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SYSTEMIC APPROACH TO MODELLING
OF CONSTITUTIVE BEHAVIOUR
OF VARIOUS TYPES OF MATTER

Part I – Basic and Simple Constitutive Models

Jǐŕı Burša*, Přemysl Jańıček*

The paper presents a systemic overview of constitutive models, i.e. mathematical or
graphical representations of responses of a matter initiated by its activation coming
from its surroundings (especially stress- or strain-controlled loadings in mechanics).
Various states of matter showing different behaviour are related with different dis-
tances among particles of the matter and their mutual movements. However, in oppo-
site to the previous centuries, when different approaches and methods were developed
and used for description of various types of matters (in solid mechanics, hydrome-
chanics, thermodynamics etc.), recently more and more often solid mechanics meets
materials showing some features of fluids (e.g. creep, flow), and interactions of matters
in different states (e.g. solid-liquid) need to be solved as well. The presented paper,
together with another consequent one (Part II), creates a set of two related articles
aiming at facilitating you the orientation in various types of constitutive equations. It
presents graphical representations of basic mechanical responses (stress as a function
of strain magnitude and strain rate, creep, stress relaxation), as well as their simpli-
fied mathematical substantiation. Some more complex types of constitutive models
will be presented in part II. On the base of these papers, the chapter on constitutive
models was published in [1].

Keywords : constitutive models, mechanical behaviour, state of matter, perfect solid,
fluid, gas

1. Introduction

The term ‘mechanical behaviour of matter’ can be defined as a set of responses of a matter
initiated by its activation coming from its surroundings (especially stress or strain controlled
loadings). Various states of matters show various types of behaviour; this is related to
different distances among particles of the matter and their mutual movements. Therefore
different methods have been used for their description in the history of mechanics what lead
to birth of specialized branches such as solid mechanics, hydromechanics, aeromechanics or
thermodynamics. Recently, however, more and more often solid mechanics meets materials
(this term is commonly used for matters in the solid state) showing some features of fluids
(e.g. creep, flow), as well as interactions of matters in different states (e.g. solid-liquid). The
presented set of two related articles aims at facilitating you the orientation in various types
of constitutive equations, i.e. mathematical models of constitutive behaviour of real matters.

* doc. Ing. J. Burša, Ph.D., prof. Ing. P. Jańıček, DrSc., Institute of Solid Mechanics, Mechatronics and
Biomechanics, Brno University of Technology
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2. Systemization of constitutive dependencies and models

In a broader sense, constitutive models are mathematical descriptions of mutual depen-
dencies between loads (forces etc.) and deformations (consisting of changes of shape and
volume) or their rates, including time dependencies such as creep and relaxation responses.
Constitutive dependencies can be defined as follows :

Constitutive dependencies are causal dependencies between stress and strain tensors

or among some alternative quantities derived from them by mathematical manipulations,

including time dependencies.

Fig.1: Systematic overview of isotropic constitutive relations
of matters with presentation of mutual relations
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Thus the simplest constitutive models are represented by the relations defining perfect
matters in various states (perfect liquid, perfect gas, perfect rigid solid). On the other hand,
some rather complex constitutive models have been formulated with various components of
their behaviour (elastic, plastic, viscous), which can be used for derivation of the simpler
ones as their special cases.

Therefore it is useful to divide the constitutive models into several hierarchical levels.
– Basic constitutive models – The mathematical relations and the geometrical depen-

dencies will be presented here, relating substantial quantities contained in constitutive
relations for perfect rigid solid, perfect liquid and perfect gas.

– Simple constitutive models – This term is introduced for such constitutive models
that describe behaviour of matters differing from the ‘perfect’ ones by an only one
certain property, e.g. perfect elastic matter, conditionally perfect plastic matter, vis-
cous liquid.

– Combined constitutive models – These models can be created by a combination of
two or more simple constitutive models. They exploite often the so-called rheological
models to describe e.g. behaviour of the following types of matters: viscoelastic,
elastic-plastic, viscoplastic and elastic-viscoplastic.

A schematic overview of constitutive models is presented in Fig. 1; this scheme presents
isotropic models only, i.e. without taking any direction dependency of properties into ac-
count. This paper (part I) deals with the basic and simple constitutive models in detail,
while the combined constitutive models will be analyzed in the consequential paper (part II).

2.1. Definition of basic constitutive models

These models characterize basic properties typical for substances in basic states of matter.
Note that these perfect matters do not exist in fact, they represent certain models of the
reality that are defined as follows:

– Perfect rigid solid – its feature is that it is non-deformable (in volume as well as in
shape), i.e. its resistance against changes of shape and volume is infinite.

– Perfect fluid – it shows zero resistance against changes of shape. This term com-
prehends matters in liquid state as well as gases. A liquid differs from a gas by its
volumetric part of deformation as follows :
– Perfect liquid – its volumetric component of deformation equals zero under any

loading conditions – it is incompressible (any processes are isovolumic only).
– Perfect gas – its volumetric change is governed by the state equation of gases.

To differ among solids, liquids and gases, it is obviously necessary to divide the defor-

mation of the matter into its volumetric and shape (deviatoric) component. This must be
strictly kept at almost all constitutive models. Unfortunately, the only exception is probably
the well known Hooke’s law, by virtue of the principle of superposition at linear dependen-
cies. When using combined rheological models, however, it is strictly necessary to model

deviatoric and volumetric components of stress and strain tensors separately*.

*As the volumetric change is relatively small under load in many technical matters (liquids as well
as solids), combined rheological models are often used for description of dependencies of
deviatoric components of stress and strain tensors only and the relation between the spherical
components of stress and strain is described by linear elastic relations only or even the volumetric
deformation is neglected.



274 Burša J. et al.: Systemic Approach to Modelling of Constitutive Behaviour . . .

2.2. Types of dependencies representing behaviour of matters

Behaviour of matters is comprehensively described (from the viewpoint of mechanics) by
these dependencies :

Fig.2: Time dependencies of input quantities
for description of creep and relaxation

1. Constitutive dependencies – In a narro-
wer sense, we denote as constitutive the
dependencies between stress and strain
tensors. If they are expressed by mathe-
matical relations, then simplified shapes
of these formulas are often used for prac-
tical reasons, namely shapes valid for
specific cases of stress states (biaxial,
shear, or uniaxial stress states).

2. Creep response – This is the time dependency of the deformation commonly called
creep; it is investigated usually under static load inducing uniaxial stress state given
by the stress : σ = σ0 H(t), or σ = σ0 H(t) − σ0 H(t − t0), where H(t) is Heaviside
function, given by relations : H = 0 for t < 0, H = 1 for t > 0 (see Fig. 2a).

3. Relaxation reponse – This is the time dependency of stress. Relaxation response
is investigated usually under deformation state given by the following strain values :
ε = ε0 H(t), resp. ε = ε0 H(t)−ε0 H(t−t0), where H(t) is the same Heaviside function
(see fig. 2b).

4. Speed response – In matters showing time dependency of stress-strain response to
loading, also the dependency of stress σ on the strain speed ε̇ can be investigated (i.e.
σ – ε̇).

The presented models are based on [2] and completed with some additional formulations
and with a comprehensive overview of constitutive responses of the models in question.

3. Basic constitutive models in mechanics

Using the above considerations, constitutive models of perfect rigid solid, perfect liquid
and perfect gas are presented in this chapter. The systemized knowledge will be used in
formulations of simple and combined constitutive models.

Fig.3: Dependencies of stress and strain components at a perfect rigid solid
under uniaxial, shear and hydrostatic stress states conditions

3.1. Perfect rigid solid

As mentioned above, this matter is non-deformable in volume and shape; in other words,
its deformation equals zero under any values of stress components.

If perfect solid matter is considered a special case of linear elastic matter, then both
bulk K and shear G modules equal infinity. Here is the reason why the constitutive de-



Engineering MECHANICS 275

pendencies ‘shear stress τ vs. shear strain γ’ and ‘middle stress σs vs. relative volumetric
change e’ are formally the same. Therefore the dependency of the normal stress σ on
longitudinal strain ε under uniaxial tension test can also be described by the same linear
formula, even if the stress state consists of the spherical σs = σx/3 as well as deviatoric TσD

components of stress tensor (see Fig. 3).

Applications : analyses of movement at bodies showing negligible deformations, i.e. in kine-
matics and dynamics of solid (rigid) bodies.

3.2. Perfect liquid

In hydromechanics perfect liquid is defined as a matter incompressible in volume (i.e.
with bulk modulus K → ∞, see Fig. 4a) and with zero viscosity (i.e. with zero resistance
against shape – isovolumic changes, see Fig. 4b).

Fig.4: Dependencies of stresses on strains at perfect liquid

Applications : hydrostatics, mechanics of water and other liquids with low viscosity under
low flow rate.

3.3. Perfect gas

In hydromechanics, aeromechanics and thermodynamics, a perfect gas is defined as a mat-
ter with zero resistance against shape changes that is compressible and the volumetric change
of which is governed by the state equation of perfect gas in the form :

p v = R T ,

where p is gas pressure, v specific volume (per grammolecule), T absolute temperature,
R universal gas constant.

The zero resistance against shape changes is a common property of perfect gas and perfect
liquid. Characteristic feature of gases, as a direct consequence of the above state equation,
is their extensibility, i.e. their ability to fill up all the disposable space.

Fig.5: Dependencies of stresses on strains in perfect gas
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From the viewpoint of dependency between strains and stresses, it can be stated :
– the character of the dependency ‘mean stress σs vs. relative volumetric change e’

depends on the type of the thermodynamic conditions under which the perfect gas is
compressed, Fig. 5a,

– the dependency ‘shear stress τ vs. shear strain γ’ is, in consequence of the zero resis-
tance against the shape change, the same like at the above perfect liquid, i.e. shear
stress equals zero under any magnitude, rate and history of shear strain, Fig. 5b.

Applications : mechanics of air and other gases under small flow velocities.

4. Simple constitutive models in mechanics

Simple constitutive models describe such matters that differ from the perfect matters
described in the previous chapter in one substantial property. In this feature they differ
from the combined constitutive models that ‘model’ more of these substantial properties.
The combined models will be dealt with in the consequential paper.

The simple constitutive models represent the lowest level in the hierarchy of constitutive
models of real (non-perfect) matters. They can be exploited as basic elements of constitutive
models of higher levels. Although the solid mechanics aims mostly at matters in solid state,
also some simple constitutive models of liquids will be analyzed here, because some real
materials (in solid state) show some properties of liquids as well.

No. Name Modelled property Scheme
Mathematical
description

1
Linear spring
(Hooke’s element)

Linear elasticity
σ = E ε
τ = G γ

2 Non-linear spring Non-linear elasticity σij = ∂W/∂εij

3
Liquid linear damper
(Newton’s element)

Linear viscosity σ = η ε̇

4
Liquid non-linear damper
(Norton’s element)

Non-linear viscosity σ = λ ε̇(1/N)

5 Skidding block
Rigidity up to a certain
threshold value of stress

ε̇ = 0 for
σ ∈ (−σB, +σB)

6 Stopping block
Rigidity above a certain
threshold value of strain

σ = 0 for
ε ∈ (−εB, +εB)

Tab.1: Overview of basic elements of rheological models

Explanations to the individual elements in the table :

– No.1 Linear dependency of stress σ on strain ε – this linear dependency is denoted as
Hooke’s law.

– No.2 Non-linear dependency of stress σ on strain ε, described by various forms of strain
energy density functions W in the theory of hyperelasticity.

– No.3 Linear dependency of stress σ on strain rate ε̇.
– No.4 Non-linear dependency of stress σ on strain rate ε̇ – the non-linearity is expressed

by means of the exponent (1/N) at the strain rate ε̇.
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– No.5 If the stress σ inheres in the interval σ ∈ (−σB, +σB), then the element movement
is blocked. If the stress value exceeds the defined limits (e.g. overcomes the yield
stress σK), then the element movement is enabled.

– No.6 If the strain ε inheres in the interval ε
∫
(−εB, +εB), then the element movement

(deformation) is stress-free. If the strain value reaches the defined limit value
ε = ±εB, then the element movement is blocked at this value. The blocking

strain εB can be e.g. the strain εL, corresponding to the straightening of the
initialy wavy rigid fibres in the composite material structure.

An overview of ‘mechanical schemes’, which represent basic elements of rheological mo-
dels of substantial properties of matters in the solid and liquid states, is presented in the
table 1. This overview includes also verbal and mathematical descriptions of the modelled
property or behaviour of the matter in question. Combined models can be created on the
base of the elements from this table in serial or parallel, as well as combined orderings, in
dependence on the type of the property to be modelled. The following formulas are valid
for individual connections :

series connection ε =
∑

i

εi , σ = σi , parallel connection σ =
∑

i

σi , ε = εi .

The formulas mean that, in series connection, strains of individual elements are summarized
(while stresses are the same), and in parallel connection stresses are summarized (while
strains in individual elements are the same).

Description with simple constitutive models is applicable especially for the following
matters: perfect elastic matter linear or non-linear, conditionally perfect plastic matter,
linear and non-linear viscous liquid. For these matters, the dependencies of stress on strain
magnitude and rate, as well as time dependencies for creep and relaxation responses, are
presented in the following chapters in their mathematical and graphical interpretations.

4.1. Perfect elastic matter

1© General characteristic : This matter features by its stress-strain dependence along the
same curve in loading and unloading, under both stress as well as strain controlled loadings.
This curve is not linear in general, it must be monotonous only (increasing under loading
and decreasing when unloaded). The mutual relation between stresses and strains is always

unique what results in zero hysteresis under
cyclic loading. Stress-strain response under
changed load is instantaneous.

Fig.6: Responses of a perfect elastic matter

2© Creep : From the thermodynamical view-
point, loading and unloading of an elastic ma-
terial is a sequence of equilibrium states so
that ε = const for σ = const. Therefore it can
be concluded that there is no creep in a perfect
elastic matter (see Fig. 6a).

3© Relaxation : Similarly it can be concluded that there is no relaxation in a perfect elastic
matter. The time history of stress corresponds to the time history of strain, differing mutu-
ally only by the scales of the ordinates (see Fig. 6b). This holds under both stress and strain
controlled loadings, for both linear and non-linear elastic matters.

Applications : metals in elastic strain range, rubbers and other elastomers, concrete.
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4.1.1. Linear elastic (Hookean) matter

Fig.7: Hooke’s element

1© General characteristic : At the most general level, the
linear elastic matter can be characterized as follows : it
is a matter whose dependencies between components of
stress tensor Tσ and strain tensor Tε are linear (in both
loading and unloading). In rheological models, this type
of behaviour is represented by a cylindric spring and creates the so called Hooke’s element,
denoted as element No. 1 – linear spring in Table 1. Though this definition of a linear elastic
matter is the most general, more notorious is the definition saying that, in a linear elastic
matter, the dependence between stress and strain is given (in a limited range in fact) by the
linear function σ = E ε. This formula is well-known as Hooke’s law, it holds, however, for
uniaxial stress states only and does not describe the fact that there exists a triaxial strain
state under uniaxial tension (or compression). A complete formulation of Hooke’s law for
uniaxial tension is given by the following equations :

σx = E εx , εy = −μ εx , εz = −μ εx .

For a general, i.e. triaxial stress state, the so-called generalized Hooke’s law is formulated;
it is based on the superposition principle (valid for linear dependencies only) and one of its
possible shapes is as follows :

εx = (σx − μ σy − μ σz)/E , γyz = τyz/G ,

εy = (σy − μ σx − μ σz)/E , γxz = τxz/G ,

εz = (σz − μ σx − μ σy)/E , γxy = τxy/G .

The inverse shape of the Hooke’s law, with components of stress tensor formulated
explicitely, can be obtained after some mathematical manipulations in the following shape :

σx = 2 Gεx + λ (εx + εy + εz) , τyz = Gγyz ,

σy = 2 Gεy + λ (εx + εy + εz) , τxz = Gγxz ,

σz = 2 Gεz + λ (εx + εy + εz) , τxy = Gγxy .

where G = E/[2(1 + μ)] is shear modulus, λ = E μ/[(1 + μ) (1 − 2 μ)] is called Lamé’s
constant.

Fig.8: Basic characteristics of a linear elastic matter

It is useful to remember now that this model is the only one (with the exception of the
perfect rigid matter) that does not need to distinguish between the volumetric and shape
components of deformation, because the behaviour of both parts is the same (see Fig. 8).
Due to this fact, the Young’s modulus of elasticity E could be formulated and used in
description of multiaxial stress states as well. For all the combined constitutive models,
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however, it is necessary to separate the volumetric and shape components of deformation,
and, consequently, to rewrite the Hooke’s law as dependence of stress tensor components on
the deviatoric and spherical (volumetric) components of strain tensor, expressed e.g. in the
following form :

σx = 2 GTεxxD + K (εx + εy + εz) = 2 GTεxxD + K e , τyz = 2 GTεyzD ,

σy = 2 GTεyyD + K (εx + εy + εz) = 2 GTεyyD + K e , τxz = 2 GTεxzD ,

σz = 2 GTεzzD + K (εx + εy + εz) = 2 GTεzzD + K e , τxy = 2 GTεxyD .

where G, K are shear and bulk modules, respectively, TεijD is a component of strain devia-
tor and e is the relative volumetric change, i.e. the volumetric part of strain tensor. The
volumetric part of the strain tensor is given by three principal strain components of the
equal magnitude εs = (εx + εy + εz)/3, while the deviatoric part of strain tensor TεijD is
given by subtraction of the spherical part from the strain tensor.

If we denote the axes by numbers 1, 2, 3 instead of x, y, z to enable the use of gen-
eral tensorial mathematical formulation (notation of the corresponding stress and strain
components can be found in Table 2), we can obtain the Hooke’s law in the following form :

σij = 2 GTεijD + δij K e ,

where Kronecker’s symbol δij (given by δij = 1 for i = j and δij = 0 for i �= j) is used for
simplification.

Technical notation σx σy σz τxy τyz τxz εx εy εz γxy γyz γxz

Tensorial 2-subscript notation σ11 σ22 σ33 σ12 σ23 σ13 ε11 ε22 ε33 ε12 ε23 ε13

Tensorial 1-subscript notation σ1 σ2 σ3 σ6 σ4 σ5 ε1 ε2 ε3 ε6 ε4 ε5

2© Creep : Creep is treated as loading with a stepwise controlled stress increase up to the
value of σ0 in the time t = 0 and a stepwise stress decrease back to the zero value in the
time t = t0, as shown in Fig. 2. The response has a form of the strain time dependence ε(t)
under the above loading. Here holds (in the range of the validity of Hooke’s law) σ = E ε,
and a general solution is based on the analysis of strain rate dε/dt. As E = constant, it
holds :

dε

dt
=

d
dt

(σ0

E

)
=

1
E

dσ

dt
.

If the stress change velocity is zero, also the velocity of deformation (strain rate) equals zero.
This is a correct mathematical evidence that there is no creep in a linear elastic matter.
3© Relaxation : Relaxation is solved for the case of a deformation controlled loading, corre-
sponding to the stepwise strain increase up to the value of σ0 in the time t = 0 and a stepwise
strain decrease back to the zero value in the time t = t0, as shown in Fig. 2; for the strain the
same function is used here with the stress in the case of the creep description. The analysis
is based then on the same mathematical formulas. As the strain ε is constant in the time
interval in question as defined above, its time derivative equals zero, i.e. dε/dt = 0. Then it
holds :

dε

dt
=

d
dt

( σ

E

)
= 0 → 1

E

dσ

dt
= 0 → σ = const.

So it is confirmed mathematically that there is no relaxation in a linear elastic matter. The
response to a change of load is instantaneous, an immediate attainment of equilibrium state



280 Burša J. et al.: Systemic Approach to Modelling of Constitutive Behaviour . . .

is supposed after any change. No creep or stress relaxation occurs, also there is no hysteresis
under cyclic loading.

Applications : metals in elastic strain range, concrete.

Note – use of proper symbols

As it is necessary to distinguish between the spherical and deviatoric components of
stress and strain tensors in most constitutive models, as mentioned above, this should be
respected in the interpretation of the mathematical symbols used in the constitutive models
as follows :

– Only in the case where the constitutive model is used for description of the spherical
(volumetric) part of stress and strain tensors, the symbols σ can be understood as
normal stresses and ε as longitudinal strains, namely their mean values σs a εs, and
modulus of elasticity as bulk modulus (never Young’s modulus). Otherwise, the
symbols σ a ε should be understood as components of the deviatoric part of stress
and strain tensors, e.g. shear stress and angular (shear) strain.

– In the case that the constitutive model is used for description of shape (deviatoric)
part of deformation, common symbols for shear stress and strain and shear modulus
are often used in technical literature, i.e. τ , γ and G, respectively. Some of these
symbols are used in the text below.

For example, the stiffness of the spring representing Hooke’s element (element No. 1)
should not be denoted by E symbol (as Young’s modulus) but either G (shear modulus), or
K (bulk modulus), if the deviatoric or spherical parts of strain is described by the model.

4.1.2. Non-linear elastic matter

Fig.9: Non-linear elastic element

Fig.10: Non-linear dependence
σ = f(ε)

1© General characteristic : A matter with this characteristic shows a mutually unique (un-
ambigous) but non-linear dependence σ = f(ε), see Fig. 10. Conical spring (see Fig. 9) or
spring with an arrow could be used as symbol of this type of behaviour in rheological mod-
els but it is not very common. Mathematical description
can have e.g. the form of the formula σ = E ε1/N , where
modulus of elasticity E and inverse exponent N are elastic
parameters of the model. This formula, however, holds for
uniaxial stress state only, similarly to the simplest shape of
Hooke’s law σ = E ε that can be understood as its special
case with N = 1.

A generalization of the above constitutive dependence
for multiaxial stress states brings substantial problems, be-
cause the principle of superposition is not valid for non-
linear relations. These problems are also associated with
the multilinear elastic constitutive model. Priority should
be given to hyperelastic models, based on the postulate of
existence of a strain energy density function.

Multilinear elastic model can be obtained by replacing the stress-strain curve σ = f(ε)
with a number of linear parts described by the Hooke’s law. The stress-strain analysis is
then carried out using increment method and the modulus of elasticity is changed after
having achieved a limit value of strain. This rheological model (Fig. 11) should be, however,
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classified as a combined model, because it consists of sev-
eral linear springs (elements No. 1 in Table 1) and one or
more stopping blocks (elements No. 6).

Fig.11: Multilinear elastic model

This model of the non-linear elastic matter shows linear
elastic behaviour defined by the modulus of elasticity G0

up to the limit strain value εB of the stopping block, above
which the modulus of elasticity increases stepwise by the
value of G1 and the dependency is linear again. Such

a behaviour can occur in structures with wavy reinforcing fibres (with negligible bending
stiffness) that do not show their load-bearing ability below a certain threshold strain value,
at which they can straighten. More complex multilinear elastic constitutive characteristics
can be obtained by use of a higher number of the basic elements.

The family of hyperelastic models is based on various formulations of the strain energy
density function being a scalar function of all components of deformation tensor. By diffe-
rentiation of this function with respect to the components of deformation tensor, the corre-
sponding stress components can be calculated. These constitutive models are used especially
for materials showing large elastic strains causing a non-linear material behaviour by them-
selves. Then it is necessary to distinguish among various formulations of stress and strain
tensors; there values differ very substantially, whether the elementary force (deformation)
is related to the initial (undeformed) or final (deformed) geometry, or (in icrements) to the
actual deformed geometry. Models by Mooney-Rivlin, Ogden, Arruda-Boyce are the most
frequent among them. The theory of hyperelastic models exceeds substantially the extent
of this article so that the reader is referred e.g. to [3] for more information.

Applications : rubber and other elastomers, soft biological tissues.

4.2. Conditionally perfect plastic matter

This concept is not a standard one in the professional terminology. We would like to
offer, however, a comprehensive overview of models of behaviour of matters, so that the
term ‘conditionally perfect plastic matter’ is required to be introduced. Such a matter is
perfectly plastic under certain conditions and perfectly rigid under some other conditions.
Its ability to be plastic is conditioned by some circumstances.

From the simple constitutive models, rigid-plastic models used in moulding belong to this
category, as well as the less frequent matters plastic-rigid. These models are used exclusively
for modelling of the deviatoric strain component TεD. Their individual properties, under
the conditions of creep and relaxation, are analyzed below.

4.2.1. Perfect rigid-plastic matter

1© General characteristic : This matter behaves like perfectly rigid up to a certain limit value
of deviatoric stress tensor component TεD. If this value has been reached, a perfect plastic
flow without any viscosity or stiffening occurs, i.e. there is a perfect plastic deformation
under constant stress. Such a behaviour corresponds to the element No. 5 in Table 1, the so
called skidding block. If the stress value σ is inside the interval σ ∈ (−σB, +σB) than the
element movement is blocked. If the stress value σ reaches σB, then the movement becomes

unblocked (see Fig. 12a). The blocking stress σB can equal e.g. the yield stress σK.
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Fig.12: Basic characteristics of perfect rigid-plastic matter

2© Creep : With respect to the existence of skidding block, the following two cases need to
be taken into account :

– for σ < σB : The element deformation is blocked in this case so that the strain equals
zero. This situation is represented by a straight line identical with the abscissa (t-axis)
in the graph ε(t) (Fig. 12b), what means no creep.

– for σ = σB : The element is unblocked but the stress meets σ = σB for any value of
loading force (stress) so that no equilibrium state can be reached and strain increases
without any limitation. In the graph ε(t) this situation is represented by a straight
line identical with the ordinate (ε-axis) (Fig. 12b), what means the strain ε increases
to infinity.

3© Relaxation : Stress corresponding to the limit value σB (e.g. yield stress σK) occurs under
any non-zero deformation because the deformation is blocked at all lower stress values. This
stress is time-independent for any deformation. If the deformation is required to return
to its initial (zero) value, an opposite stress is induced in this way, with its magnitude
corresponding to the limit value σB again because the deformation is blocked at lower stress
magnitudes. Therefore no stress relaxation occurs here (Fig. 12c).

Applications : soil mechanics, metal moulding analyses etc.

4.2.2. Perfect plastic-rigid matter

1© General characteristic : In this matter, a perfect flow without viscosity and stiffening, i.e.
perfect plastic deformation occurs up to a certain limit value εB. After having achieved the
value of εB, the further deformation is blocked. If the load increase continues, the matter
behaves like perfect rigid, i.e. the deformation does not increase under any stress increase
(Fig. 13a). This behaviour corresponds to element No. 6, i.e. stopping block.

– If the strain value ε lies within the interval ε ∈ (−εB, +εB), then the element move-
ment is fully free, it deforms without any stress.

– If the strain achieves the limit value of εB, the element movement becomes blocked.
The blocking strain εB can be given by straightening of the initially wavy reinforcing
fibres or macromolecular chains in the material structure.

Fig.13: Basic characteristics of perfect plastic-rigid matter
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2© Creep : Here a deformation with the magnitude corresponding to the limit strain εB

occurs under any loading force inducing a non-zero stress. Then the deformation is blocked
independently of the stress magnitude. This strain is independent of time for a steady stress.

After the body having been unloaded, the strain remains without any change, if no load
in opposite sense occurs. It can be stated that there is no creep in a perfect plastic-rigid
matter (Fig. 13b).
3© Relaxation : With respect to the existence of the stopping block, the following two cases
should be taken into account :

– for ε < εB : In this case the deformation is fully free, it occurs under zero stress value.
This situation is represented by a straight line identical with the abscissa (t-axis) in
the graph σ(t) (Fig. 13c).

– for ε = εB : A higher deformation cannot be achieved, the deformation is blocked at
this value. The stress value is not given by the deformation but by a static equilibrium
and is invariable in time. When the deformation returns back to the zero value, the
stress vanishes as well. This means no relaxation occurs.

Applications : fibre composites with wavy (in the initial state) reinforcing fibres, being
several orders stiffer than the matrix.

4.3. Viscous liquid

Viscous liquid is a matter in which the shear stress depends on the strain rate. It means
that only the deviatoric component of strain is described by the constitutive models below.
The volumetric strain component is either neglected (rather often), or described by a linear
elastic model (bulk modulus). In this paper the linear viscous (so called Newtonian) liquid
and non-linear viscous (non-Newtonian) liquid are analysed. Liquids with time-dependent
viscosity are not dealt with.

4.3.1. Linear viscous liquid (Newtonian liquid)

1© General characteristic : Shear stress is driven by Newton’s law of viscosity saying that
shear stress is proportional to the shear strain rate (or velocity gradient). The liquid linear

damper (element No. 3 in Table 1, Newton’s element) is used to represent this type of
behaviour in the rheological schemes. Using a general tensorial notation, Newton’s law of
viscosity can be written as follows :

σij = η
∂εij

∂t
. (a)

The dependence of stress on the strain rate ε̇ is then linear with viscosity η being its pa-
rameter (Fig. 14b). In opposite stress is independent of strain magnitude ε, so that it is
constant if the specimen is loaded with a constant strain rate (Fig. 14a).
2© Creep : In this case the time response (change) of strain is investigated after a stepwise
change of stress. The member ∂ε/∂t is expressed from the relation (a) and then the equation
is integrated. For the simplest case of uniaxial stress state this can be manipulated as follows :

ε =
∫

σ0

η
dt =

σ0

η
t + c .

The initial condition can be written as : for t = 0 it holds ε = 0, so that c = 0. It means
that the strain is a linear function of time, this case is called unlimited creep (Fig. 14c).
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Fig.14: Basic characteristics of linear viscous liquid

3© Relaxation : The character of stress decrease in consequence of relaxation can be derived
from the relation (a) as well. Let’s remember that the stress relaxation is analysed here in
the case of a strain-controlled loading, given by the stepwise change in strain ε(t) = ε0 H(t),
where H(t) is Heaviside function; at the time t = 0 a stepwise change of the H function
occurs and therefore a stepwise change in strain ε as well, so that the derivative dε/dt is
limitless in the instant of this change (Dirac function). This means that also the stress σ

is limitless for t = 0, according to relation (a). Strain ε is invariable for time interval
0 < t < to. This means that dε/dt = 0, so that also the stress equals zero, according to
relation (a). Another stepwise change in strain to its zero value occurs at the time instant
t = to, what induces unlimited stress, negative in this case. The shape of the dependence σ(t)
under relaxation is presented in Fig. 14d. It can be concluded that the shear stress relaxes
theoretically instantaneously to zero in a (linear) viscous liquid.

4.3.2. Non-linear viscous liquid (non-Newtonian liquid)

1© General characteristic : This liquid shows a non-linear dependence between shear stress
and shear strain rate (Fig. 15a). In the rheological schemes, it is represented by the liquid

non-linear damper (element No. 4 in Table 1, Norton element). In the case of uniaxial stress
state, behaviour of a non-linear viscous liquid can be described by the following relation :

(σ

λ

)N

= ε̇ or σ = λ ε̇(1/N) . (b)

The dependence between strain rate ε̇ and stress σ is then described by a relation with
several parameters, while the parameters (λ, N) are independent of the strain rate or stress.

Fig.15: Basic characteristics of non-linear viscous liquid

2© Creep : Similar to the chapter 4.3.1, the derivative dε/dt can be calculated from the
relation (b), and the obtained relation then integrated :

dε =
∫ (σ0

λ

)N

dt → ε =
(σ0

λ

)N

t + c .
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The initial condition has also the same shape (ε = 0 for t = 0, i.e. c = 0). Then strain
is a linear function of time; an unlimited creep exists again (Fig. 15c). Also the graphical
representation of the dependence is the same (cf. Fig. 14c and 15c) but the slope of the
straight lines in the non-constant part is different.
3© Relaxation : After similar manipulations like at the linear viscous liquid, the same con-
clusions can be drawn, as presented in Fig. 15d. The stepwise change in deformation causes
an instantaneous limitless stress value, which relaxes to zero immediately (Dirac function).

5. Concluding remarks

The presented overview does not take the influence of temperature into account. The
temperature can:

– influence the constitutive parameters of individual models which do not remain con-
stant then, but they become functions of temperature (or even of other influencing
quantities),

– change the type of constitutive behaviour significantly – change of elastic behaviour
into viscoelastic or viscoplastic with increasing temperature,

– evoke a quite specific type of behaviour not mentioned in Fig. 1 (thermoelasticity,
thermoplasticity).

Neither the presented overview nor the scheme in Fig. 1 does take the dependency of
properties on directions into account. All the above models are therefore described as
isotropic in their simplest variants but they can also include various types of anisotropy
(e.g. orthotropic or transversal isotropic models). If they are linear, rheological models
and principal of superposition can be used in creation of their constitutive relations, while
in the case of non-linear behaviour, special constitutive models need to be created (e.g.
anisotropic hyperelastic material); a higher number of constitutive parameters is typical for
those models.
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