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DYNAMIC DEFORMATIONS AND STRESSES OF BEAMS
CONNECTED BY DAMPING ELEMENT

Ladislav Půst*

Dynamic properties of two similar, parallel, one-sided clamped beams connected by
a damping element on their free ends are analytically and numerically investigated.
A harmonic motion excites the end of one of these beams. The main attention is given
to the ascertaining of response curves deflection shapes of beams and their stresses
in roots at different orientations and levels of damping force.
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1. Introduction

Plenty of publications were devoted to the problem of beam oscillations i.e. [1–6] both
in Czech and in world literature. In spite of this, some special cases of beam systems
were not yet analyzed, particularly those connected with the new machine structures or
machine elements. For ascertaining of dynamic properties and damping possibilities of
turbine blades [7, 8, 10] a simplified model consisting of two parallel beams with constant
cross-sections, connected at their ends by a dry friction element was investigated. This
friction area lies in the vertical symmetry plane of the two-beams system. Analyses verified
by experimental measurements proved very good efficiency of this damping principle, as
well as its influence on response curves and shift of resonance peaks. The forms of beams
deformations at different frequencies of excitation and at different positions of damping
contact area were not yet studied.

Fig.1: Schema of investigated two-beams system

The presented contribution is oriented on this special problem, which it is very important
from the point of view of distribution of stress and strain in beams at given conditions. We
will concentrate our attention on the influence of eccentricity of contact area position from
the neutral axis of beams, because this eccentricity influences considerably the form of beam
deformation.

In the technical applications the damping in contact area is realized by dry friction,
described in its simplified form by strongly nonlinear Coulomb Law. For two-dimensional
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relative motion in contact area is due to the nonlinearity the mathematical expression very
complicated and not suitable for general analysis. Therefore we will apply the first ap-
proximation solution, which enables us to describe friction behavior by means of equivalent
linearized coefficient of damping, with which the solution and its resultants will be obtained
in a more compact form.

2. Investigated system

Schema of first case of investigated system is in Fig. 1, where the damping element at
bending oscillations of beams 1 and 2 acts only in vertical direction. This model corresponds
to real system only if the ends of damping element are connected with the ends of beams
by means of revolving joints or if the length a of eccentricity of damping area is zero.

If these eccentricities are of length a and are rectangularly fixed to the beam ends,
the relative motion in damping contact is given by two-dimensional displacements x, y of
both areas (see Fig. 2a) and damping forces must be modeled by schema shown in Fig. 2b.
Centers of both friction areas move relatively both in vertical direction yrel, and, due to the
inclinations of arms, also in horizontal direction xrel.

Fig.2: Two-dimensional displacement with components
xrel, yrel in damping contact area

Due to the very small ratio of length of arm a to free length l of beams, the mass and
compliance of arm a can be neglected.

3. Equations of system motion

Motion equations of lateral oscillations of slender prismatic beams at neglecting influence
of rotary inertia and shearing force are

E J
∂4yi

∂x4
+ ρ S

∂2yi

∂t2
= 0 , i = 1, 2 . (1)

According to Fourier method, the periodic solution of equation (1) can be written as a pro-
duct of function of length x and of function of time t [1–6] :

yi = Xi(x)Ti(t) , i = 1, 2 . (2)
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This enables easy separation of both functions. After setting (2) into motion equations (1)
these can be disconnected into two pairs of ordinary differential equations

d2Ti

dt2
+ ω2 Ti = 0 ,

d4Xi

dx4
− k4Xi = 0 , i = 1, 2 , (3)

where

k4 =
ρ S ω2

E J
. (4)

Unknown constant k (or ω) must be ascertained from the boundary conditions. For left
sides of both beams clamped at their ends they are

x = 0 , yi(0, t) = 0 ,
∂yi

∂x
(0, t) = 0 , i = 1, 2 . (5a)

A prescribed motion x0 cos(ω t) deflects the right end of upper beam harmonically at con-
stant amplitude x0. On this end acts also vertical component Fty of damping force and
moment from the horizontal component Ftx of damping force acting in friction area. The
boundary conditions for the upper beam (i = 1) are

y1(l, t) = x0 cos(ω t) , − E J
∂2y1(l, t)
∂x2

= aFtx , x = l . (5b)

Fig.3: Components Ftx, Fty of damping force in friction area

Forces in the friction area are drawn in Fig. 3. Damping forces at oscillations are modeled
by means of equivalent coefficient of damping [1] ascertained from the equivalence of lost
energy due to the dry friction and viscose equivalent linear damping at the same amplitude
and frequency :

be =
4Ft

π av ω
.

Components of damping force Fty and Ftx are proportional to the components of relative
velocity of point A i.e. velocities

ẏrel = ẏ1 − ẏ2 , ẋrel = a (ẏ′1 + ẏ′2) . (6)
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Vertical and horizontal damping force components are

Fty = be (ẏ1 − ẏ2) and Ftx = be a (ẏ′1 + ẏ′2) . (7)

As bending of arms with small length a is neglected, the boundary conditions of the right
end (x = l) of upper beam (i = 1) are

y1(l, t) = x0 cos(ω t) , − E J
∂2y1(l, t)
∂x2

= a2 be

[
∂2y1(l, t)
∂x ∂t

+
∂2y2(l, t)
∂x ∂t

]
(8a)

and of bottom beam (i = 2) are

−E J y′′′2 = be (ẏ1 − ẏ2) ,

−E J y′′2 = Ftx a = be a
2 (ẏ′1 + ẏ′2) .

(8b)

In spite of different motions in directions x and y the same equivalent linear damping be
is used in equations (6)–(8), because it depends on common amplitude av =

√
x2

rel + y2
rel,

where xrel, yrel are relative displacements in contact point A.

4. Equations of motion and their solution

First of all we will find the periodic particular solution of equation (1) in the simple form,
which is very often used in literature on beams vibrations e.g. [1–6, 9] :

T (t) = Ai cos(ω t) +Bi sin(ω t) , (9)

Y (x) = Ci cos(k x) +Di sin(k x) + Ei cosh(k x) + Fi sinh(k x) , i = 1, 2 (9a)

with twelve integral constants, but due to the solution (2) in the form of product, two of
them can be select arbitrary, e.g. Ai = 1 :

Ti(t) = cos(ω t) +Bi sin(ω t) . (9b)

Boundary conditions of clamped beams on left end (see eq. 5a) are fulfilled if

Ci = −Ei , Di = −Fi , i = 1, 2 (10)

and the curves of deflection are given by

Yi(x) = Ci [cos(k x) − cosh(k x)] +Di [sin(k x) − sinh(k x)] , i = 1, 2 . (11)

Vibrations of two-beams system are then described of equations (9b) and (11) containing
six free constants : B1, C1, D1, B2, C2, D2. Because the expressions for motions y1(l, t) and
y2(l, t) contain sinus and cosines components, the fulfilling of four boundary conditions (8a)
and (8b) requires fulfilling of eight algebraic equations. It is evident that six free constants
B1, C1, D1, B2, C2, D2 do not suffice and therefore the solution (2) in the form of one
product does not describe the motion of two-beams system with eccentric friction area.

Influence of horizontal damping forces in equations (8a,b) must be expressed by another,
complicated selection of periodic solution e.g. in the form

yi(x,t) = Yi1(x)Ti1(t) + Yi2(x)Ti2(t) , i = 1, 2 , (12)
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where the deformation functions Yij(x) fulfill the conditions of rigid fixing on the left side (5a)
and the build-up functions yi(l, t) fulfill the boundary conditions (8a,b). The simplest form
with 8 free constants is

yi(x, t) = [cosh(k x) − cos(k x)] [Ai cos(ω t) +Bi sin(ω t)] +

+ [sinh(k x) − sin(k x)] [Ci cos(ω t) +Di sin(ω t)] =

= Ũ(k x) [Ai cos(ω t) +Bi sin(ω t)] +

+ Ṽ (k x) [Ci cos(ω t) +Di sin(ω t)] , i = 1, 2 .

(13)

After introducing notation
Ũ(k x) = cosh(k x) − cos(k x) , Ṽ (k x) = sinh(k x) − sin(k x) ,

S̃(k x) = cosh(k x) + cos(k x) , T̃ (k x) = sinh(k x) + sin(k x) ,
(14)

the lateral deformations of beams and their derivates are
yi(x, t) = Ũ(k x) [Ai cos(ω t) +Bi sin(ω t)] +

+ Ṽ (k x) [Ci cos(ω t) +Di sin(ω t)] ,

y′i(x, t) = k T̃ (k x) [Ai cos(ω t) +Bi sin(ω t)] +

+ k Ũ(k x) [Ci cos(ω t) +Di sin(ω t)] ,

y′′i (x, t) = k2 S̃(k x) [Ai cos(ω t) +Bi sin(ω t)] +

+ k2 T̃ (k x) [Ci cos(ω t) +Di sin(ω t)] ,

y′′′i (x, t) = k3 Ṽ (k x) [Ai cos(ω t) +Bi sin(ω t)] +

+ k3 S̃(k x) [Ci cos(ω t) +Di sin(ω t)] ,

ẏi(x, t) = ω Ũ(k x) [−Ai cos(ω t) +Bi sin(ω t)] +

+ ω Ṽ (k x) [−Ci cos(ω t) +Di sin(ω t)] ,

ẏ′i(x, t) = ω k T̃ (k x) [−Ai cos(ω t) +Bi sin(ω t)] +

+ ω k Ũ(k x) [−Ci cos(ω t) +Di sin(ω t)] .

(15)

Setting x = l into (15) and using these expressions into boundary conditions (8a,b),
we get a set of four algebraic equations each with coefficients multiplied by sin(ω t) and
cos(ω t). These coefficients present 8 algebraic equations with 8 unknown values Ai, Bi, Ci,
Di, i = 1, 2. Let us introduce for simplicity following dimensionless parameters

κ = k l , ε =
a2

l2
, β =

be l√
E J ρS

. (16)

This procedure gives a set of 8 algebraic equations, linear in A1, . . . , D2 :
Ũ A1 + Ṽ C1 = x0 ,

Ũ B1 + Ṽ D1 = 0 ,

S̃ A1 + T̃ C1 + αβ κ (T̃ B1 + Ũ D1 + T̃ B2 + Ũ D2) = 0 ,

S̃ B1 + T̃ D1 − αβ κ (T̃ A1 + Ũ C1 + T̃ A2 + Ũ C2) = 0 ,

β (Ũ B1 + Ṽ D1 − Ũ B2 − Ṽ D2) + κ (Ṽ A2 + S̃ C2) = 0 ,

β (−Ũ A1 − Ṽ C1 + Ũ A2 + Ṽ C2) + κ (Ṽ B2 + S̃ D2) = 0 ,

S̃ A2 + T̃ C2 + αβ κ (T̃ B1 + Ũ D1 + T̃ B2 + Ũ D2) = 0 ,

S̃ B2 + T̃ D2 − αβ κ (T̃ A1 + Ũ C1 + T̃ A2 + Ũ C2) = 0 ,

(17)
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where shorter symbols Ũ , . . . , T̃ were used instead of Ũ(k l), . . . , T̃ (k l). For each value κ = k l

in the selected range k l = 1.5–2.5, which covers the frequency range of first resonance zone
of a cantilever (y′′(l, t) = 0) and of a beam with suppression of right-end-rotation (y′(l, t) = 0
– see Fig. 4), the values A1, . . . , D2 can be single-valued calculated.

Fig.4: Two limit forms of cantilever beam deflection

By means of these determined values we are able to calculate amplitudes of right ends
of both beams

ai(k l) =

√[
Ũ(k l)Ai + Ṽ (k l)Ci

]2

+
[
Ũ(k l)Bi + Ṽ (k l)Di

]2

, i = 1, 2 . (18)

As for upper beam is the end-amplitude prescribed and ascertained to value x0, the
amplitude of the second, bottom beam varies with variation of frequency parameter k l,
or variation of excitation frequency ω = (k l)2/l2

√
E J/(ρ S). Example of these response

curves for a/l = 0.2 and dimensionless damping β = 0.05; 0.25; 1.25; 6.25; 31.25 in contact
area are in Fig. 5.

It is evident that amplitude of bottom beam increases with greater damping. Resonance
peak gets closer to the amplitude a1 = x0 of right end of upper beam, but the resonance
frequency increases as well.

Fig.5: Response curves of ends of upper (a1) and bottom (a2) beams
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The knowledge of coefficients A1, . . . , D2 enable to ascertain also exciting force, which
has to be used for ensuring the constant amplitude x0 of right end motion for all values of
frequency parameter k l = 1.5–2.5.

From the equilibrium of vertical forces acting on the upper beam end

−E J y′′′1 (l, t) = F (t) − be [ẏ1(l, t) − ẏ2(l, t)] (19)

we get after introducing expressions for y1, y2 and F (t) = F0 cos(ω t+ ψ) :

F0 cos(ω t+ ψ) =
{
−E J k3

(
Ṽ A1 + S̃ C1

)
+ be ω

[
Ũ (B1−B2) + Ṽ (D1−D2)

]}
cos(ω t) +

+
{
−E J k3

(
Ṽ B1 + S̃ D1

)
+ be ω

[
Ũ (A1−A2) + Ṽ (C1−C2)

]}
sin(ω t) .

Force amplitude F0 in the dimensionless form is

F0 l
2

E J
= (k l)2

x0

l

⎡
⎢⎣

{
−k l (Ṽ A1 + S̃ C1

)
+ β

[
Ũ (B1 −B2) + Ṽ (D1 −D2)

]}2

x2
0

+

+

{
−k l (Ṽ B1 + S̃ D1

)
+ β

[
Ũ (A1 −A2) + Ṽ (C1 − C2)

]}2

x2
0

⎤
⎥⎦

1
2

.

(20)

Fig.6: Variation of dimensionless force at constant amplitude x0/l = 0.001

For x0/l = 0.001 and β = 0.05–156.25 are the force – frequency curves plotted in Fig. 6.
It is seen, that the amplitude of force, needed for sustaining the constant amplitude x0 of
displacement in the whole interval of frequency

f =
ω

2π
=

(k l)2

2π l2

√
E J

ρS
= 38–115 Hz , k l = 1.5–2.5
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varies according to the damping β in contact area. For very low damping lies minimum of
necessary force at f = 58Hz. This minimum shifts to higher frequency at rising damping
and reaches again its minimum value at very high damping β > 30 near frequency f = 93Hz.

On the contrary, if the force F0 is constant during the entire frequency range, then
the amplitude of upper beam end oscillates with variable amplitude x0/l, which can be
calculated as inverse function of (20). These response curves are shown in Fig. 7. Two high
resonance peaks – at f = 58Hz for small damping and at f = 93Hz for strong damping
– are expressive.

These resonances differ not only by frequencies but also by the deflection forms of beams.

Fig.7: Variation of upper-beam-end amplitude at F0 = constant

Fig.8: Variation of beams vibration modes Yi(x) with increasing dimensionless damp-
ing β at constant amplitude a1/x0 = 1 of upper beam at k l = 1.85
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5. Modes of vibrations

Because the beams are pure elastic bodies, without any damping, their deformation
– forced vibrations modes – are plane curves, which vary with excitation frequency and
with the damping in end conditions. This mode-variation is best seen near the resonance
frequencies f = 58 and 93Hz (see Fig. 7).

Mode of vibration can be deduced from equation (13) after elimination time t.

Yi(x) =
√[

Ũ(k x)Ai + Ṽ (k x)Ci

]2 +
[
Ũ(k x)Bi + Ṽ (k x)Di

]2
, i = 1, 2 . (21)

Values Ai, . . . , Di calculated from system of equations (17) depend on parameters κ, a/l, β.
For constant κ = k,l = 1.85 (f = 58Hz) and a/l = 0.2 and for five values of dimensionless
damping β = 0–20 are deformations of both beams shown in Fig. 8.

Positions of perpendicular branches with friction areas on their ends are shown as well on
this Figure. All curves are drawn for the same constant amplitudes Y1(l) = 1 of the upper
beam end. Without damping (β = 0) moves only the upper beam and its deformation is
ascertained by Y ′′(l) = 0 (see Fig. 4a). Increasing damping (β = 0.012–20) causes motion
of bottom beam (dashed lines, i = 2), and increase of damping forces between the upper
and bottom beams. Horizontal force component bends the free ends of both beams and
deflection curves approximate the limit cases (Fig. 4b) for y′(l, t) = 0.

Similar modes of vibrations are drawn in Fig. 9 for second resonance (k l = 2.36, f =
= 93Hz). Increasing damping coefficient β changes again the modes of vibrations from the
form shown in Fig. 4a to Fig. 4b. Due to this variation of deflection form, the both friction
areas (ends of perpendicular branches) get nearer and the energy lost by damping decreases.
For β = 50 are both branches almost connected, lost energy is near to minimum and the
system is very weakly damped. At given resonance frequency are amplitudes of both beams
very high – see Fig. 7 – or the force amplitude at constant kinematics excitation x0 = const
is very low – see Fig. 6.

Fig.9: Variation of beams vibration modes Yi(x) with increasing dimensionless damp-
ing β at constant amplitudes a1/x0 = 1 of upper beam at k l = 2.36
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6. Strength in beam roots

For reliability and durability of turbine blade disks, it is important to know the stress in
the critical points of blades – particularly near the roots. In the beam model this critical
point is near the fixing point at x = 0 and it is proportional to the curvation i.e. to the
second derivative ∂2y/∂x2. Using equation (15) for description of stress σ in the form

σi = Ks max y′′i (0, t) = Ks Y
′′
i (0) =

= K∗
s

√[
S̃(0)Ai + T̃ (0)Ci

]2 +
[
S̃(0)Bi + T̃ (0)Di

]2
,

(22)

where i = 1, 2; K∗
s includes parameters of material and dimensions of the beam (model of

blade) as it is E J , S, ρ, l etc.; Ai, Bi, Ci, Di (i = 1, 2) are constants ascertaining for given
κ, ε, β from equation (17).

As seen from Fig. 8 and 9, the curvations in the beam roots increases with rising damp-
ing β. The ratio σ(β)/σ(0) of the root stress of damped and undamped two-beams system
is used for quantitative evaluation of this influence. Because the constants are canceled in
this ratio and T̃ (0) = sinh(0) + sin(0) = 0, the expression

(
σ(β)
σ(0)

)
i

=

√
Ai(β)2 +Bi(β)2√
Ai(0)2 +Bi(0)2

(23)

gives universal information for all similar systems.

Fig.10: Relative increase of stress σ(β) in beams roots at
different damping β and at k l = 1.85 (f = 58 Hz)

Ratio σ(β)/σ(0) plotted versus damping parameter β in Fig. 10 shows that with increas-
ing damping between beams, the stress near root increases and for high damping it reaches
value approx. by 80% higher than stress σ0 at undamped cantilever beam with the same
displacement on its free end. The bottom beam has zero stress at β = 0, but then σ(β) rises
very quickly and after β > 7 both beams have nearly the same stresses at the roots.
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This diagram was calculated at k l = 1.85 corresponding to the first resonance peak
in Fig. 7 at 58Hz. The high resonance amplitudes appear at moderately damped systems
(β > 0.25) and therefore the real stress is proportional to inverse damping value 1/β and
can be calculated from cantilever theory.

Increase of stresses in beams roots in the second resonance k l = 2.36 (93Hz) is evident
from Fig. 11. It is similar to Fig. 10, but the most important cases for this second resonance
are systems with higher damping β > 7 where the rise of σ(β)/σ(0) is approx. 60%.

The decrease of 60% (Fig. 11) from 80% in Fig. 10 is caused by stronger influence of
higher modes at increasing frequency (58 Hz → 93 Hz). Let us mention that the difference
of ratio σ(β)/σ(0) for quasi-static case with very low frequency (k l, ω → 0) and at change
β → 0 to β → ∞ is 2 that means increase of 100%.

Fig.11: Relative increase of stress σ(β) in beams roots at
different damping β and at k l = 2.36 (f = 93 Hz)

7. Conclusion

Forced vibrations of a system consisting of two parallel cantilever beams connected at
their free ends by a viscose damping element, eccentric placed on perpendicular branches,
were solved analytically and numerically.

It is shown that due to the eccentric position of contact damping area, the dynamic
stiffness – force at constant displacement – and dynamic compliance – displacement at
constant force – change considerably both with variable frequency of excitation and with
damping. The modes of vibrations vary as well from the cantilever form to the beam form
with restrained end revolution.

This variation of modes is connected also with the increase of stress in the beam root.
This increase can reach up to 100% with the damping rise from β → 0 to β → ∞.

Presented study was focused on system with linear viscose damping, but the gained re-
sults hold true with good approximation also for dry friction in contact area after introducing
equivalent linear damping coefficient.
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