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FREQUENCY RESPONSE ANALYSIS
OF HYBRID PIEZOELECTRIC CANTILEVER BEAM

Petr Sadilek*, Robert Zeméik*

Frequency response analysis of hybrid aluminium beam with piezoelectric actuators
was performed using finite element method. The finite element model was imple-
mented in Matlab software. The one-dimensional beam element is based on Euler-
Bernoulli theory and it assumes bilinear distribution of electric field potential. The
piezoelectric actuators were driven by harmonic signals around the first eigenfre-
quency and the beam oscillations were investigated. Results were compared to ex-
periment.
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1. Introduction

As the demands on the ratio of stiffness and strength to weight of structures are rising,
light-weight structures are nowadays necessary components in modern state-of-the-art pro-
ducts in all sorts of industries. One of the solutions is usage of composite materials. Compo-
site materials are mostly man-made materials made from one or more hard non-continuous
component materials imbedded in a less hard continuous material with significantly different
physical or chemical properties. The connection creates a new structure. The physical pro-
perties of the new structure are generally not isotropic, but rather are typically orthotropic
and therefore can be altered according to the assumed type and direction of loading unlike
the isotropic materials.

The increasing requirements on structural performance call for the usage of embedded
sensors and actuators, resulting in the construction of so-called smart or adaptive structures
that can thus respond to loading conditions in real time. One type of smart materials are
piezoelectric materials. The piezoelectric effect describes the relation between mechanical
stress and electrical voltage in solids. It is reversible: applied mechanical stress will gene-
rate voltage and applied voltage will change the shape of the solid by a small amount.
This enables for instance to suppress vibrations or to move amplitudes out of the range of
eigenfrequencies, provided that proper electronic control circuits are applied.

The first experimental demonstration of a connection between macroscopic piezoelectric
phenomena and crystallographic structure was published in 1880 by Pierre and Jacques
Curie. The converse piezoelectric effect was mathematically deduced by Lippmann in 1881.
The first finite element implementation of the piezoelectric phenomenon came in 1970 by
Allik and Hughes [1]. After that, many researches equipped the standard structural finite
elements with the piezoelectric capability to simulate the piezoelectric effect. To simulate
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it, the similarity to the theory of thermo-elasticity was sometimes used. These early models
concerned mainly 3D-solid elements, which are not suited for efficient analysis of laminated
shell structures. For this reason, the approach changed and in the recent years, the piezo-
electric, beam, plate and shell elements are used more frequently. Cen et al. [3], for example,
developed a four-node plate element for laminated structures based on first-order shear de-
formation theory while Lee et al. [7] introduced a nine-node assumed strain element allowing
variable thickness, which is not possible for other elements. Hybrid laminated piezo plates
are studied by Mitchell and Reddy [11] using higher-order shear deformation theory and
layerwise approach for electric potential. Dynamic behavior of smart laminated plates using
the layerwise approach are studied by Saravanos et al. [12]. Tzou et al. [14] investigate the
control of smart conical shells using triangular finite elements. Kogl and Bucalem [6] in-
troduced a MITC based element suitable for modelling of moderately thick sandwich smart
structures. They stress the importance of quadratic variation of electric potential across
the layer thickness to accurately model the electric field. There are more various finite
element approaches summarized for example in the survey by Benjeddou [2]. Piefort and
Preumont [8,9] use piezoelectric materials for sensing and actuation in vibration and vi-
broacoustic control of plates modelled by Mindlin shell elements. Zhou et al. [15] study free
vibrations of piezoelectric bimorphs by means of analytical solution. Heyliger [4] and later
Heyliger and Wu [5] present exact analytical solution for laminated piezoelectric cylinder
and sphere, respectively. Zemdéik et al. [17] developed four-noded piezoelectric shell element
and implemented into commercial code ANSYS.

The element proposed in this paper is two-noded and has two structural degrees of
freedom (DOFs) at each node plus two DOF's for electric potential. Elements are considered
as beams. The piezoelectric coupling is full and direct (i.e. non-iterative), and it is intended
for the simulation of applied piezoelectric layers — patches.

Presented work is developed for testing purposes. Goal of the future work is to design
and perform structural health monitoring of composite structures with piezoelectric compo-
nents for the identification of damage of the structure. Hybrid (piezoelectric) elements are
not commonly available in existing commercial software. They are defined mainly as solid
elements, whereas shell, beam, and namely layered elements, are very sporadic.

2. Mathematical model
2.1. Constitutive equations

The theory of piezoelectric materials used here assumes symmetrical hexagonal piezo-
electric structure — class 6 mm (Cgy). Only the laminar piezoelectric effect (so-called dsq
effect [13]) is considered, i.e., the material is polarized in the thickness direction.

The pure mechanical stress-strain law for each piezoelectric element is extended with

piezoelectric coupling [16]. This can be than rewritten as
c=Ce—e'E,
B 1)
D=ec+e€eE,

where D is the vector of electric flux density, € is the dielectric permittivity matrix, e is the
piezoelectric coefficient matrix and E is the electric field vector.

The first of the two equations above is the well-known Hooke’s relation between stress
and strain extended by piezoelectric coupling.
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The permittivity matrix € is defined as

€11 0 0
€ = 0 €99 0 (2)
0 0 €33

and the piezoelectric matrix e as

2.2. Analytical formulation

The beam element is based on Euler-Bernoulli theory. It has two nodes with one deflec-
tion w,, and one rotational ¢, DOF at each node (see Fig. 1). Let the deflection w(x) across
the length be approximated by the polynomial:

w(z) =ag+ a1z +ax? +aza® =Nw, (4)
where N is matrix of approximation functions and the structural DOF vector is ordered as
W = [wna Pny Wn41, ‘Pn+1]T . (5)

Then, the axial displacement can be written as

u(z,z) = zp(x) =2 g—: (6)

and, consequently, the axial strain is

Fig.1: Element geometry example; piezo material (dark grey) and its supporting
structure (light grey) sharing common nodes (degrees of freedom)

Similarly, let the electric field potential ¢(x, z) be approximated by bi-linear function

¢(z,2z) =a4+asr+asz+arxrz. (8)
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Hence, the electric field intensity vector E is
E=-Vo=2¢, )

where ® is the electric field intensity-potential matrix and the electrical DOF vector is
ordered as

d) = [¢n7wn7¢n+l7wn+1}’r (10)

with ¢, and 1, being the potential values on the lower and upper surfaces, respectively
(see Fig.1).

2.3. Variational principle

The equations of motion of a piezoelectric structure can be derived from the Lagrangian
and the virtual work which must include both the mechanical and the electrical contribu-
tions. The potential energy density P of a piezoelectric material includes contributions from
the strain energy and from the electrostatic energy, hence [2]

1 1 1 1
P:§aTs—§DTE:55TCE—ETes—§ETeE (11)

while the kinetic energy density is simply
1.
K= Ep(w)2 : (12)

Let us confine to case without external mechanical forces and electric charge. The La-
grangian can then be written in the form

L:/(K—P)dv. (13)
1
Using the variation principle, the condition
0L =0 (14)

must be satisfied for any arbitrary variation of the displacements and electrical potentials,
thus the resulting equations of motion with the assumptions made above are assembled as

M,, O] [w K. KW] {w} {0}
-+ = , 15
{ 0 OHff’} {Kqu Koo | | 0 (15)
where the submatrices (element stiffness, piezoelectric coupling, capacitance and mass ma-
trix) are

Kw:/BTCBdV [4 x 4] ,
14
KW:—/BTe‘PdV [4x 4] ,
’ (16)
K¢¢:—/'I>Tevl>dv [4x4],
1%

Muu:p/NTNdV [4x 4] .
Vv
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For a case with external mechanical forces and electric charge the equation changes to

M, 0] [w] & [Ku KU¢] {w} {F}
+ | Y+ = , 17
{ 0 0] LA {Kqu Koo | [ & Q (a7
where the right-hand side vector consists of a vector of nodal forces F and of a vector of
electrode electric charges Q.

2.4. Modal analysis

In order to perform the modal analysis the system must be statically condensed. By
expanding (15), two equations can be obtained in the following manner :

My, W+ Ky w+Kypp=0, (18)
Koyw+Kgp=0. (19)

From (19) we can express ¢ as
¢=-K,, Ki,w. (20)

Inserting (20) into (18) and by simplifying following equation is obtained :
M ¥ + (Koo — Kug K K5, ) w =0 (21)
and the problem reduces to the eigenvalue analysis of the matrix

A=M,, " (Kw ~Ku K] KL,) . (22)

The corresponding values for electrical DOFs can be retrieved using (20). The set of
equations in (15) for single element is expanded accordingly in finite element analysis when
joining element with common nodes (see Fig. 1).

2.5. Static analysis

Let us consider that there are no mechanical forces and no inertia forces applied on the
beam. Then (15) changes to

Ko Kug w 0
= , 23
b w] [5]-[0) )
and the displacements can be expressed as

w=K_ !K.0. (24)

When deflections are known then according to (15) again we can also compute the charges
by solving
Q=K,,w+Ks 0. (25)
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3. Experiment

An experiment was carried out [10] with an aluminium beam and two collocated piezoelec-
tric patches with properties in Tab. 1. The patches (DuraAct P876.A12, operating voltage
—100 to 400 V) were glued to the skins using HBM Z70 glue. The beam was clamped on one
end (see Fig.2) with total length I}, = 500 mm, width by, = 30 mm and thickness hy, = 3 mm.
The dimensions of the piezopatches were length [ = 61 mm, width b = 35 mm and thickness
h = 0.3m. From the total length of the piezopatch only 50 mm may be considered as active.
The patches were loaded by an electric signal

¢ = ® sin (wt) ,

where ® is voltage amplitude.

1= 500mm

1=6Im
>
—

| —

10mm

Fig.2: Schema of location of piezopatches on the beam

This caused deformation of the piezo actuators and consequently this induced oscillation
of the free end. Deflection magnitude was measured through a laser equipment (Fig.3).
Plundrich [10] compared his results with finite elements method in MSC.Marec, where he
used solid elements for beam and the patches in structured mesh. He simulated piezoelectric
effect through similarity with thermal expansion. He was also searching for eigenfrequencies.
The two lowest eigenfrequencies measured were f; = 9.5Hz and fo = 59 Hz.

Signal Voltage Laser
PC generator amplifier

+10V 50x

206 >

Fig.3: Diagram of experiment arrangement

Property | E [GPa] pl] | plke/m’] [es [Cm~7]
Aluminium 70.0 0.33 2670 —
Piezo 61.8 0.30 7760 5.6

Tab.1: Properties of used materials

4. Numerical tests

Three types of analyses were carried out using Matlab code. The first one included static
loading of the beam to find out the deflection of the free end.
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Using constant voltage ¢ = 0.7V in (24) amplified 50 times resulted in deflection (see
Fig. 4) of the free end

u=6.6x10""m (27)

u [pm]

20 /«’ ]
10 /’/ B
~
[i] 4
10 L L . . L . L L .
) 10 15 20 25 30 35 40 45 50

i [em]

Fig.4: Deflection of a beam made of 50 elements with static loading

The second was the modal analysis. The two lowest eigenfrequencies found were f; =
= 9.9256 Hz and fo = 62.2024 Hz. Higher frequencies were not searched for.

Thirdly, knowing the eigenvalues, the analysis focused on comparison to experiment and
results from MSC.Marc. The numerical model of the beam was loaded by waveforms close
to first eigenfrequency. Central differences in the time domain were used in the Matlab
model. Material damping was not included as it is more complicated and difficult to reach
convergence. Comparison to experiment and results from MSC.Marc can be found in Tab. 2
and Tab. 3. Voltage differs because of experimental apparatus setting. Absence of damping
caused higher amplitudes for Matlab model. For graphical interpretation see Fig. 5.

Frequency [Hz] | 0.97 | 1.95 | 2.81 | 4.02 [ 4.88 | 5.85 | 6.96 | 7.93 | 8.67 | 9.76 | 10.74
Voltage ® [V]|35.0|42.5|31.0(43.5|41.0|43.5|40.5|34.5|35.5|41.5| 36.5
Experiment | 0.100.10|0.11 {0.13]0.16 | 0.17 | 0.19|0.21 |0.30 | 5.5| 0.41
MSC.Marc | 0.06 | 0.07 | 0.05 | 0.09 | 0.09 {0.11 {0.13]0.16 {0.22 | 0.64 | 1.31
Matlab | 0.07]0.10 | 0.08 | 0.14 | 0.15]0.20| 0.24 | 0.30 | 0.43 | 1.40 | 1.00

Tab.2: Comparison of aluminium beam amplitudes [mm]
induced by harmonic waveform (part 1)

Frequency [Hz] | 11.59 | 12.45 | 13.55 | 14.52 | 15.62 | 16.60 | 17.70 | 18.43 | 19.77
Voltage ® [V]| 33.5| 29.0| 30.0| 40.5| 32.0| 29.0| 33.5| 33.0| 38.0
Experiment | 0.28| 0.18| 0.12| 0.10| 0.07| 0.06| 0.05| 0.04| 0.06
MSC.Marc| 0.29| 0.14| 0.09| 0.09| 0.05| 0.04| 0.04| 0.04| 0.39
Matlab | 0.64| 0.32| 0.22| 0.22| 0.14| 0.11| 0.11| 0.10| 0.10

Tab.3: Comparison of aluminium beam amplitudes [mm]
induced by harmonic waveform (part 2)
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Fig.5: Graphical comparison of amplitudes induced by harmonic loading
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Fig.6: Free end oscillation through time for frequency 0.97 Hz

5. Conclusion

The presented work is focused on application of piezoelectric materials on composite
structures. The approach deals with finite element method. One dimensional beam element
suitable for the analysis of structures with applied piezoelectric sensors and actuators, i.e.
smart structures, is developed and implemented in Matlab code. The element is based on
Euler-Bernoulli theory and it assumes bilinear distribution of electric field potential. Static
and modal analyses were carried out to verify convergence of a simple beam model. The
model was consequently loaded with harmonic waveforms and compared to experiment. The
discrepancy between results was low. Numerical model did not include material damping
but the results were closer to experiment than the results from MSC.Marc.

As only the essential research on finite element model was made, further investigation is
necessary. Future work will be among other things focused on the influence of the material
damping mentioned. Numerical tests with material damping were already performed, but
did not show convergence. The cause will be investigated.
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Upon the study of the state-of-the-art it shows, that piezoelectric materials may be
well adapted for industrial structure health monitoring (SHM) systems. One of the main
advantages of SHM is, that it can reveal damage that may have occurred between scheduled
intervals of inspections. Also the inspection is only visual, therefore forms of damage such
as delamination of composites can be easily overlooked. With help of SHM system using
piezoelectric sensors it is thus possible to detect and identify also hidden defects in real time.

Therefore the forthcoming steps of future work is to investigate possibilities of piezoelec-
tric materials. Optimal location for piezopatches for investigation of eigenfrequencies will
be searched for. In further work experimental comparison of two bodies will be undertaken,
where the second body will represent the first object with an artificial defect. Through
combination of finite element method and optimization methods the research will focus on
identifying the range and position of the defect.
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