) + Δw(Fi, ti1,tis) , (9)

where wip = wip(Fi, ti1) is the initial deformation at node s at time ti1 generated by the
load Fi, Δw(Fi, ti1, tis) is the deformation generated by creep from load Fi acting in the
time interval (ti1, tis). The influence of shrinkage in condition (8) can generally be neglected.

In accordance with the regulations for concrete structure design the value of deflection
Δw(Fi, ti1, tis) caused by creep can be expressed as

Δw(Fi, ti1, tis) = wip(Fi, ti1)ϕ(ti1, tis) , (10)

where ϕ(ti1, tis) is the creep coefficient given by the relevant code – e.g. [1–2].

By inserting (9), (10) into (8a) or (8b), taking into account consideration (7a), the con-
dition of deformation can be adapted as a new condition in the form

gdi({As}) = wip(Fi, ti1) − wiu

1 + ϕ(ti1, tis)
, (11a)

gdi({As}) = −wip(Fi, ti1) +
wiu

1 + ϕ(ti1, tis)
. (11b)

The initial deformation wip in a cross-section of local coordinate xi is calculated according
to

wip(Fi, ti1) = {we(x)}T {Δe} = {we(x)}T [Le] {Δ} , (12)

where {we(x)} is a vector of the type (ndp, 1); {Δe} = {Δe({As})} (or {Δ} = {Δ({As})})
is a vector of the nodal deformation parameters of element e (or the structure) deformation
loaded by Fi, when it is solved with reinforcement defined by vector {As}; [Le] is a trans-
forming matrix comprising 0 and 1 of the type (ndp, nk); {Δe} is of the type (ndp, 1), {Δ} is
of the type (nk, 1), and ndp (or nk) is the number of nodal parameters of the deformation
in element e (or in the whole structure).

2.4. Force constraint conditions

The formulation of force constraint conditions is based on the assumption of RC section
behaviour in agreement with the relevant code. Most of the recommendations accept a non-
linear model for a section loaded by normal force and bending moment. The model is based
on the following preconditions – see Fig. 1 :
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– Perfect bond between concrete and reinforcement.
– Linear dependence of the strains along the height of the cross-section.
– The stress in the individual materials (steel, concrete) is determined from the stress-

strain diagrams defined in the relevant code.

The cross-section is considered to be reliably designed for the given load when the strains
of extremely loaded fibres of individual materials are lower than the limit values defined by
the design recommendation under fulfilment of these preconditions. Generally, fulfilment of
all the conditions is required

a) for concrete fibres under pressure

ε(zbc) ≥ εbd , (13a)

b) for reinforcement in a layer i

εsc ≤ ε(zsi) ≤ εst , (13b)

where εbd is the limit value of the strains for pressured concrete; εsc (or εst) is the limit value
of the strains for pressured/tensioned reinforcement; zbc is z-th coordinate of the extremely
stressed fibres of the concrete; zsi is z-th coordinate of the i-th reinforcing layer.

Fig.1: Shape of a cross-section and precondition for calculation of a) a acting loading,
b) the course of the strains generated by load N , M ; stress-strain diagram of
concrete σc = σc(ε); stress-strain diagram of reinforcement σs = σs(ε)

In the relations (13) and in Fig. 1 the sign convention is considered to be in accordance
with the theory of elasticity (tension > 0, pressure < 0). Some Codes (e.g., Eurocode EC 2,
Czech Code 73 1201, German DIN 1045) do not require evaluation of tensile reinforcement
as the equation εbd ≥ εsc is valid.
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The strain εe(x, z) of the fibres of the coordinates z in the cross-section x of finite ele-
ment e can be expressed as the linear combination of the nodal parameters of the deformation
of element e

εe(x, z) =
ndp∑
k=1

nk(x, z)Δe,k , (14)

where nk(x, z) is a coefficient that can be derived in dependence on coordinates x, z and on
the option of approximate functions when formulating the basic relationship for the finite
element e, Δe,k is the k-th nodal parameter describing the deformation of finite element e.

Equation (14) can be written in matrix form as

εe(x, z) = {Ne(x, z)}T {Δ} = {Ne(x, z)}T [Le] {Δ} , (15)

where {Ne(x, z)} = {n1, . . . , nndp}T.

Hence, the conditions of reliability (13) are

{Ne(x, z)}T [Le] {Δ} − εbd ≥ 0 , z = zbc , (16a)

εst ≥ {Ne(x, z)}T [Le] {Δ} ≥ εsc , z = zst and z = zsc , (16b)

where zst, zsc is the distance between extremely tensioned or compressed reinforcement
and Cgb.

3. Solution of optimisation design

The optimisation of reinforcement design into an RC structure is determined by
a) the target function (1a), which is the non-linear function of the vector elements of rein-

forcement {As},
b) the constraint conditions that express

(i) the conditions of equilibrium when a structure is solved by the FEM (6),
(ii) the conditions of deformation (7a) reducing the displacement of a structure that can

be written as (11),
(iii) the reliability of the cross-sections of the designed structure expressed in view of the

code recommendation used that can be written as (7b) or (16),
(iv) the recommended limits of the reinforcement areas (7c).

The constraint conditions expressed by Eqs. (6), (7a) and (7b), respectively, are a non-
linear function of the vector elements {As}, and the conditions (7c) subject to the elements
{As} are linear.

Linearization of the non-linear constraint conditions in terms of using an incremental
method is the next step in the theoretical solution. The basic relations of the linear opti-
misation after linearization and after the introduction of additional variables and auxiliary
variables are expressed as

a) target function

{f({Ak
s })}T {dAs} +

nt∑
i=1

dAsi

{
∂f

∂Asi

}T

{dAs} + α {eu}T {u} = minimal , (17)
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b) constraint conditions given by
(i) the conditions of equilibrium of a structure (for j = 1, 2, . . . , nk)

nt∑
i=1

dAsi

[
∂K

∂Asi

]
{Δk} + [K]

nt∑
i=1

dAsi

{
∂Δk

∂Asi

}
+ {u} = {0} , (18)

where {0} is zero vector of type (1, nk),
(ii) the conditions of deformation (1b) for i = 1, 2, . . . , nd

{we(xi)}T [Le] {Δk} + {∇we(xi)}T {dAs} − wiu

1 + ϕ
+ wi = 0 or (19a)

−{we(xi)}T [Le] {Δk} − {∇we(xi)}T {dAs} +
wiu

1 + ϕ
+ wi = 0 (19b)

(iii) the reliability of the cross-sections in accordance with the concrete design recommen-
dation for i = 1, 2, . . . , nc
– the extremely pressured concrete layer

−{Ne(zi, zbc}T [Le] {Δk} − {∇Ne(zi, zbc)}T {dAs} + εbd + ci = 0 , (20a)

– the extremely pressured layer of reinforcement (if the relations for the given design
recommendation have physical justification)

−{Ne(zi, zsc}T [Le] {Δk} − {∇Ne(zi, zsc)}T {dAs} + εsc + sci = 0 , (20b)

– the extremely tensioned layer of reinforcement

{Ne(zi, zst}T [Le] {Δk} + {∇Ne(zi, zst)}T {dAs} − εst + sti = 0 , (20c)

(iv) the recommended limits of the reinforcement areas

{Asl} − {Ak
s } − {dAs} + {al} = {0} , (21a)

{Ak
s } − {Asu} + {dAs} + {au} = {0} , (21b)

c) additional conditions of non-negativeness for
– the auxiliary variables

{u} ≥ {0} , (22a)

– the additional variables

{w} ≥ {0} , {c} ≥ {0} , {st} ≥ {0} , {sc} ≥ {0} ,
{al} ≥ {0} , {au} ≥ {0} . (22b)

In equations (17) to (21), {Ak
s } expresses the vector of the reinforcement areas in the

k-th iterative step, {dAs} is the vector of the increment of the reinforcement areas by means
of which we define the vector of areas in the (k+1)-th step

{Ak+1
s } = {Ak

s } + {dAs} . (23)
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{u} = {u1, u2, . . . , unk}T (24a)

is the vectors of the auxiliary variables; {eu} is the auxiliary vector of the corresponding
type comprising units only and α is the coefficient of penalization.

{w} = {w1, w2, . . . , wnd}T ,

{c} = {c1, c2, . . . , cne}T ,

{st} = {st1, st2, . . . , st,nk}T ,

{sc} = {sc1, sc2, . . . , sc,nk}T ,

{al} = {al1, al2, . . . , al,nt}T ,

{au} = {au1, au2, . . . , au,nt}T

(24b)

are the vectors of the additional variables.

Then, it follows

{∇we(xi)}T =
{

∂

∂{As}
}({we(xi)}T[Le]{Δk}) , (25)

{∇Ne(zi, z)}T =
{

∂

∂{As}
}({Ne(zi, z)}T[Le]{Δk}) , (26)

By the mathematical programming we are looking for positive solution. Because our
algorithm is started from maximum reinforcement cross section areas it is possible to use
following transformation

{dAs} = {dAs} + {Asl} − {Ak
s } . (27)

4. Example of solution

A plain frame structure of one span and two floors with bilateral cantilevers in the lower
floor was the subject of solution. The geometry of the structure and division into finite
elements is shown in Fig. 2. With regard to the symmetry, only half of the frame was solved.
The columns are rectangular, the primary beams and cantilevers are T-shaped, and the
referential axis y of the members is related to a half of the section’s depth. Dimensions of
the cross-sections are shown in Fig. 4.

The primary beams and cantilever are stressed with uniform dead load gb
k and with

uniform fluctuating load qbk . The columns are stressed with vertical uniform dead load along
the entire depth gcol

k . In the frame joints the dead load acts by the force Gk and on the
cantilever end by the force Gc

k. The intensities of the loads are shown in Table 1. The
structure was stressed by three loading states :

– LS1 : dead load + full live load,
– LS2 : dead load + live load on the lower primary beam only,
– LS3 : dead load + live load on the upper primary beam and cantilever only.

The loading factors for individual loads are presented in Table 1.

Two reinforcement types were designed for each primary beam and cantilever (Fig. 4b)
and one reinforcement type was designed for every column (Fig. 4a). Notation of the rein-
forcement types is in Fig. 5a. Minimal and maximal (= starting) allowable reinforcement
cross section areas for the reinforcement types are presented in Table 2.
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Fig.2: Geometry of the frame structure,
division into finite elements

Fig.3: Loading scheme

Load notation intensity γf (ČSN) γF (EN)

dead

gb
k 50 kN/m 1.2 1.35

gcol
k 10 kN/m 1.1 1.35

Gk 200 kN 1.2 1.35

Gc
k 50 kN 1.1 1.35

live qb
k 50 kN/m 1.3 1.5

Tab.1: Loads and loading factors

Fig.4: Geometry of the cross-sections a) column, b) primary beam

The calculations were performed in accordance with two standards : ČSN [1] and EN [2].
The concrete used was class B20 (C16/20) and the steel was 10 425 (B400). In the cal-
culation according to the ČSN standard a stress-strain diagram of steel was considered as
bilinear with a horizontal plastic line and with calculating values of ultimate tensile strain
εsd = 10 0/00 of reinforcement. The ultimate compressive strain of concrete is εbd = 2.5 0/00
(bilinear stress-strain diagram); concrete under tension did not act. Both stress-strain dia-
grams corresponded to the principles of the ČSN standard. The calculation according to
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the EN principles was performed with a bilinear stress-strain diagram for strengthened steel
that corresponds to ductile class A. But the ultimate tensile strain of reinforcement was
restricted to the value εud = 10 0/00 from a possible 22.5 0/00. The stress-strain diagram of
concrete was designed as bilinear with an ultimate tensile strain εcu3 = 3.5 0/00.

In the calculations we considered both physical non-linearity (according to the described
stress-strain diagrams of materials) and geometrical non-linearity under the premise of small
deformations and torsional displacement.

Variant A : a comparative calculation according to both standards under the presumption
that in compressed fibres of concrete and in tensioned fibres of reinforcement the values of
ultimate strains will not be exceeded, i.e. the requirement of reliability fulfilment from the
viewpoint of ULS. These values were verified in 27 cross-sections of the structure. They are
defined on the top/end of the members so the area of reinforcement of each reinforcement
type was restricted by this condition from below – see Fig. 5a. In the middle of the primary
beam the value of ultimate deflection wlim was 20mm (nodes 6 and 16) and on the end of
the cantilever in node 19 it was 7.5mm. However, these conditions were not of use in the
calculation.

Fig.5: Reinforcement types and cross-sections a) variant A and B,
b) variant C1, c) variant C2

In the variant A-ČSN the ultimate strain of reinforcement (or the values close to ultimate
strain) was reached in the cross-sections 1 (9.87 0/00), 11 (9.76 0/00), 13 (9.89 0/00), 14 (9.97 0/00),
16 (9.95 0/00), 18 (9.86 0/00), 21 (9.69 0/00) and 27 (5.48 0/00). The ultimate strain of concrete was
reached in the cross-sections 1 (−2.18 0/00), 13 (−2.18 0/00), 14 (−2.5 0/00) and 27 (−2.16 0/00),
namely at the loading state LS1. In the cross-sections 1, 13, 14 and 27 the optimal failure
values were reached (or values close this failure).

In the variant A-EN the ultimate strain of reinforcement in the loading state LS1(or the
values close to ultimate strain) was reached in the cross-sections 1 (9.91 0/00), 11 (9.83 0/00),
13 (9.92 0/00), 14 (9.99 0/00), 16 (9.98 0/00) and 18 (9.98 0/00), and the ultimate strain of con-
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crete in the cross-sections 1 (−3.44 0/00), 13 (−3.45 0/00), 14 (−3.50 0/00), 16 (−2.57 0/00) and
27 (−3.16 0/00). The loading state LS2 was decisive in the cross-sections 19 (9.72 0/00),
21 (6.03 0/00) and 23 (3.79 0/00).

The resulting areas of reinforcement of different reinforcement types are compared in
Table 2.

Reinforcement type As,max As,min A-ČSN A-EN B-ČSN B-EN

columns 1 3000 220 347 340 260 269
2 3000 192 454 673 1516 1674
3 3000 288 1091 1388 2959 2950

upper 4 3000 288 415 411 328 337
primary 5 3000 0 129 123 40 49
beam 6 3000 0 129 124 40 49

7 3000 0 129 124 1739 1228
upper reinforcement 8 3000 288 505 646 2365 2536

9 3000 288 1179 1490 2959 2950
lower 10 3000 288 2325 2720 2959 2950
primary 11 3000 288 1223 1385 2653 2881
beam 12 3000 0 381 378 1266 1192

13 3000 0 130 128 40 49
14 3000 0 130 136 40 49
15 3000 192 319 386 232 241

upper 16 3000 192 1094 1041 804 736
primary 17 3000 192 2154 2176 2959 2950
beam 18 3000 192 2692 2725 2959 2950

19 3000 192 2851 2874 2959 2950
lower reinforcement 20 3000 0 127 123 40 49

21 3000 0 127 216 52 55
lower 22 3000 192 1254 1215 232 241
primary 23 3000 192 319 312 232 241
beam 24 3000 192 323 557 461 773

25 3000 192 647 1000 1852 1752
26 3000 192 783 1171 2928 2896

Volume of reinforcement [10−2 m3] 8.25 0.64 2.03895 2.37558 3.71005 3.86596

Tab.2: Areas of the reinforced layers for individual variants of the solution

Variant B : the calculation was identical to variant A, but the conditions of ultimate
serviceability were stricter. This means that the values of ultimate deflections wlim were
considered so as to restrict the deflections of nodes calculated in variant A – see Table 3,
i.e. wlim(6) = 6 mm, wlim(16) = 4mm and wlim(9) = 2 mm.

The resulting deflections from individual loading states are presented in Table 3. In a co-
lumn denoted MAX-ČSN and MAX-EN the deflections in nodes during the reinforcing of the
structure with reinforcement correspond to the maximal allowable areas of the reinforcement
types. In these calculations the ultimate strains of fibres, concrete and reinforcement were
not reached in any cross- sections. The restriction of deflection (ULS) was decisive for rein-
forcement. The ultimate deflection in node 16 was reached in the loading state LS2, and in
nodes 6 and 9 in the loading state LS3 (the values are marked by bolts). The loading state
LS1 was not limiting from the point of view of the deflection. The areas of reinforcement
type are presented in Table 2. The restriction of deflection represented an increase in rein-
forcement volume in the variant B-ČSN of 82% and in the variant B-EN of 63%.
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Deflection in nodes [mm] MAX-ČSN A-ČSN B-ČSN MAX-EN A-EN B-EN

6 1.59 7.67 5.66 4.87 7.21 5.66
LS1 16 2.49 6.15 3.48 2.92 5.09 3.50

19 1.19 2.71 1.19 1.19 2.36 1.24
6 2.19 3.39 2.52 2.23 3.19 2.54

LS2 16 3.18 6.59 3.99 3.25 5.52 3.97
19 0.41 1.32 0.26 0.45 1.10 0.34
6 5.00 7.97 5.98 5.09 7.52 5.97

LS3 16 0.92 2.40 1.03 0.99 1.90 1.09
19 1.70 3.63 2.00 1.73 3.20 2.00

Volume of reinforcement [10−2 m3] 8.25 2.03895 3.71005 8.25 2.37558 3.86596

Tab.3: Deflections in the nodes, maximal volume of reinforcement

Variants C1 and C2 : the calculation was identical to variant A, but the reinforcement
types were designed so that they went through more elements (Fig. 5b and 5c). It means
that in these members the same reinforcement (area) was required. The resulting areas of
the reinforcement types and the reinforcement volumes are summarised in Table 4. The re-
inforcement types were designed to correspond as much as possible to the real reinforcement
of the structure.

When the areas of reinforcement are changed the rigidity of the members are changed too
and with this comes the redistribution of the internal forces in the structure. The internal
forces were compared from optimisation calculations according to the EN standard, variant

Reinforcement type (variant A) A-ČSN C1-ČSN C2-ČSN A-EN C1-EN C2-EN

columns 1 347 336 279 340 270 429
2 454 445 495 673 672 746
3 1091 1083

1123
1388 1391

1432upper 4 415 404 411 338
primary 5 129 123
beam 6 129 117 59 124 51 258

7 129 124
upper reinforcement 8 505 505

1183
646 645

14899 1179 1180 1490 1522
lower 10 2325 2298

2291
2720 2712

2751primary 11 1223 1193 1385 1372
beam 12 381 378

13 130 355 347 128 371 559
14 130 136
15 319 308

695
386 384

692upper 16 1094
1773

1041
1693primary 17 2154 2176

beam 18 2692
2863

2552 27251
2941

2344
19 2851 2874

lower reinforcement 20 127
116 58

123
50 22521 127 216

lower 22 1254 1216
1171

1215 1210
1238primary 23 319

331
312

566beam 24 323 557
25 647

813
934 1000

1170
1144

26 783 1171

Volume of reinforcement [10−2 m3] 2.03895 2.07379 2.27380 2.37558 2.34515 2.91107

Tab.4: Comparison of the resulting areas of reinforcement
during submission of other reinforcement types
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A-EN and variant B-EN with the calculation of the internal forces in the structure reinforced
with the maximal allowable reinforcing areas (variant MAX-EN). (This calculation was
also performed under the consideration of the physically non-linear behaviour of materials

Variant MAX-EN A-EN B-EN
LS section M[kNm] N[kN ] M[kNm] N[kN ] M[kNm] N[kN ]

1 −314.7 −104.2 −267.3 −94.7 −305.0 −104.4
10 327.6 −104.2 375.7 −94.7 337.6 −104.4
13 −261.6 0.0 −261.6 0.0 −261.5 0.0
14 −425.5 100.6 −458.2 83.5 −438.2 100.6

LS1 23 215.3 100.6 182.3 83.5 202.3 100.6
24 11.2 −1811.3 26.1 −1811.3 8.8 −1811.3
25 −7.5 −1737.0 −38.3 −1737.0 −12.5 −1737.0
26 154.0 −758.3 158.3 −758.3 164.1 −758.3
27 −314.7 −697.5 −267.3 −697.5 −305.0 −697.5
1 −158.7 −66.1 −142.4 −65.8 −156.7 −71.6

10 145.3 −66.1 161.8 −65.8 147.5 −71.6
13 −177.2 0.0 −177.2 0.0 −177.2 0.0
14 −397.7 42.7 −443.9 33.5 −410.1 52.6

LS2 23 243.3 42.7 196.0 33.5 230.6 52.6
24 46.9 −1473.8 65.3 −1473.8 37.3 −1473.8
25 −82.1 −1399.5 −113.8 −1399.5 −68.8 −1399.5
26 138.4 −533.3 152.8 −533.3 165.2 −533.3
27 −158.7 −472.5 142.4 −472.5 156.7 −472.5
1 −303.2 −81.8 −251.4 −67.1 −290.6 −74.5

10 339.0 −81.8 391.1 −67.1 351.7 −74.5
13 −261 0.0 −261 0.0 −261 0.0
14 −236.3 105.9 −241.2 86.0 −241.1 92.3

LS3 23 67.4 105.9 62.4 86.0 62.5 92.3
24 −41.8 −1586.3 −32.6 −1586.3 −32.5 −1586.3
25 90.1 −1512.0 71.3 −1512.0 55.6 −1512.0
26 64.9 −758.3 50.0 −758.3 44.4 −758.3
27 −303.2 −697.5 −251.4 −697.5 −290.6 −697.5

Tab.5: Internal forces in the important cross-sections

Fig.6: Influence of the change in frame structure rigidity on the internal forces (M)
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and geometric non-linearity). Internal forces in the important cross-sections of the frame
structure (Fig. 5a) are presented in Table 5 and Fig. 6.

5. Conclusion

In all variants of the solution according to the EN [2] standard a greater volume of
reinforcement was reached than in the variants according to the ČSN [1] standard. The
reason is the higher values of designed loads. The validity of the obtained results was
verified in the solution of the plane structure. By the comparison of the solved examples it
was documented that even minor changes by a designer have an influence on the optimal
solution. This gives a reason for the utilisation of optimised design, especially for precast
structures and members.
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