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BIFURCATION CHARACTERISTICS IN PARAMETRIC
SYSTEMS WITH COMBINED DAMPING

Milan Hortel, Alena Škuderová*

The damping or the damping forces represent certain speciality in the investigation
of the internal dynamics of the transmission systems. The special significance has
this damping parameter especially in the areas of impact effects in the high-speed
light aircraft and mobile transmission constructions. On the example of gear mesh in
one branch of forces-flow in the pseudoplanetary reducer deals the paper with some
partial results of the analysis of the influence of combination damping, i.e. linear and
non-linear damping, on the gear mesh dynamics.
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1. Introduction

The investigation in the area of dynamics of systems particularly then in the area of
internal dynamics of non-linear heteronymous systems with time variable terms, like are
planetary systems with gears i.e. with split power flow, is constantly highly relevant and
motivated above all with non-explanation of series of phenomena. The issue and existence
of these phenomena are in many cases not entirely well known from the viewpoint of basic
research of such complicated systems. Their methodical i.e. analytical, numerical and ex-
perimental mastering of qualitative and quantitative analysis of influence of parameters, e.g.
of damping – linear, non-linear and combined, self-excitation, linear and non-linear stiffness
terms of systems and so on, are fundamental condition for explanation of many phenomena
particularly in area of light aeronautical structures with high revolutions, e.g. in transmission
systems of turboprop units.

The matter of analysis of specification of differences among criterion of deterministic
chaos for the first, second, . . . , n-th approximation by the analytical method, i.e. method
of transformation of non-linear boundary problems into systems of integro-differential time
heteronymous equations with solving kernels in the form of Green’s resolvent, is similarly
still unsolved problem in mechanical dynamical systems, whose motion is described with
non-linear time heteronymous ordinary differential equations.

The contribution, which was presented at conference ‘Dynamics of Machines 2009’, con-
tinues previous research of influence of linear and non-linear damping in gear mesh of one
branch, i.e. a specific case, of force flow in the pseudoplanetary system, i.e. the system with
six degrees of freedom [1], [3], [4], [5]. As isn’t known any deeper experimental investigation
of damping in the area of gear mesh, was performed the theoretical attempt to find certain
still unknown profounder rightfulness of damping influence both of gear mechanism material
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in the mesh and the lubricating oil film in tooth space at tooth profile contact bounce into
the area of technological gear backlash – by impact effects – onto internal dynamics of gear
mesh. The investigation of variations of linear, quadratic, cubic and combined damping
with constant coefficients K, described by vector expression [1]

1K(β, δi, H)v′ +
∑

K1>1

K1K(D,Di, H) |w′(v′)|K1 sgn[w′(v′)] for K1 = 2.3 (1)

aims to approximate analytically besides a experimental research most of all to still unknown
reality.

The next still theoretically unknown area of damping in gear mesh is the influence of
time damping variability by the lightening discs of cog wheels as occur in light aeronautical
structures with circular or sector lightening holes. This time variation of stiffness – mass
of discs – depends on the size, form and number of holes on a circumference of wheel. The
resultant damping and its characteristics is then a function of size and width of actual
gearing, thickness of gear rim, dimensions of discs, size, form and number of lightening
holes, speed and meshing frequency of rotating wheels and gearing including a material, its
technological processing and working temperature.

The real damping in gear mesh can be complicated time variable, i.e. heteronymous,
function that influences not only with its own quantitative but also qualitative properties for
example the phase shifts of amplitudes of relative motions in a gear mesh towards amplitudes
of resultant time alternatively modifying stiffness functions of gearing and so can by decisive
means influence the dynamics, i.e. the dynamic forces in these systems.

Such a time damping function of disc kd(t) = kd(t + T ) of a cog-wheel with period
T = 2π/ω in the interval (0; T ) that qualifies as a explicitness and a finiteness with finite
number of maximums and minimums and non-continuities (Dirichlet’s conditions) can we
elaborate on convergent Fourier’s series in the form

kd(t) = kd(t+ T ) =
1

2T

2 T∫
0

kd(t) dt+
∞∑

m=1

{[
2
T

T∫
0

kd(t) cos pmω t dt
]

cos pmω t dt+

+
[

2
T

T∫
0

kd(t) sin pmω t dt
]

sin pmω t dt

}
,

(2)

ω = π n/30 is angular velocity of cog-wheel, n – number of revolutions of wheel, p – number
of lightening holes in a disc of a cog wheel or generally a number of periods of courses of
damping by influence of disc non-homogeneity.

The specialty of this paper including the symbolism is related to general research study
of an internal dynamics of planetary systems. The analysis of a specific case, i.e. the one
branch – the mesh of sun gear 2 with the one, i.e. j = 1, planet wheel 3̄, is closely connected
with the general analysis of system with the number of satellites j > 1.

2. To the influence of combined damping in a gear mesh on dynamic
characteristics

The paper continues previous studies [1], [4], [5] of influence of linear and non-linear damp-
ing both material and viscous, i.e. the damping in a oil boundary layer of tooth gap due to



Engineering MECHANICS 223

tooth profile contact bounce at impact effects. By reason that in such complicated parts of
transmission systems, e.g. in the normal gear mesh ‘rolling – sliding’, are still unknown nei-
ther approximate data about damping properties of about damping patterns, is this study
devoted a combined, i.e. linear and non-linear – quadratic and cubic – constant damping
according to a expression (1).

The time variable damping kd(t) according to (2) in the system of motion equations (3)
of transmission system

Mv′′ + 1K(β, δi, H)v′ +
∑

K1>1

K1K(D,Di, H) |w′(v′)|K1 sgn[w′(v′)] +

+ 1C(ε, κ, Yn, Un, Vn, H, τ)v +
∑
K>1

KC(ε, κ, In, H, τ)wK(v) = F(an, bn, ϕ̄,H, τ)
(3)

is not pursued here in this paper. In the equation (3) v means generally the m-dimensional
vector (m = 6) of displacement of system vibration, wK(v) K-th power of vector v, which
is defined by expression wK(v) = D[w(v)wK−1(v)]. D[w(v)] means the diagonal matrix,
whose elements at the main diagonal are comprised by elements of vector w(v) ≡ v. Fur-

Fig.1: The substitutive mathematical – physical model of kinematic pair
of gears of common differential planetary gear system with double
planet wheels (a), the technological teeth backlash s(t) and the values
of Heaviside’s function H in the area of gear mesh with backlash (d)
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thermore M is the matrix of mass and inertia forces, 1K and K1K are the matrix of linear
and nonlinear damping forces, 1C and KC are the matrix of linear and non-linear reversible
forces and F(τ) is the vector of non-potential external excitation with components an, bn
and with the phase angle ϕ̄. H is the Heaviside’s function, which allows to describe the
motions – contact bounces – due to strongly non-analytical non-linearities, for example due
to technological tooth backlash s(τ). Corresponding linear and non-linear coefficients of
damping are denoted by β, δi, D, Di linear parametric stiffness function by the symbols
Yn, Un, Vn and non-linear parametric functions, so-called parametric non-linearities, by the
symbol In. ε and κ are the coefficients of mesh duration and amplitude modulation of stiff-
ness function 1C(τ), see [1]. Derivative by non-dimensional time τ are denoted by dashes,
τ = ωc t, ωc – mesh frequency, t – time.

conser-

vative

system in

gear mesh

linear

damping

in gear

mesh – L

quadratic

damping

in gear

mesh –Kv

cubic

damping

in gear

mesh–Ku

Combinations of damping in gear mesh

L+Kv L+Ku L+Kv+Ku Kv+Ku

k1 0 × × × × × × × ×
k2 0 × × × × × × × ×
k3 0 × × × × × × × ×
k1m 0 × × × × × × × ×
k2m 0 × × × × × × × ×
k3m 0 × × × × × × × ×
Symbol

of marked

solution

in figures

◦ � • × � • × � • × � • × � • × � • × � • ×

Variation a b c d e f g h
Note: k1,2,3 – material damping in gear mesh; k1m,2m,3m – viscous damping of lubricant

mediums in the tooth backlash (without contemplation of temperature influence);
1 – linear, 2 – quadratic, 3 – cubic.

Tab.1: Combinations of damping in gear mesh

The particular combinations of of linear and non-linear constant quadratic and cubic
damping in the gear mesh according to (1) are given in Tab. 1 and denoted with letters
e, f, g, h. The particular combinations of damping in a material or in a lubricating ambient in
the variation with symbols (◦) for conservative homogeneous system, for the non-conservative
homogeneous system with a symbols (�), (•), (×).

For the possibility of qualitative and quantitative comparison of solution results with
the previous studies have been solved all resonance characteristics {νs; t} of given sub-
stitutive mathematical – physical model of pair of gears of pseudoplanetary system with
double planet wheels with six degrees of freedom, see Fig. 1, for the parameters ε = 1.569;
κ = 0.5879; Cmax = 4×105 [Nmm−1]; mred = 3.123×10−3 [kg]. The values of material
damping k ≡ k1,2,3 both in the area of normal mesh and inverse one, as well as the values of
viscous damping in the tooth backlash km ≡ k1m,2m,3m (for reason of simplicity we do not
take into consideration the temperature influence) are considered in all next given exam-
ples of solution identical, i.e. k = km = 3.95, which corresponds to proportional damping
β, βm, D,Dm = 0.062 . The subscripts 1, 2, 3 by coefficients both material k and viscous
damping in the tooth backlash km mean in accordance with Tab. 1 the belonging to 1 – linear,
2 – quadratic and 3 – cubic term of dissipative function. The dimension of these coefficients
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k ≡ k1,2,3,...,n; k1m,2m,3m,...,nm can we express generally in the form kn, knm [Nsn(103mm)−n],
n – degree of non-linear damping. The coefficients of material k alternatively km in the tooth
space result on the ground of Lagrange’s theory from the expressions for damping forces

· · · + k1 y
′(t) +

3
2
k2 y

′2(t) sgn[y′(t)] + 2 k3 y
′3(t) + · · · +

+ k1m y
′(t) +

3
2
k2m y

′2(t) sgn[y′(t)] + 2 k3m y
′3(t) + · · · .

By the reason that system of equations (3) for the system from Fig. 1 leads for all here
mentioned variations of combined damping (e)–(h) (see Tab. 1) on steady vibration already
in the fifth revolution of gear wheels, are all resonance characteristics in following figures
plotted for this fifth revolution.

The parametric, i.e. with time variable resultant – potential function C(t) of cogs in
gear mesh or its modification in the form C(t)(H1 + H2), is the only exciting source of
vibrations. With time variable damping kd(t) in accordance with equation (2) is not in this
study considered. The conservative system with k = km = 0 is unstable in whole extent of
wheel revolutions, see for example [2].

In Fig. 2 are for the fifth revolution illustrated the resonance characteristics for the fre-
quency area of median cog stiffness Cs from the interval νs ∈ 〈0.6, 1.2〉. Three areas of gear
mesh are here colour-coded, i.e. with white colour the area of normal mesh, where y(t) ≥ 0,

Fig.2: Resonance characteristics of relative motion y(t) in frequency area of median
cog stiffness Cs from the interval νs ∈ 〈0.6; 1.2〉 for the combined damping
(e)–(h), see Tab. 1, and for the fifth revolution of gear pair from Fig.1
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with yellow colour the area of jump effects (|y(t) < s(t)|) and finally with red colour is
determined the area of inverse mesh, i.e. |y(t) ≥ s(t)|. By reason of comparison and easier
analysis are plotted under figure three scales of tuning

– νs towards the median resultant cog stiffness Cs,
– νmax for the frequency tuning of system towards maximal stiffness Cmax and
– νmin for the minimum level Cmin of resultant parametric stiffness function C(t) of

gear mesh.

The mentioned frequency tuning are defined by relations

νmax = ωc Ω−1
max = νs Ωs Ω−1

max and νmin = ωc Ω−1
min = νs Ωs Ω−1

min ,

where Ω2
max = Cmaxm

−1
red and Ω2

min = Cminm
−1
red.

The causation of occurance of sharp locations of discreteness in resonance characteristics
that are accompanied by teeth contact bounces (y(t) < 0) with impact effects in the given
moment consist in

– the given tuning of gear mesh,
– the time period of gear mesh on appropriate level of stiffness function C(t) with the

possibility of progress of amplitude of relative motion y(t), see [2],

Fig.3: Bifurcation characteristics of relative motion y(t) in frequency
area νs ∈ 〈0.6; 1.2〉 for the combined damping (e) (•) and (f) (•),
see Tab. 1, in the fifth revolution of gear pair from Fig.1

Fig.4: Bifurcation characteristics of relative motion y(t) in
frequency area νs ∈ 〈0.65; 0.68〉 for the combined
damping (e) (•) and (f) (•), see Tab. 1
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– the phase shift of relative motion y(t) towards the resultant stiffness function C(t) of
gear mesh alternatively C(t)(H1 +H2) by influence of damping action of system in
non-conservative systems,

– the phase shift can happen in the non-conservative and conservative systems then in
the area of teeth contact bounces and in the inverse motion towards modify stiffness
function [2].

Fig.5: Bifurcation characteristics of variation (e) with the combination of damping
(�) ≡ (×) in frequency area νs ∈ 〈0.6; 1.2〉 and by the normal gear mesh

In the Fig. 3 are given the resonance bifurcation characteristics of variants of combined
damping (e) (•) and (f) (•), see Tab. 1, for the variation (e) and the combination (•) with
k1, k2, k3, k3m = 0 and with k1m, k2m �= 0, for the variation (f) with the combination (•)
with k1, k2, k3, k2m = 0 and k1m, k3m �= 0. The damping in both variations is considered
linear + quadratic alternatively linear + cubic only in the tooth space, in the normal mesh
is the solved system conservative with appropriate unstable course. The discreteness of
courses in the tuning vicinity νs ≈ 0.66 vibrates with the tuning on stiffness level Cmin with
frequency tuning νmin ≈ 0.78; the discreteness in the vicinity νs ≈ 0.8 vibrates on stiffness
level Cmin with the frequency tuning νmin ≈ 0.946 therefore with quantitative greater and
with qualitative different amplitude y(t). The bifurcation on the lower branch of resonance
characteristics of relative motion y(t) are coded with red colour, with the blue colour are
coded the bifurcation on upper branch of resonance characteristics.

Detailed bifurcation course of the discreteness in the frequency area νs ∈ 〈0.65; 0.68〉 in
the variations (e) and (f) is evident from Fig. 4.

Both the qualitative and the quantitative difference between resonance characteristics
of both variations in the interval νs ∈ 〈0.65; 0.68〉 are invisible. The noticeable difference
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is evident by the second discreteness, i.e. in the tuning vicinity νs ≈ 0.8, by the change of
quadratic damping onto cubic one in tooth space.

The different bifurcation course is in the case of the steady – stable solution of resonance
characteristics of variation (e) with the combination of damping (�) ≡ (×), as is evident
from the Fig. 5. In addition to the smooth course of resonance characteristics ymax(t), ymin(t)
occur in the tuning vicinity νs ≈ 0.6 the small bifurcation deviation, see DETAIL X. This
deviation is induced by looped course of graph in the phase plane {y′(t); y(t)}, illustrated
in Fig. 5. This loop is formed by the character of course y(t), y′(t) and with the growing of
νs decreases and converges into the point of discreteness B.

3. Closing remarks

On the ground of existing studies can yet note in fine, that the dynamic qualitative
and quantitative analysis of the time in stiffness heteronymous non-linear systems and their
resonance characteristics are markedly influenced above all by

– the value of the coefficient of mesh duration ε which determines at which stiffness level
(potential level) Cmin or Cmax and in what time interval run the solution of relative
motion in gear mesh and the value of the amplitude modulation κ = CminC

−1
max,

alternatively with the potential level of the stiffness C = 0 by modify resulting stiffness
function C(t)(H1 +H2),

– the resonance tuning of stiffness level at which the solution of relative motion just
run, i.e. νmin, νmax or ν = 0,

– the phase shift of relative motion y(t) towards stiffness function C(t) alternatively
C(t)(H1 +H2) caused by linear and non-linear damping effects both the material in
gear mesh and temperature dependent viscosity of environment in the area of tooth
backlash.

The damping coeficients both material and viscous medium were selected, as an example,
equal, because any experimental damping values in the problems of gear mesh of kinematic
pairs still not exist.
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2007, 14.–17. 5. 2007, Svratka, ISBN 978-80-87012-06-2, CD-ROM



Engineering MECHANICS 229
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Inženýrská mechanika 2008, 12.–15. 5. 2008, Svratka, ISBN 978-80-87012-11-6, CD-ROM

Received in editor’s office : March 23, 2009
Approved for publishing : May 14, 2009

Note : This paper is an extended version of the contribution presented at the national
colloquium with international participation Dynamics of Machines 2009 in Prague.


