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HARMONIC FORCED VIBRATION OF TWO ROTATING
BLADES WITH FRICTION DAMPING

Vladimı́r Zeman, Miroslav Byrtus, Michal Hajžman*

This paper focuses on the modelling of harmonic vibration of two rotating blades
affected by friction in contact of a rigid body placed in between the blade shroud.
Harmonic blade excitation uniformly distributed in blade nodes in circumferential and
axial direction is supposed. Flexible blades are discretized by FEM using 1D Rayleigh
beam elements. The nonlinear friction forces in contact surfaces between the blade
shroud and the friction element are taken into account using the harmonic balance
method. Orbits of central contact points and dissipation energy are investigated
in dependence on the excitation frequency. Dissipation energy amount in contact
surfaces is confronted with blade tips vibration.

Keywords : blade vibration, friction damping, harmonic balance method

1. Introduction

Blades are the common and the most important parts in steam turbine design. With
the increase of energy consumption, turbines are still innovated and the power of developed
turbines is growing. On the other hand, it brings the greater complexity of newly produced
energy systems and higher requirements on blades strength and fatigue. One of the main
problems of the steam turbine is the high cycle fatigue failure of turbine blades due to blade
vibration resonance in the operating range. Even if a machine is properly designed with
respect to the excitation frequencies and turbine eigenfrequencies some excitation sources
cannot be included in preliminary developments. Therefore the blades should be designed
in such a way that they can absorb vibrations caused by unexpected or unusual excitation.
Mathematical and computational models of blades and their systems are suitable tools for
the investigation of their dynamical properties and for their optimization.

One of the most usual approaches to the suppression of undesirable blade vibrations is
the employment of various friction effects. Detailed investigation of influences of friction on
dynamical response of a simplified mechanical system represented by a beam can be found
in [1]. Mainly the microslip phenomenon is discussed. Another method, which is analyti-
cal and is connected with non-spherical geometries, is developed in [2]. Many publications
deal with the friction induced by means of underplatform (wedge) dampers. A method
for the calculation of static balance supposing an in-plane motion of the wedge dampers is
developed in [3]. An analytical approach is described in [4] and comparison of numerical
simulation results with the results obtained by linearization is shown in [5]. A lumped model
of bladed disk with dry friction dampers is presented in [6]. Nonlinear vibration is studied
for both macro and micro-slip relative motions using describing functions and transforming
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nonlinear differential equations into nonlinear algebraic equations. The equivalent lineariza-
tion method for the evaluation of linearized friction effects in blade dynamics represented
by a very simple discrete mechanical system is discussed in [7]. In general, the equivalent
linearization method can be used as a first approximation of the influence of friction by
so-called equivalent viscous damping [8]. Also, experimental methods for the evaluation of
friction significance in the problems of blade vibrations are very important. Some compar-
ison of experimental and theoretical analysis is shown in [9], pure experimental results are
described in [10] and the influences of temperature are experimentally investigated in [11].

In case of turbine blades, main excitation source is harmonic with nozzle frequency,
which is given by a product of rotational frequency of bladed disk and the number of stator
blades [12]. Therefore, one can assume the steady-state dynamic response to the mentioned
excitation as a single-frequency harmonic oscillating motion. In consequence of spatial mo-
tion of blade shrouds linked by friction bodies (dampers), relative (slip) motion of contact
points in contact surfaces which have approximately elliptic trajectories (orbits). The devel-
opment of methodology focused on the investigation of influence of friction forces, friction
element shape and angular velocity of rotating blades on orbits of contact points, energy
dissipation and blade vibration suppression are points of the presented paper.

2. Methodology of two rotating blades with friction damper modelling

Let us consider a system of two blades fixed with a rigid disk rotating with angular
velocity ω. A friction element with inclined planar contact surfaces a and b is wedged in
between the blade shroud (Fig. 1). As a simplification, the contacts of the friction element
and the blade shrouds are concentrated to point B in plane b ≡ �ξBηB and to point A in
plane a ≡�ξAηA, respectively.

Blades are modelled as 1D continuum discretized by beam elements with uniformly dis-
tributed nodes along the axes of the blades. End nodes C1 and C2 of the blades are fixed
with the rigid blade shroud. As the blades rotate, the centrifugal force mD rD ω

2 pushes the
friction element towards contact surfaces a and b of the adjacent blade shroud. The friction

element acts on blades by normal forces NA and NB and by friction forces
−→
T A(TAξ, TAη) and

−→
T B(TBξ, TBη). Let us suppose, the blades are excited by harmonic forces with frequency
ωk = k ω acting in tangential and axial (parallel to axis of rotation) direction. Excitation
forces are uniformly concentrated in nodes along the blades.

Equations of motion of blades with shroud and friction element can be expressed in ro-
tating local coordinate systems xj , yj, zj , j = 1, 2 (blades) and xD, yD, zD (friction element),
where xj and xD are identified with axis of the blades and with radial of friction element.
Axes yj, yD are parallel with fixed axis of disk rotation yf (Fig. 1). In generalized coordinates

qj = [. . . ui, vi, wi, ϕi, ϑi, ψi, . . . ]Tj , j = 1, 2 . (1)

expressing displacements in axis directions and angular displacements about them in nodes
i = 1, . . . , N of the blade with shroud considering excluded friction element, equations of
motion have the form [13]

MB q̈j + (ωGB + BB) q̇j + (Ks,B − ω2 Kd,B + ω2 Kω,B)qj = fω,B + fB(t) , (2)

where symmetric matrices of order 6N MB, BB, Ks,B, Kd,B, Kω,B are mass, material
damping, static stiffness, softening under rotation and bending stiffening under rotation,
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Fig.1: Two rotating blades with friction element

respectively. Matrix ωGB is a skew symmetrical matrix of gyroscopic effects. Constant
centrifugal forces are expressed by vector fω,B and hydrodynamical forces caused by vapour
flow through fixed nozzles. Based on the analysis of vapour pressure field [14], hydrodynamic
forces can be approximately expressed in a blade model (2) as a superposition of vectors of
constant mean forces fB,0 and harmonic variable components with nozzle frequency ωk = k ω

as follows

fB(t) = fB,0 + fB cosωk

(
t+

δj
ω

)
, j = 1, 2, δ1 = 0 , δ2 = δ , (3)

where δ represents pitch angle of blades.

In generalized coordinates
qD = [u, v, w, ϕ, ϑ, ψ] , (4)

the equations of motion of still isolated rigid friction element can be written in the matrix
form analogous to the blade model

MD q̈D + ωGD q̇D − ω2 Kd,D qD = fω,D . (5)

After placing the friction element in between the blade shroud, acting of contact elastic
and friction forces is concentrated into contact points A and B. Linearized model of blades
connected by means of friction element will be further expressed by using perturbance dis-
placements, which define blade and friction element displacements from static equilibrium
given by centrifugal forces and by mean values of hydrodynamical forces. Contact viscous-
elastic and friction forces are then replaced by forces transmitted by springs and dampers
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with equivalent viscous damping, which are calculated under assumption of constant normal
forces NX,0. These forces are calculated from static equilibrium condition of friction element

NX,0 = mD rD ω
2 cos δX

sin(δa + δb)
, X = A,B . (6)

Angles of contact surfaces skewing between blade shroud and friction element are displayed
in Fig. 1.

In configuration space of perturbed generalized coordinates defined by vector

q = [qT
1 ,q

T
D,q

T
2 ]T , (7)

equation of motion of the system is then written in the form

Mq̈ + (ωG + B + BC + Be) q̇ + (Ks − ω2 Kd + ω2 Kω + KC)q = f(t) . (8)

In accordance with equation of motion (2) and (5), the below presented matrices have
a block-diagonal structure

M = diag (MB,MD,MB) , G = diag (GB,GD,GB) ,

B = diag (BB,0,BB) , Ks = diag (Ks,B,0,Ks,B) ,

Kd = diag (Kd,B,Kd,D,Kd,B) , Kω = diag (Kω,B,0,Kω,B) .
(9)

Excitation vector

f(t) =
[
fT
B cosωk t,0, fT

B cosωk

(
t+

δ

ω

)]T
(10)

is defined by vector of amplitudes of harmonic variable components of hydrodynamic forces

fB = [. . . , 0, Fax, − Ft, 0, 0, 0 . . . ]T (11)

acting at each blade node in axial and tangential direction (Fig. 1). The influence of contact
viscous-elastic and friction forces is described by stiffness coupling matrix KC, damping ma-
trix proportional to contact stiffness matrix BC = βC KC comprising the influence of contact
damping in contact surfaces and by matrix of equivalent viscous damping Be respecting slip
friction forces.

Coupling contact matrix can be derived from potential (deformation) energy

EC
p =

1
2

∑
X=A,B

(
kX ζ2

X + ϕT
X KX ϕX

)
, (12)

where kX represents linearized translational contact stiffnesses [15] in normal direction of
contact surfaces of blade shroud with friction element and elements of diagonal matrix
KX = diag(kξX ξX , kηXηX ) correspond to rotational contact stiffnesses around axes ξX and
ηX (Fig. 1). Relative displacements ζX in the normal direction are expressed by means
of vectors of generalized coordinates qC1 , qC2 of end points of blades and by vector of
generalized coordinates qD of friction element mass centre

ζX = ζT
X,Cj

qCj
− ζT

X,D qD , (X = B ∧ j = 1) ∨ (X = A ∧ j = 2) (13)
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where row vectors
ζT
B,C1

= [sin δB, 0, cos δB] [E RT
C1,B],

ζT
A,C2

= [− sin δA, 0, cos δA] [E RT
C2,A],

ζT
B,D = [sin δb, 0, cos δb] [E RT

D,B],

ζT
A,D = [− sin δa, 0, cos δa] [E RT

D,A]

(14)

are determined by angles designated in Fig. 1 and by operators of cross product (symbol R)
defined by radius vectors of contact points X = A, B in coordinate systems xj , yj , zj with
origins in end nodes of the blades and in coordinate system xD, yD, zD with origin in centreD.

Vector ϕX of relative angular displacements of blade shroud with respect to friction
element in (12) can be expressed using vectors of angular displacements ϕj = [ϕj , θj , ψj ]T,
j = 1, 2 of blade shrouds and friction element ϕD = [ϕD, θD, ψD]T

ϕA =
[

cos δA 0 sin δA
0 1 0

]
ϕ2 −

[
cos δa 0 sin δa

0 1 0

]
ϕD , (15)

ϕB =
[

cos δB 0 − sin δB
0 1 0

]
ϕ1 −

[
cos δb 0 − sin δb

0 1 0

]
ϕD . (16)

If the contact stiffness per unit area is assumed to be constant as well as the rectangle (real)
contact area with sides aef, ha ef (bef, hb ef), rotational contact stiffnesses around axes ξX
and ηX are

kξAξA =
kA

12
h2

a ef , kξBξB =
kB

12
h2

b ef , kηAηA =
kA

12
a2
ef , kηBηB =

kB

12
b2ef . (17)

Coupling stiffness matrix is then determined from the equivalence

∂EC
p

∂q
= KC q , (18)

where vector q of generalized coordinates was defined in (7).

3. Substitution of friction forces in contact surfaces with equivalent viscous
damping

In consequence of harmonic excitation, the steady-state slip motion of contact point in
direction of axis ξX , ηX is supposed to be harmonic

ξX(t) = ξT
X,Cj

qCj
(t) − ξT

X,D qD(t) ,

ηX(t) = ηT
X,Cj

qCj
(t) − ηT

X,D qD(t) ,
(X = B ∧ j = 1) ∨ (X = A ∧ j = 2) . (19)

Row transformation vectors transforming vectors of generalized coordinates of end blade
nodes Cj and mass centreD of friction element into displacements of contact pointsX = A,B

ξT
X,Cj

= [cos δX , 0, ± sin δX ] [E RT
Cj ,X ] ,

ξT
X,D = [cos δx, 0, ± sin δx] [E RT

D,X ] ,

ηT
X,Cj

= [0, 1, 0] [E RT
Cj ,X ] ,

ηT
X,D = [0, 1, 0] [E RT

D,X ] ,

” + ” for X = A ∧ x = a ,

” − ” for X = B ∧ x = b
(20)
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are expressed using angles denoted in Fig. 1 and using operators of cross product defined by
radius vectors of contact points X expressed in coordinate systems xj , yj , zj whose origins
are identical to points Cj regarding the blade shroud. Radius vector regarding the contact
point at the friction element is expressed in coordinate system xD, yD, zD with origin identical
to point D. The radius vector of contact points in contact surfaces can be expressed in
a complex form r̃X(t) = ξX(t) + i ηX(t), X = A,B.

Harmonic variable coordinates can be further expressed as real parts of their complex
form

ξ̃X(t) =
(
ξT

X,Cj
q̃Cj

− ξT
X,D q̃D

)
ei ωk t , η̃X(t) =

(
ηT

X,Cj
q̃Cj

− ηT
X,D q̃D

)
ei ωk t , (21)

where q̃Cj
and q̃D are vectors of complex amplitudes of nodal displacements. Obviously, it

holds

ξX(t) = ξX cosωk t− ξX sinωk t , ηX(t) = ηX cosωk t− ηX sinωk t , (22)

where real (imaginary) parts of complex amplitudes of coordinates of contact points are
labelled by one (two) overline. In consequence of harmonic variable displacements, the
shape of contact points orbits is elliptical (see Fig. 2), given by major and minor semi-axes

aX =
√
ξ2X(t1) + η2

X(t1), bX =
√
ξ2X(t2) + η2

X(t2) (23)

and by angles of major semi-axes which satisfy

tan δX =
ηX(t1)
ξX(t1)

, X = A,B . (24)

Fig.2: Elliptical trajectories of the contact points in contact surfaces
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Time instants t1 and t2 correspond to extreme values of radius vectors which are calcu-
lated based on conditions of zero first-order derivative of radius vectors magnitudes. After
rearrangement,

ωk t1 =
1
2

arctan
2
(
ξX ξX + ηX ηX

)
ξ
2

X + η
2
X − ξ

2

X − η2
X

and ωk t2 = ωk t1 +
π

2
(25)

is obtained.

Based on experimentally verified theory [16], friction forces acting in contact surfaces can
be approximately expressed by forces transmitted by viscous dampers placed in directions
of semi-axes of the ellipse (Fig. 2)[

TXξ′

TXη′

]
=
[
be(aX , ωk) 0

0 be(bX , ωk)

] [
cXξ′

cXη′

]
, X = A,B (26)

where
be(aX , ωk) =

4 fxNX,0

π (aX ωk)p
, be(bX , ωk) =

4 fxNX,0

π (bX ωk)p
(27)

are equivalent damping coefficients and cXξ′ , cXη′ are components of slip velocity in semi-
axes directions. Friction coefficients fa for X = A and fb for X = B and exponent p can be
modified based on the comparison of calculated and measured amplitude characteristics of
non-rotating blades [17]. Components of slip velocity in ξx, ηX directions are given by time
derivative of corresponding displacements in (19)[

ξ̇X
η̇X

]
=
[

ξT
X,Cj

−ξT
X,D

ηT
X,Cj

−ηT
X,D

] [
q̇Cj

q̇D

]
for

X = A ∧ j = 2 ,

X = B ∧ j = 1 .
(28)

Transforming components of velocities and friction forces from coordinate spaces ξ′Xη
′
X to

ξXηX leads to a term for friction forces in contact surfaces[
TXξ

TXη

]
= τT

X BX τX

[
ξT

X,Cj
−ξT

X,D

ηT
X,Cj

−ηT
X,D

] [
q̇Cj

q̇D

]
for

X = A ∧ j = 2 ,

X = B ∧ j = 1 ,
(29)

where BX is diagonal matrix of equivalent damping given in (26) and τX is transformation
matrix

τX =
[

sin δX sin δX
− sin δX cos δX

]
, X = A,B . (30)

Friction torque caused by relative rotation of the shroud with respect to friction element is
expressed as

MXζ = be(φX , ωk)
(
ζT

X ϕ̇Cj
− ζT

x ϕ̇D

)
,

(X = A ∧ j = 2 ∧ x = a) or

(X = B ∧ j = 1 ∧ x = b) ,
(31)

where coefficient of equivalent damping

be(φX , ωk) =
4MX,0

π (φX ωk)p
(32)
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depends on friction torque MX,0 and on amplitude of relative angular displacement

φX =
∣∣ζT

X ϕCj
− ζT

x ϕD

∣∣ (33)

and transformation vectors have the form

ζT
X = [∓ sin δX , 0, cos δX ] ,

ζT
x = [∓ sin δx, 0, cos δx] ,

” − ” for X = A ∧ x = a ,

” + ” for X = B ∧ x = b .
(34)

Acting of elastic and friction force effects in contact surfaces can be simultaneously expressed
by force bivectors in contact points

fX = [TXξ, TXη, NX ,MXξ,MXη,MXζ , ]T , X = A,B (35)

expressing the effect of the shroud on friction element (see Fig. 1). Contact normal forces
and torques NX , MXξ, MXη are expressed by linearized contact stiffnesses at contact points
X = A,B, expected area of effective contact surface, contact deformation in normal direction
and relative angular displacements of the blade shroud with respect to the friction element
around axes ξX and ηX as it has been described in section 2.

4. Case study

The methodology of the modelling presented above is used for dynamic analysis of a real
blade couple. The blades are fixed to a rigid disk rotating with constant angular velocity.
Detail geometrical description of the blades was gained from [17]. Based on the derived
methodology, in-house software for computational blade modelling was developed. Using
this software, each blade was discretized by six nodal points into five finite beam elements
and the friction element is considered to be a rigid body with 6 DOF. The final computational
model has then 78 DOF (two blades and one friction element).

4.1. Modal analysis

The linearized model (8) has been used as the first approximation of the nonlinear be-
haviour of the blade packet. Performing the modal analysis, we can see the influence of
friction forces on the spectrum of eigenvalues. Let us note that the modal analysis is per-
formed in following steps: Firstly, the steady state response to given excitation is calculated
without the friction damping. Secondly, based on the gained steady state response the
equivalent damping matrix is determined and consequently the modal analysis of the model
including the equivalent damping is performed. Practically, it means that the modal prop-
erties depend on excitation frequency and amplitude.

Taking into account the influence of material, contact and friction damping, a certain
number of complex eigenvalues vanishes and real eigenvalues appear instead. This is the
desired positive effect of friction damping because the corresponding mode shapes are also
super-critically damped. In this case, approximately 47 pairs of complex conjugate eigen-
values and 62 negative real eigenvalues appear. The number of complex and real eigenvalues
changes slightly along with rotational speed of the disk. Further, because of the influence of
matrices of gyroscopic effects, softening and bending stiffening under rotation and because
of the coupling friction effects, imaginary parts of eigenvalues depend not only on rotational
speed but also on excitation frequency. This effect can be clearly seen in Figs. 3 and 4, where
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imaginary parts (natural frequencies) of the first fifteen (Fig. 3 left) and six (Fig. 3 right and
Fig. 4) eigenvalues are plotted in dependence on rotational speed of the disk. The straight
lines represent the excitation frequency. Mentioned figures have similar meaning as Campbell
diagrams, i.e. intersections of straight lines and natural frequencies correspond to resonant
states.

Fig.3: Dependence of imaginary parts of eigenvalues on rotational speed
of the disk for excitation frequency ωk = 30 ω (left) and zoomed
area corresponding to the first six eigenvalues (right)

Fig.4: Dependence of imaginary parts of the first six eigenvalues on rotational speed
of the disk for excitation frequency ωk = 20 ω (left) and ωk = 15 ω (right)

Fig.5: Representation of the first three complex mode shapes for 2000 rpm

To determine the significance of particular resonant state it is worthy to have notion of
its mode shape and based on that the influence of the resonance can be judged. It can be
clearly seen from following results that the first three resonances take effect only because
centrifugal forces hinder slip motion for higher rotational speed. In Fig. 5, the complex mode
shapes are displayed along with corresponding natural frequencies. The mode shapes have
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been determined for 2000 rpm of the disk and for excitation frequency ωk = 30ω, where the
friction coefficient has been supposed to have value of f = 0.1 .

4.2. Steady-state response to external nozzle excitation

The steady-state response is used for contact slip motion determination. The slip motion
is supposed to have elliptical orbit and the aim is to investigate lengths of the major and the
minor semi-axes of the ellipse. First, let us define the system parameters which primarily
influence the blade motion. Slip properties of the contact surfaces are defined by friction
coefficients fa = fb = f . The excitation defined in (10) is uniformly distributed along
the blade, i.e. axial and tangential forces (11) act at each blade node. Amplitudes of the
forces are inverse proportional to the multiple k of angular velocity ω, i.e. F (k)

t = F
(1)
t /k

and F
(k)
ax = F

(1)
ax /k. As an illustration, let us consider three different excitations whose

parameters are summarized in Table 1. The friction coefficient is chosen to be a variable
parameter, which indicates the rate of friction forces in dependence on the contact surfaces
properties.

k F
(k)
t [N] F

(k)
ax [N]

15 1.33 0.66
20 1 0.5
30 0.63 0.3

Tab.1: Definition of excitation parameters

Fig.6: Length of semi-axes of elliptical orbit of contact point A for ωk = 30 ω

Fig.7: Length of semi-axes of elliptical orbit of contact point B for ωk = 30 ω
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Fig.8: Inclination angles of major semi-axes of elliptical orbits for ωk = 30 ω

Figs. 6 and 7 show the dependence of lengths of the major and the minor semi-axes of
the elliptical orbits of contact points A and B on the rotational speed, respectively. One can
clearly see that mainly the length of the major semi-axis is dominantly influenced by system
vibration and by resonant states. In consequence of higher contact forces in surface a, which
are proportional to square power of angular speed, the slip motion diminishes except the
two resonant peaks. On the other hand, contact forces in surface b are smaller than in
surface a and therefore the slip motion is much more influenced by the excitation and by
the change of natural frequencies in dependence on rotational speed of the disk. One can
see few resonant peaks in Fig. 7. The first one at n = 390 rpm corresponds to the resonance
with the first natural frequency. The resonance with the second natural frequency has not
been exhibited. The next two ones at n = 975 rpm and n = 1130 rpm correspond to the
third natural frequency because the value of the third natural frequency changes along with
the excitation and the straight line has two intersection with the third natural frequency.
The fourth one is caused by a sudden jump of natural frequencies for n = 1725 rpm in Fig. 3.
Fig. 8 displays the dependance of inclination angles of major semi-axes with respect to axis
ξA, ξB respectively.

Further, the friction coupling can be judged according to the dissipated energy amount
by friction effects. Figs. 9–11 show dissipated energy by friction during one period of motion
Tk = 2π/ωk considering the steady state response of the linearized model (8). The dissipated
energy amount is significant in the neighbourhood of the first resonant states only. Further,
increasing the friction coefficient the dissipated energy increases too, except the resonant
states, where the friction influences the dissipated energy amount in the range over the first

Fig.9: Total dissipated energy by friction in dependence
on friction coefficient for ωk = 30 ω
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Fig.10: Total dissipated energy by friction in dependence
on friction coefficient for ωk = 20 ω

Fig.11: Total dissipated energy by friction in dependence
on friction coefficient for ωk = 15 ω

resonance. According to Figs. 10 and 11 it can observed that decreasing the multiple k in
the excitation frequency, the contribution of the first resonance to the dissipation energy
diminishes and the energy is dissipated more by the second resonance.

To have a clear idea about the friction element motion in between the shroud, we can
plot the elliptical orbits of both contact points A and B. Fig. 12 shows elliptical orbits of
contact points for the excitation F (30), k = 30 defined in Tab. 1. Unlike the dissipation
energy amount, the elliptical orbit reduces in size while increasing the friction coefficient
and moreover the inclination angle tends to be π/2 for higher values of friction coefficients.
The lengths of semi-axes of the ellipse agree with micro slip motion. The difference between
the two ellipses originates from the different inclinations of the surfaces with respect to the
blade centre line.

Fig.12: Elliptical orbits of contact points A and B for ωk = 30 ω
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Fig.13: Elliptical orbits of contact points in surfaces A and B for ωk = 20 ω

Fig.14: Elliptical orbits of contact points in surfaces A and B for ωk = 15 ω

In case of Fig. 13 we can observe the orbits of contact points for pre-resonant state at
n = 500 rpm and for resonant state at n = 595 rpm for the second excitation. Similarly,
orbits of contact points in Fig. 14 correspond to two different operational states.

5. Conclusions

This paper presents a method focused on the modelling of friction effects in the blade
shroud, which are realized by means of friction elements placed in between the blade shroud.
A model of two rotating blades with shroud is used. Friction forces and torques are linearized
using the harmonic balance method under assumption, that the contact points move approx-
imately along the ellipses. Based on this, equivalent damping coefficients are determined in
dependence on the lengths of semi-axes of the ellipse defining the slip motion between blades
and the friction element. Using the linearized model of two blades with friction element,
modal analysis was performed and the dissipation energy amount by friction together with
the elliptical orbits were investigated for different excitation frequencies. According to the
methodology the in-house software in MATLAB was created and tested on the model of two
rotating blades with shroud.
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