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ON THE 2D-VALIDATION STUDY OF THE ATMOSPHERIC
BOUNDARY LAYER FLOW MODEL

INCLUDING POLLUTION DISPERSION

Ivo Sládek*, Karel Kozel**, Zbyněk Jaňour*

The paper deals with a flow validation study performed using our in-house 3D-com-
puter-code which implements mathematical and numerical model capable to simulate
the atmospheric boundary layer flow in general. The validation study is related to
a neutrally stratified boundary layer 2D-flow over an isolated hill with a rough wall
including pollution dispersion according to Castro [1].

Our mathematical model is based on the system of RANS equations closed by two-
equation high-Reynolds number k-ε turbulence model together with wall functions.
The finite volume method and the explicit Runge-Kutta time integration method are
utilized for the numerics.

Keywords : boundary layer flow, pollution dispersion

1. Introduction

The Atmospheric Boundary Layer (ABL) can be defined as the lowest part of the Earth’s
atmosphere. Its thickness depends on various conditions and ranges from several hundreds
of meters to approximately two kilometers. The ABL is significantly influenced by the
surface, over which the wind flows, its orography and roughness, by the free stream wind
and also by the vertical temperature gradient which is associated with the atmospheric
thermal stratification [2], [3].

A prediction of wind field over complex terrain plays an important role in many engi-
neering applications such as evaluation of environmental impact by pollutant dispersion,
the street-canyon flows, the urban area flows etc. Because of difficulties and a high cost of
experiments associated with the ABL investigation, a reliable mathematical model together
with a suitable numerical method are developed and code-implemented [4], [5], [6].

The paper is mainly devoted to validation of the mathematical/numerical model for the
ABL flow in general. It is quite difficult to perform such a validation using some reliable field
experimental data. Hence, simplified 2D-test-case with reference experimental/numerical
data has been chosen, see the section 6. Some results have already been published in [7].

The reference numerical data due to [1] are based on :

– 2D-validation of velocity-field : two-equation high-Re standard k-ε turbulence mo-
delling with wall-functions
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– 3D-validation of concentration field : based on the above 2D-velocity field simply re-
distributed in the ‘third’ span-wise direction to respect a point nature of the pollutant
source.

2. Mathematical formulation in 3D

The flow itself is assumed to be turbulent, viscous, incompressible, stationary and neu-
trally stratified as well. The mathematical model is based on RANS approach and the
governing equations can be formulated in the conservative, dimensional and vector form

(�F )x + (�G)y + ( �H)z = (�R)x + (�S)y + (�T )z , (1)

where the terms �F , �G, �H represent the physical inviscid fluxes and �R, �S, �T denote the
viscous fluxes. When expanding all the above vector terms in (1), we get
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The system (2) is then modified in order to be solved by the artificial compressibility method
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(3)
where �W = (p/β2, u, v, w,C )T stands for the vector of unknown variables, namely the
pressure p, the velocity vector �V = (u, v, w )T and the passive pollutant concentration C

(measured in [kg/m3]), the density reads � = const. The parameters K, K̃ refer to the
turbulent diffusion coefficients, see equation (17), and the parameter β is related to the
artificial sound speed.

The system (3) is solved in the computational domain Ω under a stationary boundary
conditions for t → ∞ (t is an artificial time variable) to obtain the expected steady-state
solution for all the unknown variables involved in the vector �W .

3. Numerical treatment

A structured non-orthogonal grids made of hexahedral control cells are used for all compu-
tations. The finite volume method of cell-centered type together with a multi-stage explicit
Runge-Kutta time integration scheme have been applied to solve system (3), as reported
in [4], [14]. Integration of (3) over each control cell Ωijk then gives

∫
Ωijk

�Wt dV = −
∫

Ωijk

[
(�F −K �R)x + (�G −K �S)y + ( �H − �T )z

]
dV . (4)
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This identity can be rewritten using the divergence theorem and the mean value theorem

�Wt

∣∣∣
ijk

= − 1
μijk

∮
∂Ωijk

[
(�F −K �R) dS1 + (�G−K �S) dS2 + ( �H −K �T ) dS3

]
, (5)

where �Wt|ijk is the mean value of �Wt over the cell Ωijk and μijk =
∫
Ωijk

dV denotes the
volume of control cell. After space discretization of (5), we come up with a set of semi-
discrete system of ordinary differential equations for each Ωijk

�Wt

∣∣∣
ijk

(t) = L �Wijk(t) , (6)

where L �Wijk denotes the operator approximating the right-hand side of (5), which has the
following form

L �Wijk = − 1
μijk

6∑
l=1
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]
. (7)

All the symbols in equation (7) denoted with subscript or superscript l refer to the l-th cell
face of Ωijk and (ΔSl

1, ΔSl
2, ΔSl

3) represents the l-th outer normal vector.

The inviscid numerical fluxes �̃Fl, �̃Gl, �̃Hl through the l-th face of Ωijk are computed as an
average from the mean value over cell Ωijk and the mean value over the neighbor cell sharing
the l-th face with cell Ωijk , thus we get
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1
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)
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,
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)
, l = 1, . . . ,6 .

(8)

On the other hand, to compute the viscous fluxes at the l-th face of cell Ωijk, one has to
know the derivatives of the velocity components at all six faces of each hexahedral control
cell. The derivatives are evaluated using the dual control volumes of the octahedral shape
denoted by Ω̄(l)

ijk, see the Figure 1.

Fig.1: Dual control volume

An example of the x-derivative computation of the u-velocity component at the l-th face
of the hexahedral computational cell Ωijk then reads

ux|(l)ijk =
∫

Ω̄
(l)
ijk

ux(x, y, z, t) dV̄ =
∮

∂Ω̄
(l)
ijk

u dS̄1 ≈
8∑

q=1

ũ(l)
q ΔS̄(l, q)

1 , (9)
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where the index q goes through all faces of the dual octahedral control volume Ω̄(l)
ijk

and ΔS(l, q)
1 abbreviates the first component of the q-th outer normal vector related to

the q-th face of the dual cell.

Finally, the 3-stage explicit Runge-Kutta time integration scheme is applied to system (6)
of ODE’s
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ijk ,

(10)

where α1 = α2 = 1/2, α3 = 1. This method is second order accurate both in time and space
on an orthogonal grids. The operator B �W

(m)
ijk defines a steady residual in the m-th stage

(m = 1,...,3) for each control cell Ωijk and it can be written as

B �W
(m)
ijk = L �W (m)

ijk + D �W
(0)
ijk , (11)

where L �Wijk corresponds to the operator resulting from the space discretization of system (5)
and the second term D �Wijk abbreviates the artificial viscosity contribution either of 4-th
order (for the pressure-velocity flow-field) or 2-nd order (for the concentration field)
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,
(12)

where ε(4), ε(2) denote constant coefficients to be tuned empirically and all the derivatives
are substituted by central differences as it is shown hereafter for 1D case for sake of simplicity

D �Wi = −ε(4)x

[
�Wi−2 − 4 �Wi−1 + 6 �Wi − 4 �Wi+1 + �Wi+2

]
+ ε(2)y

[
�Wi−1 − 2 �Wi + �Wi+1

]
. (13)

This term removes a high frequency oscillations and wiggles generated in the computed flow-
field near a sharp corners in geometry or in the vicinity of a large gradients. If not smoothed,
the oscillations, resulting mainly due to the central type of differencing of convective terms
in (3), may completely destroy the numerical solution. Remark also, the artificial viscosity
term does not change the order of the applied numerical scheme.

The stability limit criterion, valid for a regular orthogonal meshes, is applied due to the
explicit numerical formulation

Δt ≤ min
Ωijk

CFL

�A

Δx
+
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+
�C
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+ 2K

(
1

Δx2
+

1
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+
1

Δz2

) , (14)

where �A, �B, �C refer to the spectral radii of the inviscid Jacobi matrices and CFL = 2, as
reported in [14].
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4. Turbulence model

Closure of the system (3) is performed by standard high-Reynolds k-ε model formulated
using wall-functions [3]. Hence, two additional transport equations are added to the sys-
tem (3) for the turbulent kinetic energy abbreviated by k and for the rate of dissipation of
turbulent kinetic energy denoted by ε(
k u
)
x

+
(
k v
)
y

+
(
k w
)
z

=
(
K(k) kx

)
x

+
(
K(k) ky

)
y

+
(
K(k) kz

)
z
+ P − ε , (15)

(
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x

+
(
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)
y

+
(
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)
z

=
(
K(ε) εx

)
x

+
(
K(ε) εy

)
y

+
(
K(ε) εz

)
z
+ Cε1

ε

k
P − Cε2

ε2

k
, (16)

where P denotes the turbulent production term P = τij ∂vi/∂xj for the Reynolds stress
written as τij = −2 k δij/3+ νT (∂vi/∂xj + ∂vj/∂xi) and the terms K̃, K(k), K(ε), νT stand
for the diffusion coefficients and the turbulence viscosity

K̃ = ν +
νT
σC

, K(k) = ν +
νT
σk

, K(ε) = ν +
νT
σε

, νT = Cμ
k2

ε
, (17)

where the parameter σC = 0.74 denotes the turbulent Prandtl number. The closure coeffi-
cients for the turbulence model are described in [1]

Cμ = 0.09 , σk = 1.0 , σε = 1.11 , Cε1 = 1.44 , Cε2 = 1.92 . (18)

5. Boundary conditions

The system (3)+(15)+(16) is solved with the following boundary conditions [1]

– Inlet : u =
u∗

κ
ln
(
z

z0

)
, v = 0 , w = 0 , k =

u∗2√
Cμ

(
1 − z

D

)2

, ε =
C

3/4
μ k3/2

κ z
,

– Outlet : homogeneous Neumann conditions for all quantities,

– Top : u = U0 , v = 0 ,
∂w

∂z
= 0 ,

∂k

∂z
= 0 ,

∂ε

∂z
= 0 ,

∂C

∂z
= 0 ,

– Wall : standard wall functions are applied and
∂C

∂n
= 0 for the concentration,

where U0 represents the free-stream velocity magnitude, u∗ is the friction velocity, κ = 0.40
denotes the von Kármán constant, z0 represents the roughness parameter and the parame-
ter D refers to the boundary layer depth.

The wall-functions enable to apply a wall-coarser grids and near-wall profiles of computed
quantities can be reconstructed via an algebraic profiles [3], [14]. Hence, the CPU time of
computer simulations can be significantly reduced. Remark that true and correct use of this
approach is for non-separated turbulent boundary layer flows only, where the production of
turbulent kinetic energy is in balance with its dissipation. The wall-functions of different
forms are widely used in engineering practice for complex flow applications [8].

6. Validation

• The reference experimental data due to Khurshudyan [9] and corrected by Trombetti [10]
are also available in the ERCOFTAC database [15]. Moreover, Castro performed flow and
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pollution dispersion reference numerical computations [1]. Some results have already been
published in [7].

• The computational domain extended distance ±40H up and downwind of the hill summit
and to vertical height 13.7H , where H = 0.117m is hill height. The hill H3 of maximum
slope of 26◦ has been chosen. Two grids have been tested and the results compared, both
of them including 400×80 cells and uniformly expanding upwind, downwind and vertically
according to the following expansion ratio parameters ax, az in the stream-wise and the
wall-normal directions.

Grid-A : wall coarser grid, ax = 1.01, az = 1.032 leading to Δxmin = 7.4mm, Δzmin =
= 4.2mm and in terms of wall-units Δx+

min = 87.8, Δz+
min = 49.8 based on ν and u∗,

Grid-B : wall finer grid, ax = 1.01, az = 1.071 leading to Δxmin = 7.4mm, Δzmin =
= 0.43mm and in terms of wall-units Δx+

min = 87.8, Δz+
min = 5.1, here Δzmin is comparable

as in the Castro’s case.

Fig.2: Whole 2D-computational domain of length and height 9.36 m and 1.6 m, flow
is assumed from left to right, hill summit is at x = 0m and y = 0.117 m

Fig.3: Zoom to non-uniform wall-coarser Grid-A Fig.4: Zoom to non-uniform wall-finer Grid-B

• The flow-field input parameters are : the free-stream air velocity U0 = 4m/s, the boun-
dary layer depth D = 1m, the friction velocity u∗ = 0.178m/s, the roughness parame-
ters z0 = 0.16mm and the Reynolds number Re = 31200, which based on U0, hill height
H = 117mm and the air kinematic viscosity ν = 1.5×10−5 m2/s. The inlet profiles of u, k
and ε have been constructed, according to relations in the section 5, to extend the boundary
layer depth D and then the uniform and continuous extrapolation have been performed up
to the top of computational domain.

• The concentration input parameters are : totally three different heights of linear source
(2D-computations) have been assumed at the downwind side of hill : xs = 3H and
zs = 0.25H , 0.5H , 1.0H . Normalization of the concentration field is performed for presenta-
tion purposes either as a) χ = C U0H

2/Q, where Q denotes the source intensity ([kg/m3/s])
or b) by the corresponding maximum glc (ground-level-concentration) over flat terrain (ad-
ditionally computed for all three source heights) as C/C0,max.

• Concentration source treatment : Castro performed all his concentration simulations
using the 3D-grid respecting point nature of the source. Actually, Castro redistributed the
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2D-flow-field uniformly in the lateral y-direction for that purpose. This is also our near-
future target, however we first started with CPU-time less consuming 2D-concentration
simulations based on frozen pressure-velocity flow-field data on a given grid. Therefore,
comparison between the Castro’s and ours numerical predictions can be performed at a qua-
litative level only and not quantitatively. The Grid-B has been used for all concentration
simulations as in [1].

6.1. Remark on validation

Different validation study of the mathematical model (3) (without dispersion model) has
been already performed in the past. Another two types of turbulence models were used
based on k-ε model in the low-Reynolds-number formulation and the algebraic turbulence
model due to Baldwin and Lomax.

The validation was based on the ERCOFTAC test case due to Almeida of fully deve-
loped channel water-flow over 2D-hill mounted on bottom wall [15]. The numerical results
were compared to the reference experimental data [11] and also to the reference numerical
data [12]. Our numerical predictions were published eg. in [13] and [14].

7. Some numerical results for velocity field

A fairly large separation zone develops behind hill, see the Figures 5 and 6 for comparison
between Grid-A and Grid-B predictions. Notice that measured reattachment length was
xr = 6.5H and the Castro’s numerical prediction was xr = 4.1H .

The stream-wise u-velocity profiles at the hill summit and at half of measured recircula-
tion bubble are shown in Figures 7, 8, 9 and 10.

The near-wall speed-up effect at the hill summit is totally smeared on the coarse Grid-A
profile, see the Figure 7. However, it is well captured on the fine Grid-B profile. Both profiles
on the next Figure 8 follow well the experimental data above the height of the recirculation
zone. However, there is different behavior in the bubble due to different prediction of
reattachment points on the two grids.

The wall-normal velocity profile comparison can be seen on the Figure 9 where much
better agreement is achieved on the coarser Grid-A profile compared to the fine Grid-B
profile. Both profiles follow well the experimental data on the next Figure 10.

There is generally the under-prediction of the turbulent kinetic energy k at the hill
summit on both grids as presented on the Figure 11. This finding is well comparable
with Castro’s numerical predictions [3], p. 845. On the other hand, there is an excessive
production of k in the wall-vicinity for our both profiles as outlined on the Figure 12.

Fig.5: Zoom of separation zone behind hill
on wall-coarser Grid-A, reattachment
xr = 6.84H

Fig.6: Zoom of separation zone behind hill
on wall-finer Grid-B, reattachment
xr = 4.18H
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Fig.7: Stream-wise u/U0-velocity profiles
at hill summit x = 0H

Fig.8: Stream-wise u/U0-velocity profiles at half
of measured recirculation zone x = 3H

Fig.9: Wall-normal w/U0-velocity profiles
at hill summit x = 0H

Fig.10: Wall-normal w/U0-velocity profiles at half
of measured recirculation zone x = 3H

Fig.11: Turbulent kinetic energy k/U2
0 -profiles

at hill summit x = 0H
Fig.12: Turbulent kinetic energy k/U2

0 -profiles
at half of measured recirculation zone
x = 3H

8. Some numerical results for concentration field

The following figures have been created to be directly compared to similar figures pub-
lished by Castro in [3], p. 847. A qualitative matching exists between our predictions and
Castro’s results. However, there is disagreement when trying to compare them quantita-
tively due to linear nature of our source (2D-computation) and point nature of the Castro’s
reference case (3D-computation).
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Fig.13: Computed contours of χ = C U0H
2/Q

with exponential scale starting at χ = 15
for source heights 0.25H

Fig.14: Computed contours of χ = C U0H
2/Q

with exponential scale starting at χ = 15
for source heights 0.5H

Fig.15: Computed contours of χ = C U0H
2/Q with exponential

scale starting at χ = 15 for source heights 1.0H

Fig.16: Ground-level-concentrations (glc) with source at heights 0.25H and
0.5H , normalized by corresponding maximum glc over flat terrain

It is also interesting to compare our and Castro’s reference ground-level-concentration
(glc) profiles, the Figure 16 to be directly compared with similar figure published by Cas-
tro in [3], p. 847. Both well predict the peak position of concentration distribution which is
slightly shifted upstream from the source x-location. The peak value is called the ‘terrain am-
plification factor’. One can also see much slower plume decay in our case (2D-computation)
compared to the Castro’s reference one (3D-computation).
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9. Conclusion

The key findings of the validation study described above are as follows. The reattachment
point is very sensible to the wall grid resolution. The Castro’s value is xr = 4.1H for the
standard k-ε model and the experimental one is xr = 6.5H . We achieved xr = 6.84H on the
wall-coarser Grid-A and xr = 4.18H on the wall-finer Grid-B. The preliminary 2D-concen-
tration computations have shown a qualitative agreement with the target Castro’s numerical
predictions. Also the effect of near-ground ‘terrain amplification factor’ is well captured if
the normalization is done by the maximum ground-level-concentrations over flat terrain.
Its maximum is slightly shifted upstream of the pollutant source and this is a feature that
cannot be captured by any simple Gaussian-plume model. The validation concentration
3D-simulations will proceed soon.
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Notation

|n : superscript related to time level
|” : superscript related to perturbation
|∗ : superscript related to friction
|1, 2, 3 : subscripts related to x, y, z-axis directions
|i, j , k : subscripts related to reference directions
|t, x, y, z : subscripts related to derivative in time and in space
|0 : subscript related to free-stream
|l : subscript related to the l-th face of control volume
αi : Runge-Kutta coefficients
β : artificial sound speed
κ : von Kármán constant
ν, νT : kinematic laminar viscosity, turbulent viscosity
� : density
σC : turbulent Prandtl number for concentration
Cμ, σk, σε, Cε1, Cε2 : closure coefficients for turbulence model
ε : artificial diffusion coefficients, dissipation of turbulent kinetic energy
k : turbulent kinetic energy
Δt : time step
Δx, Δy, Δz : stream-wise, span-wise, wall-normal space increments
Ω : computational domain
Ωijk : control volume
p : pressure
t : time
u, v, w : stream-wise, span-wise, wall-normal velocity components
z0 : surface roughness
D : boundary layer depth
C : concentration of passive pollutant
H : height of hill
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K, K̃, K(ε), K(k) : turbulent diffusion coefficients
L, B, D : space difference operators
�ΔS

(l)
: normal vector to l-th face of control volume

�F , �G, �H : inviscid fluxes
�R, �S, �T : viscous fluxes
�V , �W : velocity vector, vector of unknown variables
RANS equations : Reynolds-averaged Navier-Stokes equations
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[3] Jaňour Z.: On the mathematical modelling of stratified atmosphere, Institute of Thermody-
namics, Report T-470/06, Prague, 2006 (in Czech)
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