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VERIFICATION OF THE CALCULATION OF NATURAL
VIBRATION CHARACTERISTICS OF LINEAR UNDAMPED

ROTATIONALLY PERIODIC STRUCTURES

Pavel Polach*

The article presents results of the verification calculation of the method for the cal-
culation of natural frequencies and mode shapes of a linear undamped rotationally
periodic systems considering the possibility of the elimination of degrees of freedom.
As the test example a thin circular plate was chosen. The method can be applied
e.g. for the calculation of the natural vibration characteristics of the steam turbine
bladed disks.

Keywords : rotational periodicity, natural vibration characteristics, subsystem, circu-
lar plate

1. Introduction

The approach towards the calculation of the natural vibration characteristics (i.e. natural
frequencies and mode shapes) of the rotationally periodic structures (e.g. steam turbine
bladed disks) utilizing their rotational periodicity was solved in [1], the approach without
considering the possibility of elimination of degrees of freedom of the structure computational
model was given in [2], [3], the possibility of elimination of degrees of freedom was presented
in [4], [5]. In [5] and this article the verification of the method on the test example of the thin
circular plate is given. The motivation for introducing this article is a logical continuation
of the article [2].

Description of various methods that use specific properties of the structure for the cal-
culation of its investigated characteristics or behaviour under the given conditions can be
found in the appropriate literature relatively often. The periodicity of the system is used
to solve various problems. There is a large amount of publications dealing with using the
periodicity of the system for the calculation of its dynamic properties (their description in
more detail is presented e.g. in [1], [6], [7]).

The method used in this article for the calculation of the natural vibration characteristics
of a thin circular plate was derived on the basis of [8]. In industrial practice the method
was already applied in the calculation of the natural vibration characteristics of the steam
turbine bladed disk with the blades of 220Z-1085 type connected with the continuous zig-zag
binding [9], [10], [11] and the steam turbine bladed disk with the blades of ZN340-2 type with
the continuous binding in the form of shrouding and tie-boss [12], [13].

In the computational model for determination of the natural vibration characteristics
based on rotational periodicity of the system it is considered that the structure can be divided
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into the certain number of identical parts – subsystems. The subsystem discretization will be
performed in such a way that the subsystem may be coupled in the equal number of points
in the same degrees of freedom to their left-side and right-side adjacent subsystems. After
the mathematical formulation of the problem it is possible to derive relations for calculation
of natural frequencies and mode shapes of the whole system [1] using the theory of solution
of the matrix difference equations [14]. Compared with solution of the system as a whole
the main advantage of the mentioned method (utilizing the rotational periodicity) consists
in the fact that the order of stiffness and mass matrices does not increase (the manner
of their assembling follows from the process of solution) but it is at most double than in
case of considering a single subsystem. Thus the solution is less demanding for the computer
operating memory and computing time. Performing a lower number of numerical operations
and thus reducing the probability of a computing error is the result of a lower number of
solved equations.

2. Relations for calculation of the natural vibration characteristics of a linear
undamped rotationally periodic system

In order to perform accurate dynamical analyses of real mechanical systems their math-
ematical models can be very large and complex. Creating mathematical models based on
the elimination of degrees of freedom is important mainly due to reducing the computing
time and reducing the computing memory requirements. Without the elimination of degrees
of freedom it is not possible to perform e.g. the optimization of complex real mechanical
systems.

Detailed derivation of the mathematical relations for calculation of the natural vibra-
tion characteristics of a linear undamped rotationally periodic system is performed in [1].
Relations for calculation of these characteristics with the consideration of the possibility of
elimination of the subsystem internal degrees of freedom are given in [4]. Due to the under-
standability of the article the relations for calculation of the natural vibration characteristics
with considering the possibility of elimination of degrees of freedom are reminded in brief.

Let the finite periodic system be composed of the definite number M of identical parts
– subsystems. The subsystem discretization will be performed in such a way, that it may be
coupled in identical number N of points in identical degrees of freedom to their left-side and
right-side adjacent subsystems (see Fig. 1). There are no requirements imposed on internal
points of the subsystem.

Mathematically, this approach to the problem formulation leads to assembling and solving
the matrix difference equations.

By introducing the condition that the whole system is linear and the motion of the
k-th subsystem is investigated during its harmonic vibration it is possible to formulate the
displacement vector uk(t) of the k-th subsystem in the form

uk(t) = Uk ei ω t , (1)

where Uk is the vector of displacement amplitudes of the k-th subsystem, ω is the angular
frequency, t is the time and i is the imaginary unit. The vector of generalized forces qk(t)
acting on the k-th subsystem can be formulated in the form

qk(t) = Qk ei ω t , (2)

where Qk is the vector of amplitudes of generalized forces acting on the k-th subsystem.
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Fig.1: The k-th subsystem and its couplings with the adjacent subsystems

Thus it is supposed that the vector of generalized forces qk(t) is proportional to the
instantaneous state of the subsystem and it changes proportionally to its displacements.
The relation between the amplitude of the subsystem displacements and the amplitude of
generalized forces acting on it is described in a matrix equation

D(ω)Uk = Qk , (3)

where D(ω) is the frequency dependent dynamic stiffness matrix identical for all subsystems
(k = 1, 2, . . . ,M).

The vector of displacements amplitudes Uk of the k-th subsystem can be partitioned
into subvectors lUk corresponding to the degrees of freedom, in which the k-th subsystem
is coupled with the subsystem k− 1, rUk corresponding to the degrees of freedom, in which
it is coupled with the subsystem k + 1 (note : in comparison with previous papers, e.g. [2],
superior index denoting right-side adjacent subsystems p was changed to the more logical
index r), iUk corresponding to the internal degrees of freedom and eUk corresponding to
the internal degrees of freedom to be eliminated (see Fig. 1). The vector of the amplitudes
of generalized forces Qk can be partitioned in the same way (see Fig. 1).

In the points of coupling the k-th subsystem with the adjacent subsystems the compati-
bility conditions hold

rUk−1 = lUk ,

rUk = lUk+1

(4)

and the conditions of equilibrium of the generalized coupling forces hold
rQk−1 = −lQk ,

rQk = −lQk+1

(5)

The compatibility conditions (4) and the conditions of equilibrium of the generalized
coupling forces (5) are given in the general form. When formulating the concrete com-
patibility conditions and the concrete conditions of equilibrium of the generalized coupling
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forces for cyclic systems it is necessary to respect the influence of the subsystem geometry,
of the geometry of the whole periodic system and of the option of the local coordinate sys-
tem, in which the coordinates of the subsystem points are determined. Derivation of the
concrete compatibility conditions and the concrete conditions of equilibrium of the generali-
zed coupling forces and form of transformation matrices in the rotationally periodic system
composed of the subsystems of a sector shape (the case of circular plates and steam turbine
bladed disks) are given in [1], [2] or [3].

The dynamic stiffness matrix D(ω) of the subsystem can be written using the subma-
trices corresponding to the individual groups of degrees of freedom. When introducing the
condition that the generalized forces act on the subsystem only in the points common with
the adjacent subsystems and that they do not act on the subsystem internal points, the
matrix equation (3) can be written in the form

⎡
⎢⎣

llD liD lrD leD
ilD iiD irD ieD
rlD riD rrD reD
elD eiD erD eeD

⎤
⎥⎦

⎡
⎢⎣

lUk
iUk
rUk
eUk

⎤
⎥⎦ =

⎡
⎢⎣

lQk

0
rQk

0

⎤
⎥⎦ . (6)

Note : If the subsystems were coupled to the inertial frame, as it is illustrated in Fig. 1,
by springs of stiffness KA, KB and KC in nodes A, B and C these stiffnesses would be
included in the submatrices liD, riD, iiD or eiD of the dynamic stiffness matrix D(ω).

By eliminating the subvector of displacements amplitudes eUk the matrix equation for
the partially reduced subsystem is obtained :⎡

⎣ llD̃ liD̃ lrD̃
ilD̃ iiD̃ irD̃
rlD̃ riD̃ rrD̃

⎤
⎦

⎡
⎣ lUk

iUk
rUk

⎤
⎦ =

⎡
⎣ lQk

0
rQk

⎤
⎦ . (7)

where llD̃, liD̃, lrD̃, ilD̃, iiD̃, irD̃, rlD̃, riD̃ and rrD̃ are submatrices of the reduced dynamic
stiffness matrix D̃(ω).

The equation obtained by multiplying the first row of matrix equation (7) and transcribed
for the subsystem k+ 1 is, after introducing the second compatibility condition (4) and the
second condition of generalized coupling forces equilibrium (5), of the form

llD̃ rUk + liD̃ iUk+1 + lrD̃ rUk+1 = −rQk . (8)

Using the first compatibility condition (4) the following relations are obtained from the
second and the third row of matrix equation (7) :

ilD̃ rUk−1 + iiD̃ iUk + irD̃ rUk = 0 , (9)
rlD̃ rUk−1 + riD̃ iUk + rrD̃ rUk = rQk . (10)

Equations (8), (9) and (10) are the initial difference equations for calculation of the
subvectors of displacements amplitudes rUk and iUk and the subvector of the amplitudes
of generalized coupling forces rQk.

Suitable procedure, which can be used for the derivation of relations for the calculation
of natural frequencies and mode shapes of a periodic system, leads to solution of the system
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of homogeneous linear difference equations of the second type [14] (the variable in these
equations is k; k = 1, 2, . . . ,M). Using this procedure the subvector of the amplitudes of
generalized coupling forces rQk is eliminated from the difference equations (8), (9) and (10)
and only the subvectors of displacements amplitudes rUk and iUk are determined.

The subvector of the amplitudes of generalized coupling forces rQk is eliminated by the
summation of the equations (8) and (10) :

rlD̃ rUk−1 +
(
llD̃ + rrD̃

)
rUk + riD̃ iUk + lrD̃ rUk+1 + liD̃ iUk+1 = 0 . (11)

Matrix equations (9) and (11) can be expressed using one matrix equation[
rlD̃ 0
ilD̃ 0

]
r,iUk−1 +

[
llD̃ + rrD̃ riD̃

irD̃ iiD̃

]
r,iUk +

[
lrD̃ liD̃
0 0

]
r,iUk+1 = 0 , (12)

where
r,iUk =

[
rUk
iUk

]
.

In the process of solution (see [1] or [2]) the condition that the periodic system is un-
damped is introduced and cyclic condition r,iUk+M = r,iUk (where k = 1, 2, . . . ,M) is
used.

After solving the matrix difference equations (see [1] or [2]; the course of solving complies
with the conditions given in [14]) the vector of displacements amplitudes r,iUk for cyclic
periodic systems is dependent on the optional parameter β (for the mode shapes of the
rotationally periodic systems the parameter β means the number of nodal diameters). Two
forms of equations are obtained for the calculation of natural frequencies and mode shapes
of the whole periodic system in dependence on the parameter β value : the first form of
equations (see relations from (13) to (16)) holds for β = 0 and in addition in case of
even M β = M/2, the second form of equations (see relations from (17) to (21)) holds for
β = 1, 2, . . . ,M−1 and when M is even with the condition β �= M/2. As it was already
mentioned, detailed derivation of the mathematical relations for calculation of the natural
vibration characteristics of a linear undamped rotationally periodic system is performed
in [1] or in [2].

For β = 0 and in addition in case of even M β = M/2 the vector of displacement
amplitudes r,i

βUk can be calculated from the relation

r,i
βUk = C cos(βα k) βa , (13)

where βα = 2π β/M , C is the optional constant, βa is the characteristic vector.

The characteristic vector βv = βa (for β = 0 and in addition in case of even M β = M/2)
can be determined (for specifically chosen β) from equation

βH βv = βH1 βa = 0 , (14)

where

βH = βH1 =
[

llD̃ + rrD̃ riD̃
irD̃ iiD̃

]
+

([
rlD̃ 0
ilD̃ 0

]
+

[
lrD̃ liD̃
0 0

])
cos βα . (15)



166 Polach P.: Verification of the Calculation of Natural Vibration Characteristics of Linear . . .

Natural frequencies of the whole periodic system can be determined from the condition
of a nontrivial solution :

det βH = det βH1 = 0 . (16)

Mode shapes of the whole periodic system (for β = 0 and in addition in case of even M
β = M/2) can be calculated by substituting the characteristic vectors βa into equation (13).
Mode shapes are calculated for the k-th subsystem in its local frame of reference and then
they must be transformed to the global one.

When β = 1, 2, . . . ,M−1 and when M is even with the condition β �= M/2 the vector of
displacement amplitudes r,i

βUk can be calculated from the relation

r,i
βUk = C1

[
cos(βα k) βa + sin(βα k) βb

]
+ C2

[
cos(βαk) (−βb) + sin(βαk) βa

]
, (17)

where βα = 2π β/M , C1 and C2 are the optional constants, βa and βb are the characteristic
vectors.

Characteristic vectors βa and βb (for β = 1, 2, . . . ,M−1 and when M is even with the
condition β �= M/2) can be determined (for the specifically chosen β) from the relation

βH βv =
[

βH1 βH2

−βH2 βH1

] [
βa
βb

]
= 0 , (18)

where

βH1 =
[

llD̃ + rrD̃ riD̃
irD̃ iiD̃

]
+

([
rlD̃ 0
ilD̃ 0

]
+

[
lrD̃ liD̃
0 0

])
cos βα , (19)

βH2 =
([

lrD̃ liD̃
0 0

]
−

[
rlD̃ 0
ilD̃ 0

])
sin βα (20)

and natural frequencies of the whole periodic system (for β = 1, 2, . . . ,M−1 and when M

is even with the condition β �= M/2) can be determined from the condition of nontrivial
solution :

det βH = det
[

βH1 βH2

−βH2 βH1

]
= 0 . (21)

Mode shapes of the whole periodic system can be calculated by substituting the cha-
racteristic vectors βa and βb into equation (17). Mode shapes are calculated, as well as
in case of equation (13), for the k-th subsystem in its local frame of reference and then
they must be transformed to the global one. Constants C1 and C2 when enumerating mode
shapes r,i

βUk can be selected arbitrarily. It follows from both the decision procedure itself
and the definition of mode shapes, which must form a linearly independent basis. During
the visualization of the particular mode shapes of the real steam turbine bladed disk [1], [12]
conditions C1 = 1 and C2 = 0 are applied similarly as in [8].

Generally, characteristic vectors βa and βb are different for identical β. It can be shown
that with certain types of the subsystem symmetry it holds βa = c βb (where c is a constant;
β = 1, 2, . . . ,M−1 and when M is even with the condition β �= M/2) and relations for
calculation of natural frequencies and mode shapes of the rotationally periodic system are
simpler [8].
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As the periodic system is considered undamped, the dynamic stiffness matrix D(ω) of
the subsystem can be put in the form [1], [3]

D(ω) = K− ω2 M , (22)

where K is the stiffness matrix of the subsystem and M is the mass matrix of the subsystem.

In the case in which the dynamic stiffness matrix D(ω) is considered in the form of (22),
it is possible to use e.g. the Guyan reduction (e.g. [1], [15]) for assembling the submatrices
llD̃, liD̃, lrD̃, ilD̃, iiD̃, irD̃, rlD̃, riD̃, rrD̃.

When assembling the equations for calculation of the natural vibration characteristics
of a linear undamped rotationally periodic system according to the described method the
solution of the matrix equation (14) or (18) leads to the generalized eigenvalue problem [1], [2]
or [3]. The equation of the following type will be solved (in accordance with equation (22);
β = 0, 1, . . . ,M−1) :

βH βv =
(
βHK − βω

2
βHM

)
βv = 0 . (23)

The subspace iteration method (e.g. [16]), which enables to determine the selected num-
ber q of the lowest eigenvalues βω

2 and corresponding natural vectors, is a very efficient
numerical method. This method requires the matrices βHK and βHM to be symmetric and
in addition matrix βHK to be positive definite (at the same time those conditions guarantee
the eigenvalues βω

2 of equation (23) to be real positive). The proof that matrices βHK

and βHM comply with the stated conditions is carried out in [1] (β = 0, 1, . . . ,M−1).

After determination of the values βω
2
j (j = 1, 2, . . . , q) the natural frequencies (in [Hz])

of the whole periodic system can be calculated from the relation

βfj =

√
βω2

j

2π
, j = 1, 2, . . . , q . (24)

The PERCOK in-house software [12] was created in the Compaq Visual Fortran pro-
gramming language on the basis of the relations for calculation of the natural vibration
characteristics of the linear undamped rotationally periodic systems with the subsystems of
a sector shape. The Gyuan reduction for the elimination of degrees of freedom is used. The
PERCOK software uses the subsystem stiffness matrix K and the mass matrix M assembled
applying the COSMOS/M FEM software. The PERG in-house software [12], in the Compaq
Visual Fortran programming language as well, was created to visualize the mode shapes of
the rotationally periodic systems.

3. The test example of the circular plate

The homogeneous thin circular plate was chosen as the test example for the verification
of the proposed method, which is aimed at the calculation of natural frequencies and mode
shapes of a linear undamped rotationally periodic systems considering the possibility of
elimination of degrees of freedom. The chosen circular plate of uniform thickness is clamped
at its inner radius. This example was chosen due to the geometric similarity and analogical
character of mode shapes as disks of steam turbines have – e.g. [17]. In addition it is
a simple rotationally periodic system, in which it is possible to create the model of the
whole periodic system in the FEM software and calculate its natural frequencies and mode
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shapes. When thin plates of uniform thickness are considered it is possible to compare
the results with the natural vibration characteristics calculated analytically or numerically
– e.g. [17], [18], [19], [20], [21].

The investigated circular plate is of an inner radius r = 0.1m, outer radius R = 1m and
thickness h = 0.03m. Material characteristics of the plate correspond to steel (Poisson’s
ratio ν = 1/3, Young’s modulus E = 2.1×1011 Nm−2 and density � = 7900kgm−3).

A ten-degree sector of the plate discretized into 360 eight-node three-dimensional ele-
ments SOLID (see Fig. 2) is considered to be a subsystem. The subsystem is coupled in
135 nodes (in 405 degrees of freedom) to right-side adjacent subsystems, the same cou-
plings are to its left-side adjacent subsystems, the number of internal nodes is 405 (with
1215 degrees of freedom).

Fig.2: Finite element mesh of the subsystem of the thin
circular plate (the COSMOS/M FEM software)

Natural frequencies of the investigated circular plate calculated applying the method
utilizing the rotational periodicity of the system without the elimination of degrees of free-
dom are given in Tab. 1, natural frequencies calculated applying the method utilizing the
rotational periodicity of the system with the elimination of degrees of freedom are given
in Tab. 2. The natural vibration characteristics of the FEM model of the whole plate cal-
culated in the COSMOS/M software are the same as the natural vibration characteristics
calculated applying the method utilizing the rotational periodicity of the system without the
elimination of degrees of freedom (see Tab. 1). This coincidence is given by the fact that the
mass and the stiffness matrices of the subsystem were assembled applying the COSMOS/M
software, and the finite element mesh of the subsystem was the same as the finite element
mesh of the sector of the whole plate model.

Visualization of the third bending mode shape with three nodal diameters of the circular
plate (without degrees of freedom elimination) in the PERG in-house software is given
in Fig. 3.

To compare the results in Tab. 3 there are given the calculated values of natural fre-
quencies corresponding to the bending mode shapes of undamped plate clamped at its inner
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Fig.3: Visualization of the third bending mode shape with three nodal diameters of
the circular plate in the PERG in-house software (a and b – characteristic
vectors βa and βb from the relations (17) and (18); U – bending deflections,
V – torsional deflections, W – radial deflections)

Natural frequencies calculated without degrees of freedom elimination
or using the whole plate (clamped at its inner radius) FEM model [Hz]

Number of nodal diameters 0 1 2 3
1 nodal circle 32.20 26.32 41.58 92.15
2 nodal circles 191.57 209.36 278.20 399.75
3 nodal circles 559.37 585.78 679.74 850.07
4 nodal circles 1110.73 1144.15 1256.35 1461.18

1849.27
5 nodal circles (torsional, 1 nodal 1887.66 2012.69 2240.76

circle, 1440.08)

Tab.1: Natural frequencies of the circular plate clamped at its inner radius calculated
applying the method utilizing the rotational periodicity of the system without
degrees of freedom elimination or using the whole plate FEM model

Natural frequencies calculated with all internal degrees of freedom
elimination [Hz] (plate clamped at its inner radius)

Number of nodal diameters 0 1 2 3
1 nodal circle 32.21 26.32 41.58 92.16
2 nodal circles 191.59 209.38 278.25 399.87
3 nodal circles 559.66 586.12 680.25 851.06
4 nodal circles 1112.75 1146.36 1259.22 1465.54

1857.71
5 nodal circles (torsional, 1 nodal 1896.60 2023.31 2254.87*

circle, 1440.11)
*For the reason of stability of the numerical solution three internal degrees of freedom
(in one internal point) were not eliminated.

Tab.2: Natural frequencies of the circular plate clamped at its inner radius
calculated applying the method utilizing the rotational periodicity
of the system with all internal degrees of freedom elimination



170 Polach P.: Verification of the Calculation of Natural Vibration Characteristics of Linear . . .

Natural frequencies calculated using the formula (25) given in [18] [Hz]
(plate clamped at its inner radius)

Number of nodal diameters 0 1 2 3
1 nodal circle 32.33 23.89 40.80 93.26
2 nodal circles 192.54 206.07 276.03 400.31

Tab.3: Natural frequencies of the circular plate clamped at its inner
radius calculated using the formula (25) given in [18]

Natural frequencies calculated using the formula (26) [Hz]
(plate clamped at its centre)

Number of nodal diameters 0 1 2 3
1 nodal circle 28.28 13.51 39.65 92.26
2 nodal circles 157.68 154.67 265.77 398.88
3 nodal circles 461.29 451.19 632.39 838.92
4 nodal circles 909.01 896.95 1160.76 1447.94
5 nodal circles 1507.33 1493.92 1829.33 2191.13

Tab.4: Natural frequencies of the circular plate clamped at its centre
calculated using the formula (26)

radius using the formula given in [18]

fβ j =
λβ j

2π R2

√
E h2

12 � (1 − ν2)
, (25)

where λβ j are the coefficients dependent on the ratio between the inner radius r and outer
radius R of the plate, on the number of nodal diameters β and on the number of nodal
circles j (order of appropriate natural frequency corresponding to the bending mode shape
at the same β). Coefficients λβ j are given in [18] only for β = 0, 1, 2, 3 and for j = 1, 2.
The same formula is presented in [19]. In comparison with [18], in [19] the values of the
coefficients λβ j differ only slightly.

Further, to compare the results in Tab. 4 there are given the calculated values of natural
frequencies corresponding to the bending mode shapes of undamped plate clamped at its
centre (i.e. r = 0m) using the formula given in [17]

fβ j =
κβ j

2π

√
E h2

3 �R4 (1 − ν2)
, (26)

where coefficients κβ j are dependent on the boundary conditions and on the ratio between
the inner radius r and outer radius R of the plate, on the number of nodal diameters β and
on the number of nodal circles j. Coefficients κβ j are reported in [17]. The formula (26)
holds at neglecting shear deformations (which holds for fairly thin plates). It is evident, that
the results calculated using the formula (26) only get near to the real natural frequencies
of the investigated plate because the inner radius is considered to be zero (deviation of the
natural frequencies values should not be too large however).

The formula for the calculation of the natural frequencies corresponding to the bending
mode shapes of the plate clamped at its centre (r = 0m) presented in [20] or [21]

fβ j =
μ2

β j

2π

√
E h2

12 �R4 (1 − ν2)
, (27)

where the coefficients μβ j are dependent on the number of nodal diameters β and on the
number of nodal circles j, does not give the comparable results.
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Note: ‘Uncommented’ natural frequencies given in Tabs. 1 to 4 correspond to the bending
mode shapes.

4. Conclusion

The article presents the results of the verification calculation of the method for the cal-
culation of natural frequencies and mode shapes of a linear undamped rotationally periodic
systems considering the possibility of elimination of degrees of freedom. As a test example
a thin circular plate was chosen. The method can be applied e.g. for calculation of the
natural vibration characteristics of the steam turbine bladed disks.

It is possible to conclude from the results given in Tabs. 1 to 4 that the method for the
calculation of the natural vibration characteristics of a linear undamped rotationally peri-
odic systems is functional and gives very good results. When the result calculated using the
Gyuan reduction for the elimination of internal degrees of freedom and results calculated
without the elimination of degrees of freedom are compared the best coincidence is in the
lowest natural frequencies for any number of nodal diameters. With the increasing order
of natural frequency the differences between the results without degrees of freedom elimi-
nation and with degrees of freedom elimination increase. Using the Gyuan reduction for
the elimination of internal degrees of freedom has only a minimal influence on the values of
calculated natural frequencies at a simple structure as the thin circular plate of a uniform
thickness. At calculating the natural vibration characteristics of a more complicated struc-
ture, e.g. a steam turbine bladed disk, it is necessary to choose the eliminated degrees of
freedom with more attention.
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taktem na bandáži a tie-bossu na základě výsledk̊u měřeńı (Verification of the Calculations of
Dynamic Characteristics of the Steam Turbine Blade with the Contact at Shrouding and at

Tie-boss on the Basis of the Results of the Measurements), Research Report ŠKODA VÝZKUM
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