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TO THE ANALYSIS OF INTERNAL DYNAMICS
OF SPECIAL CASE IN A CLASS OF NON-LINEAR
PARAMETRIC PSEUDOPLANETARY SYSTEMS

Milan Hortel, Alena Škuderová*

Within the frame of the mass discretisation method has been designed the mathema-
tical – physical model of the pseudoplanetary system of seven degrees of freedom for
the analysis of the influence of the number of satellites and for free or elastic mounting
of the sun wheel as a next phase of the solution of general differential system with
branched – split power flow.
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1. Introduction

The present world development of highly powerful and high-speed transmissive systems
with the minimum dimensions and the masses leads to a planetary gear systems with
branched – split power flows.

This development trend requires with regard to the reliability and the safety of these
complicated constructions with many degrees of freedom the sophisticated both analytical,
numerical and experimental research. The rising demands on the profundity and accuracy
of analysis of dynamics of these systems can be achieved by more accurately mathematical-
physical modelling of the non-linear systems with many degrees of freedom as well as more
exacting analytical and numerical computational methods including the experimental tech-
nics.

This study continues the basic research in the area of non-linear time heteronymous
transmissive systems with many degrees of freedom [1], [2], [3] and elaborates the first part
of the analysis of the class of non-linear parametric pseudoplanetary system with seven
degrees of freedom.

2. Mathematical-physical model

The dynamical force as the primary constructional data constitutes the first stage of non-
linear dynamical analysis of the regular and irregular – chaotic motions in the complicated
planetary chain-branched differential or pseudoplanetary systems as occur for example in
the Wilson’s transmissive systems in an automotive technics, in a drive mechanisms of the
weighty caterpillar vehicles with the limitary constructional spaces or on the other side in
the aeronautical technics for example in the turbo-prop engines, where the revolutions of
the turbine presently reach to as many as 90 thousands per minute.
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Such systems can show the various dynamical behaviour, where in the certain sensible
areas of the tuning occur the new often even unexpected phenomena as the patterns of the
solution ambiguity, the bifurcation, splitting of the amplitude-frequency characteristics, the
transitions of the regular motions into irregular up to the deterministic character etc.

We illustrate now the solution of the more complicated system with the cog wheels,
i.e. the solution of the mathematical-physical model of the pseudoplanetary gear box (the
revolutions of the satellite carrier ϕn4 = 0, [1]) with three double planets – satellite gears
j ≡ I = 3, see Fig. 1, as the special case of the general basic system with j ≡ I ≥ 1 double
satellites, [1], [3].

Fig.1: Kinematic scheme of the mathematical-physical model with spur and helical
gearing (1,2C j

n32
(ϕ), 1,2C I

n3̂5
(ϕ) . . . the resulting stiffness in the gear mesh,

3,2βn, 3̂,5βn . . . the inclination angle of gearing, 1,2
j

fn32, 1,2
I

fn3̂5 . . . the re-

sulting deviation from ideal involute gearing,
j≡I

Cn3n3̂ . . . the torsional stiffness
of the satellite shafts)

The scheme in the Fig. 1 constitutes the kinematic model with a helical (gear meshes 32)
and spur (gear meshes 3̂5) gearing.

The system with seven degrees of freedom here is solved as the isolated non-linear non-
conservative system without the influence of adjacent shafts (Cumn2, Cn5ws = ∞), with

the torsion-resistant shafts of satellites (
j≡I

Cn3n3̂ = ∞), with the absolutely stiff supported

gear ring 5 and the satellites 3, 3̂ (
I

Cn5p,
j

Cn34,
I

Cn3̂4,
j,j+1

Cn4), i.e. the solution variant with
‘floating’ or in the elastic bearing supported sun gear 2. The oscillating system is for the
internal dynamics analysis loaded by the constant external torsional momentsMum = const.,
Mws = const. and excited by the internal disturbing sources, i.e. with the time variable
stiffness 1,2C j

n3̂5
(ϕ) in the spur gear mesh (3̂,5βn = 0) of the gear ring 5 and I – satellites

3̂ as well as the disturbing function in gear mesh 1,2
j

fn32(ϕ) which occurs in this example
among the satellites 3 and the sun gear 2 in the branch j = − and which we will mark below
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as the main branch. Whereas the gearing of the sun gear 2 and of satellites 3 is considered
as helical with the inclination angle 3,2βn �= 0, the small variation of the stiffness function
1,2C j

n32
(ϕ) will be here neglected and the function supposed 1,2C j

n32
(ϕ) ≈ const. Further, in

the first stage of the solution, will be performed the solution only in the directions of the

co-ordinate axes y, so that the frictions forces
j

FTn(ϕ) occurred in the orthogonal direction
towards the gear mesh line, i.e. in the directions x of the co-ordinate system and analogously
the frictions moments M j

FT

(ϕ) that produce the additional, even if not very marked, run

inequality and the system efficiency, will be neglected in this solution stage.

In the mathematical-physical model is considered the inverse phase of the mesh at the
impact effects in the gear mesh. The solution hence will be contain except the normal gear
mesh also the phase of the contact bounce of the tooth faces with the related re-contacts
with the impacts both at the normal and the inverse mesh.

For the composition of the motion equations of the solved example we result from the
motion equations of the general basic planetary differential system in the form [1]

Mv′′ + 1K(β, δi, H)v′ +
∑

K1>1

K1K(D,Di, H) |w′(v′)|K1 sgn(w′(v′)) +

+ 1C(ε, κ, Yn, Un, Vn, H, τ)v +
∑
K>1

KC(ε, κ, In, H, τ)wK(v) = F(an, bn, ϕ̄,H, τ) ,
(1)

where v means generally the m-dimensional vector of displacement of system vibra-
tion, wK(v) K-th power of vector v, which is defined by the expression wK(v) =
= D(w(v)wK−1(v)). D(w(v)) means the diagonal matrix, whose elements at the main
diagonal are comprised by the elements of vector w(v) ≡ v. Furthermore M is the matrix
of the mass and the inertia forces, 1K and K1K are the matrices of the linear and non-linear
damping forces, 1C and KC are the matrices of the linear and non-linear reversible forces
and F(τ) is the vector of the non-potential external excitation with the components an, bn
and with the phase angle ϕ. H is the Heaviside’s function, which allows to describe the
motions – contact bounces – due to the strongly non-analytical non-linearities, for example
due to technological tooth backlash s(τ). The corresponding linear and non-linear coeffi-
cients of the damping are denoted by β, δi, D, Di, the linear parametric stiffness functions
by the symbols Yn, Un, Vn and the non-linear parametric functions, so-called the parametric
non-linearities, by the symbol In. ε and κ are the coefficients of the mesh duration and the
amplitude modulation of the stiffness function 1C(τ). Derivative by the non-dimensional
time τ are denoted by dashes, τ = ωc t, ωc is the mesh frequency, t is the time.

If we introduce in the general system (1) all above mentioned assumptions and the
parameters of the solved example as well as the new dependent variables in the forms
of the relative motions y j

n32
(ϕ) and y I

n3̂5
(ϕ) in all gear meshes of kinematic pairs as the

measure of the dynamical load of gearing [1], [3], we obtain after the longer arrangements and
the omission of all weak non-linearities the system of strong non-linear time heteronymous
– parametric differential equations of second order for the relative motions in the particular
branches in the form j(≡ I)

y′′−
32

(τ) +
−
y ′′

21res(τ) + 2D−
32

1,2q32

[
H(y−

32
(τ)) +H(−y−

32
(τ) − −

s32(τ))
]
y′−
32

(τ) +

+ 2D=
32

1,2q32KI

[
H(y=

32
(τ)) +H(−y=

32
(τ) − =

s32(τ))
]
y′=
32

(τ) +
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+ 2D≡
32

1,2q32KI

[
H(y≡

32
(τ)) +H(−y≡

32
(τ) − ≡

s32(τ))
]
y′≡
32

(τ) −

− 2D−
52

1,2q52KIIZ3̂Z
−1
3

[
H(y−

3̂5

(τ)) +H(−y−
3̂5

(τ) − −
s 3̂5(τ))

]
y′−
3̂5

(τ) +

+ 1,2q232

(
1 +KIII

∂1,2f32(τ)
∂ϕ

)[
H(y−

32
(τ)) +H(−y−

32
(τ) − −

s32(τ))
]
y−
32

(τ) +

+ 1,2q232KI

[
H(y=

32
(τ)) +H(−y=

32
(τ) − =

s32(τ))
]
y=
32

(τ) +

+ 1,2q232KI

[
H(y≡

32
(τ) +H(−y≡

32
(τ) − ≡

s32(τ))
]
y≡
32

(τ) −

− (1,2q252KII + ξ25KII c(τ̂ )
) [
H(y−

3̂5

(τ)) +H(−y−
3̂5

(τ) − −
s 3̂5(τ))

]
y−
3̂5

(τ)

= KIVM
∗
0

[
H(y−

32
(τ)) +H(−y−

32
(τ) − −

s32(τ))
]{

1 −

− 2
3

[
H(y=

32
(τ)) +H(−y=

32
(τ) − =

s32(τ))
] [
H(y≡

32
(τ)) +H(−y≡

32
(τ) − ≡

s32(τ))
]
−

− 1
2

[
H(y=

32
(τ)) +H(−y=

32
(τ) − =

s32(τ))
] [
H(−y≡

32
(τ)) +H(y≡

32
(τ) +

≡
s32(τ))

]
−

− 1
2

[
H(−y=

32
(τ)) +H(y=

32
(τ) +

=
s32(τ))

] [
H(y≡

32
(τ)) +H(−y≡

32
(τ) − ≡

s32(τ))
]}

+

+ 1,2f ′′
32(τ)

[
H(y−

32
(τ)) +H(−y−

32
(τ) − −

s32(τ))
]
, (2a)

y′′=
32

(τ) +
=
y ′′

21res(τ) + 2D−
32

1,2q32KI

[
H(y−

32
(τ)) +H(−y−

32
(τ) − −

s32(τ))
]
y′−
32

(τ) +

+ 2D=
32

1,2q32

[
H(y=

32
(τ)) +H(−y=

32
(τ) − =

s32(τ))
]
y′=
32

(τ) +

+ 2D≡
32

1,2q32KI

[
H(y≡

32
(τ)) +H(−y≡

32
(τ) − ≡

s32(τ))
]
y′≡
32

(τ) −

− 2D=
52

1,2q52KIIZ3̂ Z
−1
3

[
H(y=

3̂5
(τ)) +H(−y=

3̂5
(τ) − =

s 3̂5(τ))
]
y′=
3̂5

(τ) +

+ 1,2q232

(
KI +KV

∂1,2f32(τ)
∂ϕ

)[
H(y−

32
(τ)) +H(−y−

32
(τ) − −

s32(τ))
]
y−
32

(τ) +

+ 1,2q232

[
H(y=

32
(τ)) +H(−y=

32
(τ) − =

s32(τ))
]
y=
32

(τ) +

+ 1,2q232KI

[
H(y≡

32
(τ)) +H(−y≡

32
(τ) − ≡

s32(τ))
]
y≡
32

(τ) −

− (1,2q252KII + ξ52KII c(τ̂ )
) [
H(y=

3̂5
(τ)) +H(−y=

3̂5
(τ) − =

s 3̂5(τ))
]
y=

3̂5
(τ) =

= KIVM
∗
0

[
H(y=

32
(τ)) +H(−y=

32
(τ) − =

s32(τ))
] {

1 −

− 2
3

[
H(y−

32
(τ)) +H(−y−

32
(τ) − −

s32(τ))
] [
H(y≡

32
(τ)) +H(−y≡

32
(τ) − ≡

s32(τ))
]
−

− 1
2

[
H(y≡

32
(τ)) +H(−y≡

32
(τ) − ≡

s32(τ))
] [
H(−y−

32
(τ)) +H(y−

32
(τ) +

−
s32(τ))

]
−

− 1
2

[
H(−y≡

32
(τ)) +H(y≡

32
(τ) +

≡
s32(τ))

] [
H(y−

32
(τ)) +H(−y−

32
(τ) − −

s32(τ))
]}

, (2b)
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y′′≡
32

(τ) +
≡
y ′′

21res(τ) + 2D−
32

1,2q32KI

[
H(y−

32
(τ)) +H(−y−

32
(τ) − −

s32(τ))
]
y′−
32

(τ) +

+ 2D=
32

1,2q32KI +
[
H(y=

32
(τ)) +H(−y=

32
(τ) − =

s32(τ))
]
y′=
32

(τ) +

+ 2D≡
32

1,2q32

[
H(y≡

32
(τ)) +H(−y≡

32
(τ) − ≡

s32(τ))
]
y′≡
32

(τ) −

− 2D≡
52

1,2q52KIIZ3̂ Z
−1
3

[
H(y≡

3̂5
(τ)) +H(−y≡

3̂5
(τ) − ≡

s 3̂5(τ))
]
y′≡
3̂5

(τ) +

+ 1,2q232

(
KI +KV

∂1,2f32(τ)
∂ϕ

)[
H(y−

32
(τ)) +H(−y−

32
(τ) − −

s32(τ))
]
y−
32

(τ) +

+ 1,2q232KI

[
H(y=

32
(τ)) +H(−y=

32
(τ) − =

s32(τ))
]
y=
32

(τ) +

+ 1,2q232

[
H(y≡

32
(τ) +H(−y≡

32
(τ) − ≡

s32(τ))
]
y≡
32

(τ) −

− (1,2q252KII + ξ52KII c(τ̂ )
) [
H(y≡

3̂5
(τ)) +H(−y≡

3̂5
(τ) − ≡

s 3̂5(τ))
]
y≡
3̂5

(τ) =

= KIVM
∗
0

[
H(y≡

32
(τ)) +H(−y≡

32
(τ) − ≡

s32(τ))
]{

1 −

− 2
3

[
H(y−

32
(τ)) +H(−y−

32
(τ) − −

s32(τ))
] [
H(y=

32
(τ)) +H(−y=

32
(τ) − =

s32(τ))
]
−

− 1
2

[
H(y−

32
(τ)) +H(−y−

32
(τ) − −

s32(τ))
] [
H(−y=

32
(τ)) +H(y=

32
(τ) +

=
s32(τ))

]
−

− 1
2

[
H(−y−

32
(τ)) +H(y−

32
(τ) +

−
s32(τ))

] [
H(y=

32
(τ)) +H(−y=

32
(τ) − =

s32(τ))
]}

, (2c)

y′′−
3̂5

(τ) + 2D−
3̂5

1,2q
3̂5

[
H(y−

3̂5

(τ)) +H(−y−
3̂5

(τ) − −
s 3̂5(τ))

]
y′−
3̂5

(τ) +

+ 2D=

3̂5

1,2q3̂5KVI

[
H(y=

3̂5
(τ)) +H(−y=

3̂5
(τ) − =

s 3̂5(τ))
]
y′=
3̂5

(τ) +

+ 2D≡
3̂5

1,2q3̂5KVI

[
H(y≡

3̂5
(τ)) +H(−y≡

3̂5
(τ) − ≡

s 3̂5(τ))
]
y′≡
3̂5

(τ) −

− 2D−
25

1,2q25KVII Z3Z
−1

3̂

[
H(y−

32
(τ)) +H(−y−

32
(τ) − −

s32(τ))
]
y′−
32

(τ) +

+
(
1,2q2

3̂5
+ ξ3̂5 c(τ̂ )

){[
H(y−

3̂5

(τ)) +H(−y−
3̂5

(τ) − −
s 3̂5(τ))

]
y−
3̂5

(τ) +

+KVI

[
H(y=

3̂5
(τ)) +H(−y=

3̂5
(τ) − =

s 3̂5(τ))
]
y=

3̂5
(τ) +

+ KVI

[
H(y≡

3̂5
(τ) +H(−y≡

3̂5
(τ) − ≡

s 3̂5(τ))
]
y≡
3̂5

(τ)
}
−

−
(

1,2q225KVIII
∂1,2f32(τ)

∂ϕ
+ 1,2q225KIX

)[
H(y−

32
(τ)) +H(−y−

32
(τ) − −

s32(τ))
]
y−
32

(τ) =

= KXM
∗
6

[
H(y−

3̂5

(τ)) +H(−y−
3̂5

(τ) − −
s 3̂5(τ))

]{
1 −

− 2
3

[
H(y=

3̂5
(τ)) +H(−y=

3̂5
(τ) − =

s 3̂5(τ))
] [
H(y≡

3̂5
(τ)) +H(−y≡

3̂5
(τ) − ≡

s 3̂5(τ))
]
−

− 1
2

[
H(y=

3̂5
(τ)) +H(−y=

3̂5
(τ) − =

s 3̂5(τ))
] [
H(−y≡

3̂5
(τ)) +H(y≡

3̂5
(τ) +

≡
s 3̂5(τ))

]
−
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− 1
2

[
H(−y=

3̂5
(τ)) +H(y=

3̂5
(τ) +

=
s 3̂5(τ))

] [
H(y≡

3̂5
(τ)) +H(−y≡

3̂5
(τ) − ≡

s 3̂5(τ))
]}

, (2d)

y′′=
3̂5

(τ) + 2D−
3̂5

1,2q3̂5KVI

[
H(y−

3̂5

(τ)) +H(−y−
3̂5

(τ) − −
s 3̂5(τ))

]
y′−
3̂5

(τ) +

+ 2D=

3̂5

1,2q
3̂5

[
H(y=

3̂5
(τ)) +H(−y=

3̂5
(τ) − =

s 3̂5(τ))
]
y′=
3̂5

(τ) +

+ 2D≡
3̂5

1,2q
3̂5
KVI

[
H(y≡

3̂5
(τ)) +H(−y≡

3̂5
(τ) − ≡

s 3̂5(τ))
]
y′≡
3̂5

(τ) −

− 2D=
25

1,2q25KVIIZ3 Z
−1

3̂

[
H(y=

32
(τ)) +H(−y=

32
(τ)) − =

s32(τ)
]
y′=
32

(τ) +

+
(

1,2q2
3̂5

+ ξ
3̂5
c(τ̂ )

){
KVI

[
H(y−

3̂5

(τ)) +H(−y−
3̂5

(τ) − −
s 3̂5(τ))

]
y−
3̂5

(τ) +

+
[
H(y=

3̂5
(τ)) +H(−y=

3̂5
(τ)) − =

s 3̂5(τ)
]
y=

3̂5
(τ) +

+ KVI

[
H(y≡

3̂5
(τ)) +H(−y≡

3̂5
(τ) − ≡

s 3̂5(τ))
]
y≡
3̂5

(τ)
}
−

− 1,2q225KIX

[
H(y=

32
(τ)) +H(−y=

32
(τ) − =

s32(τ))
]
y=
32

(τ) =

= KXM
∗
6

[
H(y=

3̂5
(τ)) +H(−y=

3̂5
(τ) − =

s 3̂5(τ))
]{

1 −

− 2
3

[
H(y≡

3̂5
(τ)) +H(−y≡

3̂5
(τ) − ≡

s 3̂5(τ))
] [
H(y−

3̂5

(τ)) +H(−y−
3̂5

(τ) − −
s 3̂5(τ))

]
−

− 1
2

[
H(y≡

3̂5
(τ)) +H(−y≡

3̂5
(τ) − ≡

s 3̂5(τ))
] [
H(−y−

3̂5

(τ)) +H(y−
3̂5

(τ) +
−
s 3̂5(τ))

]
−

− 1
2

[
H(−y≡

3̂5
(τ)) +H(y≡

3̂5
(τ) +

≡
s 3̂5(τ))

] [
H(y−

3̂5

(τ)) +H(−y−
3̂5

(τ) − −
s 3̂5(τ))

]}
, (2e)

y′′≡
3̂5

(τ) + 2D−
3̂5

1,2q
3̂5
KVI

[
H(y−

3̂5

(τ)) +H(−y−
3̂5

(τ) − −
s 3̂5(τ))

]
y′−
3̂5

(τ) +

+ 2D=

3̂5

1,2q3̂5KVI

[
H(y=

3̂5
(τ)) +H(−y=

3̂5
(τ) − =

s 3̂5(τ))
]
y′=
3̂5

(τ) +

+ 2D≡
3̂5

1,2q
3̂5

[
H(y≡

3̂5
(τ)) +H(−y≡

3̂5
(τ) − ≡

s 3̂5(τ))
]
y′≡
3̂5

(τ) −

− 2D≡
25

1,2q25KVIIZ3 Z
−1

3̂

[
H(y≡

32
(τ)) +H(−y≡

32
(τ)) − ≡

s32(τ)
]
y′≡
32

(τ) +

+
(

1,2q2
3̂5

+ ξ
3̂5
c(τ̂ )

){
KVI

[
H(y−

3̂5

(τ)) +H(−y−
3̂5

(τ) − −
s 3̂5(τ))

]
y−
3̂5

(τ) +

+KVI

[
H(y=

3̂5
(τ)) +H(−y=

3̂5
(τ)) − =

s 3̂5(τ)
]
y=

3̂5
(τ) +

+
[
H(y≡

3̂5
(τ)) +H(−y≡

3̂5
(τ) − ≡

s 3̂5(τ))
]
y≡
3̂5

(τ)
}
−

− 1,2q225KIX

[
H(y≡

32
(τ)) +H(−y≡

32
(τ) − ≡

s32(τ))
]
y≡
32

(τ) =

= KXM
∗
6

[
H(y≡

3̂5
(τ)) +H(−y≡

3̂5
(τ) − ≡

s 3̂5(τ))
]{

1 −
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− 2
3

[
H(y−

3̂5

(τ)) +H(−y−
3̂5

(τ) − −
s 3̂5(τ))

] [
H(y=

3̂5
(τ)) +H(−y=

3̂5
(τ) − =

s 3̂5(τ))
]
−

− 1
2

[
H(y−

3̂5

(τ)) +H(−y−
3̂5

(τ) − −
s 3̂5(τ))

] [
H(−y=

3̂5
(τ)) +H(y=

3̂5
(τ) +

=
s 3̂5(τ))

]
−

− 1
2

[
H(−y−

3̂5

(τ)) +H(y−
3̂5

(τ) +
−
s 3̂5(τ))

] [
H(y=

3̂5
(τ)) +H(−y=

3̂5
(τ) − =

s 3̂5(τ))
]}

, (2f)

j
y′′
21(τ) + 2

j

D21 q j

21

j
y′
21(τ) − 2D j

322
q322

[
H(y j

32
(τ)) +H(−y j

32
(τ) − j

s32(τ))
]
y′j
32

(τ) +

+ q2j
21

j
y21(τ) − q2322

[
H(y j

32
(τ)) +H(−y j

32
(τ) − j

s32(τ))
]
y j

32
(τ) = 0 , (j = −,=,≡)

(2g–i)

This equations system describes the motion about the equilibrium position in all meshes
of the kinematics pairs and the motion of the sun gear 2, where

j

y21res(τ) is the resulting
motion of the sun gear centre in the direction of the mesh line of the related branch of the
satellite j. In the equations (2a)–(2i) are being the coefficients

KI = fI(J32red, J
∗
2 ) , KII = fII(J32red, J3, J3̂, Rb3, Rb3̂) ,

KIII = fIII(m32red, Rb3, Z2, Z3, i32, J
∗
2 , J3, J3̂) , KIV = fIV(Rb3, J

∗
2 , ωc) ,

KV = fV(m32red, Rb3, Z2, i32, J
∗
2 ) , KVI = fVI(J3̂5red, J

∗
5 ) ,

KVII = fVII(J3̂5red, J3, J3̂, Rb3, Rb3̂) , KVIII = fVIII(m3̂5red, Rb3, Z3, J3, J3̂) ,

KIX = fIX(m3̂5red, Rb3, J3, J3̂) , KX = fX(Rb3, J
∗
5 , Z3, Z3̂, ωc) ,

ξ = fξ(C, κ,mred, ωc, Z3, Z3̂) ,

further the tuning coefficients for the torsional motion or translational motion

q = fq(Ω, ωc, Z3, Z3̂) ,

where Rb3, Rb3̂ and Z3, Z3̂ are the radii of generating circles and the numbers of gear
cogs 3 and 3̂, i32 is the transmission gear ratio between component part 3 and 2, J are the
moments of inertia, mred and Jred are the reduced masses and moments of inertia, Ω is the
related torsional or translational eigenfrequency. With the asterisk marked parameters are
the parameters that are transformed on certain part of the system, in our example on part 3.
The linear relative damping (here marked with D) is the functions

D = fD(k, ωc,mred, Z3, Z3̂) ,

where k is the damping coefficient in the relative motion in gear mesh, or in the translational
motion in the bearing. The function c(τ̂) is the unitary resulting stiffness function in the
gear mesh 3̂5 and the non-dimensional time is τ̂ = Z3̂Z

−1
3 ωc t.

For the frontal angle of the gear mesh 3,2αXY and for the three-satellite transmission
system are described the resulting motions of the sun gear 2 in the particular branches by
the terms

−
y21res(τ) =

−
y21(τ) +

[
=
y21(τ) cos

(
13π
6

− 32αXY

)
+

+
≡
y21(τ) cos

(
17π
6

− 32αXY

)]
cos
(

3π
2

− 32αXY

)
+
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+
[

=
y21(τ) sin

(
13π
6

− 32αXY

)
+

+
≡
y21(τ) sin

(
17π
6

− 32αXY

)]
sin
(

3π
2

− 32αXY

)
,

(3a)

=
y21res(τ) =

=
y21(τ) +

[
−
y21(τ) cos

(
3π
2

− 32αXY

)
+

+
≡
y21(τ) cos

(
17π
6

− 32αXY

)]
cos
(

13π
6

− 32αXY

)
+

+
[
−
y21(τ) sin

(
3π
2

− 32αXY

)
+

+
≡
y21(τ) sin

(
17π
6

− 32αXY

)]
sin
(

13π
6

− 32αXY

)
,

(3b)

≡
y21res(τ) =

≡
y21(τ) +

[
−
y21(τ) cos

(
3π
2

− 32αXY

)
+

+
=
y21(τ) cos

(
13π
6

− 32αXY

)]
cos
(

17π
6

− 32αXY

)
+

+
[
−
y21(τ) sin

(
3π
2

− 32αXY

)
+

+
=
y21(τ) sin

(
13π
6

− 32αXY

)]
sin
(

17π
6

− 32αXY

)
.

(3c)

The resulting trajectory of the motion of the sung gear 2 towards the frame 1 we obtain
by the vector sum of the motions (3a), (3b) and (3c).

During the mesh of all j(≡ I) satellites we suppose the equalized running of the torsion
moments M∗ in the particular satellite branches.

When the contact bounces of the meshing tooth profiles of some kinematic pairs occur,
the remaining in the gear mesh finding satellites transmit the whole torsion moment – the
loading of these gears increases. These effects are expressed mathematically by the combi-
nations of the products of Heaviside’s functions with the related arguments of the relative
motions y(τ) and the tooth backlash s(τ) in the equations (2a)–(2i).

3. Numerical analysis

The research of the parameters influence on the qualitative and quantitative properties of
the motions in the internal dynamics of the system continues in this study the mathematical-
physical model of the non-linear parametric pseudoplanetary system by the numerical ana-
lysis, i.e. by the simulation methodology in the MATLAB/Simulink. The Fig. 2 pictures
the global simulation scheme of the model of solved pseudoplanetary system. This scheme
contains 27 basic subsystems that are in the figure represented by the grey rectangles, in them
the geometric, physical and dynamical quantities of the non-linear parametric system are
solved. For the illustration of the problems complexity are given in the Fig. 3 the simulation
of the unitary resulting stiffness function c(τ̂ ) in the gear mesh 3̂5 which is modelled by
the Fourier’s series with the optional number of the terms n [2] and in the Fig. 4(A) is
given the illustration of the subsystem structure for the simulation of Heaviside’s functions
in one branch of the power flow. These Heaviside’s functions allow in the compact form
the modelling of the motions in the normal and inverse gear mesh including the impact



Engineering MECHANICS 221

effects of the meshing tooth profiles – contact bounces – due to the strongly non-analytical
non-linearities, for example due to the technological tooth backlash s(τ). In the Fig. 4(B) is
given the illustration of the simulation subsystem for the resulting motion

–
y21res(τ) of the

sun gear 2 in one branch, here j = −, of the power flow.

Fig.2: Scheme of the simulation model of the pseudoplanetary system from the Fig. 1



222 Hortel M. et al.: To the Analysis of Internal Dynamics of Special Case in a Class . . .

Fig.3: Subsystem for the computation of the unitary resulting
stiffness function c(τ̂) in the gear mesh

The studies of the tuning of the numerical methodologies in MATLAB/Simulink as well
as own analysis of the influence of the system parameters on the qualitative and qualitative
motions properties in the internal dynamics of given pseudoplanetary system will ensue on
this stage of the solution.
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Fig.4: Subsystem for the computation of Heaviside’s functions (A) and the subsystem
for computation of the resulting motion of the sun gear 2 in the direction y of
the co-ordinate system in the branch (j = −) of the power flow (B)
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4. Conclusion

Even thought in the Fig. 1 presented substitutive dynamical model of the pseudoplanetary
transmission gear system constitutes only one of the possible in the practice incident vari-
ation of the constructional arrangement of the planetary transmission systems, this model
allows to study, in light of the dynamics, the important and still theoretically live question
of the constructional arrangement of the mounting of the sun gear 2 in the stiff or elastic
support, or by the number of the satellites j(≡ I) ≥ 3 in the absolutely free – floating sup-
port. The problem is important also in the term of the operation, reliability as well as the
economy of the design and production.

The complexity and the variety of possible transmission system obtained by the series-
parallel ordering so-called basic system or its special cases as well as the demandingness
on the dynamical analysis of such complicated mathematical-physical non-linear parametric
systems with many degrees of freedom requires in the complex both analytical and nu-
merical analysis the automation, i.e. the application of the methodologies of the symbolic
computations – manipulations in the project and computational works.

This work contains whole number of an original results and knowledge of the basic
research in the area of non-linear time heteronymous transmissive systems with many degrees
of freedom, that have the significance both for the science discipline and for the area of so-
called scientific design of the class of highly powerful high-speed planetary transmission
systems with minimal dimensions and limit exploitation of the constructional materials.

Perspective exploitation of these studies heads for areas of transmission systems applica-
tions for example in aeronautics, automotive and defence industry by the heavy belt trucks
with limited constructive space for power units.
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