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SELF-ASSESSMENT OF FINITE ELEMENT SOLUTIONS
APPLIED TO TRANSIENT PHENOMENA

IN SOLID CONTINUUM MECHANICS

Miloslav Okrouhĺık*, Svatopluk Pták*, Urmas Valdek**

The presented study evolved from authors’ considerations devoted to expected cre-
dibility of results obtained by finite element methods especially in cases when com-
parisons with those of experiment are not available. Thus, assessing the validity of
numerical results one has to rely on the employed method of the solution itself. Out
of many situations which might be of importance, we paid our attention to com-
parison of results obtained by different element types, two different time integration
operators, mesh refinements and finally to frequency analysis of the loading pulse
and that of output signals expressed in displacements and strains obtained by solving
a well defined transient task in solid continuum mechanics. Statistical tools for the
quantitative assessment of ‘close’ solutions are discussed as well.

Keywords : stress wave propagation, finite element method, validity of models, accu-
racy assessment

Motivation

The presented paper is a part of the study dedicated to the assessment of the energy
flux through a drilling bar with four spiral slots subjected to an axial impact. The problem,
initially suggested by people from Sandvik Company in Sweden, is fully treated in [10] and in
another paper just being prepared. The question was to find out what part of input energy,
due to the axial impact, could be transferred into the energy associated with torsional
displacements, which was thought to improve the rock drilling efficiency.

Authors solved the presented problem by means of FE analysis and by experiment. The
FE analysis was fully three dimensional, while the experimental one relied on the surface
strain measurement complemented by evaluation of measured data based on 1D wave theory
for axial and torsional waves.

Before assessing the final goal, i.e. the evaluation of the energy flux at each cross section
of the tube as a function of time and assessing its dependence on four different geometries of
spiral slots and on the ‘time length’ of the input pulse, authors deemed necessary to analyze
the credibility of both numerical and experimental approaches.

The analysis of FE and experimental results presented in this paper is based on the rather
simple and expectable pattern of stress waves propagation through the first part of the tube
for small times, i.e. before the incoming wave reaches the spiral slot. The details about the
solved case and about the experiment are in [10] and will be published later. In this paper
the main attention is devoted to particulars of self-assessment of finite element technology.
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Fig.1: Tube with four spiral slots, a part of mesh assembly, tube
dimensions in [mm], positions of locations where the com-
parison of FE and experimental data was performed

Authors believe that the discussion about the validity of these particular results is of me-
thodical nature and might be of interest of both finite element and experimental community.

List of principal variables

c0 =
√

E/� speed of 1D longitudinal waves
cL =

√
(2 G + λ)/� speed of longitudinal waves in unbounded 3D continuum

cT = cS =
√

G/� speed of transversal (shear) waves and of 1D torsional waves
E Young modulus
f cyclic frequency
g gravitational acceleration
G = E/[2 (1 + μ)] shear modulus
h mesh size
l length
m mass
p pressure
r radius
t time
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T period
β, γ Newmark coefficients
λ = μ E/[(1 + μ)(1 − 2 μ)] Lamé’s constant
μ Poisson’s ratio
� density
M, K mass and stiffness matrices
V, Λ modal and eigenvalue matrices
q(t), q̈(t) displacement and acceleration arrays, functions of time
P(t) loading vector, function of time

1. Introduction

Assessing results of finite element (FE) analysis one is contemplating their reliability,
credibility, accuracy, validity, etc. That prompts questions as : Are the results correct and/or
precise? In what sense? If the results are compared with those obtained by alternative
approaches, what is an acceptable agreement of different solutions? How such an agreement
could be quantified?

The aim of this paper is to present a few self-checking tools allowing to assess the credi-
bility of the FE analysis. A few study cases, on which examples of self-assessment analysis
will be shown, come from the field of transient stress wave propagation in solids.

At least three reasons might be shown for this choice.

First, solving the linearly elastic stress wave propagation problems in solid continuum
mechanics is a well defined task based on equations of motion, strain-displacement relations
and on constitutive equations, attributed to Navier, Cauchy, Lamé, Rayleigh and others,
that are known for more than 150 years. See [1].

Second, available analytical solutions of equations governing the stress wave propagation
provide useful benchmark limits that could be used in the validation process of approximate
numerical approaches. See [2], [3], [4], [5].

Third, the FE method seems to be most frequently employed for solving stress wave
propagation tasks both in engineering and basic research. The origin of FE method goes
back to the thirties of the last century when Collar and Duncan conceived aeroelasticity
principles in discrete matrix expressed forms. See [6], [7]. The major steps in evolution of
the FE method are vividly described in [8].

Still, both the numerical and analytical approaches to the solution of transient stress
wave computation in solid continuum mechanics are far from being trivial. They require
a considerable amount of pre- and post-processing activities, powerful computer resources as
well as a thorough assessment of obtained results, since it is not always easy to distinguish
the manifestations of Mother Nature from contributions of the side effects evoked by the
various modeling approaches.

Model is a purposefully simplified concept of a studied phenomenon invented with the
intention to predict what would happen if . . . . Accepted assumptions (simplifications) thus
specify the validity limits of the model and strictly speaking the model is neither true nor
false. And the FE method can be considered as one of models of continuum. Regardless
of being simple or complex, the model is acceptable if it is applied within its validity limits
and if it is experimentally approved. See [9].
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The results of any experiment, however, are biased by systematic errors, noise, observa-
tional thresholds, cut-off frequency limits, etc.

Furthermore, in most cases the experimental results are not available when needed and
thus the direct comparison of FE and experimental results cannot be provided. So assessing
the validity of numerical results, we have to rely on what the employed numerical methods
spill on themselves.

2. Benchmark studies

In this paragraph there are five cases studied in detail. As a vehicle for assessing the va-
lidity and credibility of FE modeling we will present and analyze different approaches to the
FE treatment of the propagation of elastic stress waves in a tube being subjected to impact
axial loading. For more details see [10]. Equations describing the propagation of undamped
elastic stress waves are well known and can be found in numerous references as in [2], [3], [20].
For the FE treatment of this task the reader might refer [13], [14], [15], [16], [18], [24].

Details concerning the FE modeling allied to this case are in paragraph 2.1.

2.1. Finite element details

Geometry

An in-house finite element code called PMD (Package for Machine Design) was employed.
The program, originated at seventies of the last century, is being maintained and developed
by the Institute of Thermomechanics. See [24].

The tube being modeled has inner and outer radii 8 and 11mm, respectively. Its length
varies but it is always substantially ‘longer’ than the loading pulse. Tube is assembled by
3D eight-node brick elements and alternatively by four-node square axisymmetric elements.
The mesh assembled out of approximately 1mm elements is called standard (also coarse
or mesh1) in the text. Finer meshes denoted mesh2 to mesh4 are considered as well. The
higher numbered mesh is twice as fine as the previous one. A typical layer of standard 3D
and of standard axisymmetric elements, of which the tube is assembled, is sketched in Fig. 2.

Fig.2: Standard mesh; one layer of 3D and axisymmetric elements

Element properties

Trilinear brick eight-node elements and bilinear four-node axisymmetric elements are
used. Gauss quadrature of the third order is employed in both cases.

Material properties

E = 2.05×1011 Pa, μ = 0.24, � = 7800 kgm−3.
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Loading

One side of the tube is loaded by uniform pressure, whose time dependence is given by
a rectangular pressure pulse. This way, the non-linear contact problem is approximated by
a simplified linear procedure. The validity of this approach is discussed in [10]. The other
end of the tube is fixed.

Computational considerations

To work with ‘reasonable’ values of pressure, and to have a chance to compare the
FE results with those of experiment, we could use approximations valid for 1D stress wave
propagation. See [10]. Let a 1D bar be loaded by a striker falling from the height h = 1 m. It
is assumed that the striker is of the same material as the bar and has the same cross sectional
area. Its velocity, just before the impact, is v =

√
2 g h = 4.42944m/s. The material particle

velocity of the impacted face, immediately after the impact, is vp = v/2 = 2.2147m/s.
The resulting pressure, according to Young’s classical formula, see [20], is p = E vp/c0 =
= 88.5198MPa, where, the 1D velocity c0 was defined above. The time of the pulse is
related to the assumed length of the striker by timp = 2 lstriker/c0. For a hypothetical striker
with lstriker = 40mm the time length of the pulse is 15.6microsec. Assuming the lossless
impact the input energy of the bar is equal to the kinetic energy of the striker just before
the impact, i.e. mstriker v2/2 = 0.548086J.

FE technology

Newmark time step operator (no algorithmic damping, i.e. γ = 0.5, β = 0.25, see [18])
was used with the consistent mass matrix, while the central difference operator was sys-
tematically used with the diagonal mass matrix. The time step value was evaluated from
the condition that two timesteps are required for 1D longitudinal wave (taking approximate
speed c0 = 5000m/s) to pass through the length of the smallest element. See [23]. In the
case of the coarse mesh (mesh1) the dimensions of all elements are about 1mm so the basic
timestep = 10−7 s. This way, the employed timestep is one half the critical step as defined
in [25], and suits well to both time step operators. Unless stated otherwise, the coarse mesh
results are presented in the text.

2.2. Study case 1 – strain distributions of the same task obtained by Newmark
(NM) and central difference (CD) operators

Several time marching operators for solving the systems of ordinary differential equa-
tions, suitable for the FE modeling of transient tasks of solid continuum mechanics, are
known today. The detailed description of their background and analyses of their properties
can be found, e.g., in [13], [16], [18]. Commercial FE packages offer plethora of approaches,
see [14], [15]. The outlines and rules for their ‘safe’ usage are generally advocated; never-
theless it still might be of interest to analyze in detail the minute differences obtained by
applying different integration methods to the same task.

Let’s concentrate our attention to the comparison of results obtained by Newmark (NM)
and central difference (CD) methods.

The NM method is a classical representative of implicit methods. Used with consistent
mass matrix and without algorithmic damping it conserves energy and is unconditionally
stable. In order to minimize the temporal and spatial discretization errors the NM method
is recommended, see [13], to be used with consistent mass matrix formulation.
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Fig.3: Time distributions of surface axial strains obtained by NM and CD operators

The CD method, the representative of explicit methods, is only conditionally stable.
When used within its stability limits with consistent mass matrix formulation it also fully
conserves energy. To reduce the temporal and spatial discretization errors the CD method is
recommended, see [13], to be used with diagonal (lumped) mass matrix formulation. Using
it with a consistent mass matrix is possible but practically prohibitive for two reasons.
First, the problem becomes computationally coupled. Second, the data storage demands
for the consistent mass matrix are substantially higher than those needed for a diagonal
mass matrix. Today, the CD method is almost exclusively used with the diagonal mass
matrix formulation, which is furthermore plausible from the point of view of minimization
of dispersion effects. But using the CD method with diagonal mass matrix we are punished
a little bit by the fact that the time dependence of total mechanical energy slightly fluctuates
around its ‘correct’ value. See [17].

Comparison of the time history of axial surface strains at a location, whose distance from
the impacted face of the tube is 340mm, see Fig. 1, obtained by NM and CD methods using
3D elements, is presented in Fig. 3. The same time integration step (1e-7 [s]) was used
in both cases. The proper choice of the time step value is discussed in [25]. For the NM
method the consistent mass matrix was employed, while the diagonal mass matrix was used
for the CD method.

The left-hand subplot presents the axial strains as functions of timesteps in the above
mentioned location. The negative peak, denoted IL1, corresponds to the immediate position
of the loading pulse. There is a visible difference between NM and CD results, which – from
the engineering point of view – seems to be small. Often, the differences are viewed by the
prism of the plotting scale. We will treat this subject in more detail in the paragraph 2.6.

In the upper right-hand subplot of Fig. 3, which is the enlarged view of the small rectangle
presented on the left-hand side of Fig. 3, the theoretical positions of arrivals of hypothetical
3D (cL) and 1D (c0) longitudinal waves are indicated by vertical lines. Of course in a bounded
3D body no pulse, being composed on infinitely many harmonics, can propagate by any of
above mentioned velocities. But the theoretical wave speeds are useful bounds for our



Engineering MECHANICS 109

expectations. The detailed strain distributions, obtained by NM and CD methods, are
shown as well. From the analysis of dispersion properties of finite elements and that of
time integration methods, presented in detail in [13], it is known that the computed speed
of wave propagation for the CD approach with diagonal mass matrix underestimates the
actual speed, while using the NM approach with consistent mass matrix the actual speed is
overestimated. The presented results nicely show this. When looking at the enlarged details
of the wave arrivals, as modeled by NM and CD operators, a nagging question might intrude
our minds. Where or actually when does the incoming pulse start? A similar subject was
analyzed on experimentally obtained data in [10], where it was shown how the ‘detected’
moment of arrival depends on the observational threshold. Different frequency contents of
both signals, as well as a more detailed analysis of CD and NM operators will be treated in
paragraphs 2.4 and 2.5 respectively.

Less known is the fact that the speed of propagation, modeled by NM method with
consistent mass matrix formulation, is actually ‘infinitely’ large. See [17]. A brief explanation
of this curiosity could be sketched followingly.

Interlude – assessment of ‘variable computational speeds’ of wave propagation by analyz-

ing two time marching algorithms for the numerical integration of the system of ordinary

differential equations Mq̈ + Kq = P(t)

The central difference (CD) method and the Newmark (NM) method lead to the repeated
solutions the system of algebraic equations

1
Δt2

Mqt+Δt = P̃t , (a) K̂ qt+Δt = P̂t+Δt , (b)

where the effective loading forces and the effective stiffness matrix are

P̃t =Pt −
(
K− 2

Δt2
M

)
qt − 1

Δt2
Mqt−Δt , P̂t+Δt = Pt+Δt +M (c1 qt + c2 q̇t + c3 q̈t) ,

K̂ = K+
1

β Δt2
M .

Definition of constants appearing above and more details are in [18].

Generally, the matrices K, M, K̂ are sparse. Nevertheless their inversions K−1, M−1

as well as K̂−1 (needed for extracting the displacements qt+Δt at the next time step from
equations (a) and (b)) are full. From it follows that in both systems of equations the
unknowns are coupled. This means that when calculating the i-th displacement, there are
all other displacements, which – through the non-zero coefficients of a proper inverse matrix
– are contributing to it.

Thus, when (at the beginning of the integration) a nonzero loading is applied at a certain
node, then (at the end of the first integration step) the displacements at all nodes of the
mechanical system are non-zero, indicating that the whole system already ‘knows’ that it
was loaded, regardless of the distance between the loading node and the node of interest.

The magic spell could only be broken if the matrix, appearing in the system of algebraic
equations, is diagonal, because its inversion is then diagonal as well. This, however, could
only be provided for the CD approach, operating with mass matrix, because it is the mass
matrix only which can be meaningfully diagonalized. See [18].

End of interlude.
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The above discussion is illustrated in the lower right-hand side subplot of Fig. 3 where
one can see the strains computed by CD and NM operators (at a location whose distance
from the loading area is 340mm) during the first three steps of integration. The CD ope-
rator, with a diagonal mass matrix, gives the expected series of pure zeros, while the NM
method gives values negligibly small (of the order of 10−222) but still non-zero. It should be
emphasized that this has nothing to do with round-off errors. The same phenomenon would
have appeared even if we had worked with symbolic (infinitely precise) arithmetics.

The computed value of speed of stress wave propagation (obtained by the registration
of the first non-zero response at a certain time in a given distance from the loading point
using the NM method) depends not only on the distance of the point of observation from
the loading node but paradoxically on the timestep of integration as well. The CD method
spares us of these troubles.

And now it is the computational threshold which enters our considerations. It depends on
the number of significant digits used for the mantissa representation of the floating number.
See [19].

The minimum floating point number that can be represented by the standard double
precision format (that we have used for the computation) is of the order of 10−308. This is
our numerical observational threshold allowing distinguishing the value 10−222 in the first
step of the lower right-hand side of Fig. 3.

If, for the same numerical integration in time, we had employed the single precision
format (threshold of the order of 10−79) we would have observed pure zero in the first step
instead and the first non-zero value would appear later.

Of course, nobody would measure the wave speed this way. What would be a common
sense approach? Sitting at a certain observational node, whose distance from the loaded
node is known, one would estimate the speed by measuring the time needed for the arrival
of the ‘measurable’ or ‘detectable’ signal.

And the measurable signal is such that is in absolute value greater than a ‘reasonable’
observational threshold. And what is a proper value of it is a good question.

A thought experiment accompanied by FE computation might help. Imagine a standard
finite element double-precision computation giving at a certain time the spatial distribution
of displacements at a node on the surface of a body. Assume that the distance of our
observational node from the loading node is known. Now, let’s set a ‘reasonable’ value of
the threshold and apply a sort of numerical filter on obtained displacements, which erases all
the data whose absolute values are less than the mentioned value of the threshold. This way,
for a given threshold value, we get a certain arrival time and from the known distance we
obtain the propagation speed. Working with displacements normalized to their maximum
values allows us to consider the threshold values as the relative ones. For more details
see [17].

Varying the simulated threshold value in the range from 10−6 to 10−1 we will get a set
of different velocities of propagation. As a function of threshold they are plotted in Fig. 4.
Material constants for the standard steel were used. The horizontal lines represent the
theoretical speeds for longitudinal waves in 3D continuum, for longitudinal plane stress
waves in 2D continuum as well as for the shear waves. Obviously, the shear wave speeds are
identical both for 3D and 2D cases. See [2], [20].
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Fig.4: Detected velocity of propagation vs. relative threshold

The previous discussion might appear rather academic. The threshold issue, however,
is really important when the speed of propagation is being determined by experimental
means. The procedure is the same as in the numerical simulation approach. Observing
the first ‘measurable’ response at a certain time in a given distance from the loading point
one can estimate the speed of propagation. As before, the estimated velocity value depends
on the observational threshold value. There is, however, a significant difference. While we
could almost arbitrarily vary the simulated threshold value in the numerical treatment, the
value of observational threshold is usually constant for the considered experimental setup
being used for the measurement of a particular physical quantity.

It is known that the longitudinal waves carry substantially less amount of energy than
these of the shear and Rayleigh waves and that the surface response, measured in displace-
ments or strains, is of substantially less magnitude for the former case.

From the experimental point of view one can conclude that for a correct capturing of the
longitudinal velocity value, the relative precision of at least of the order of 10−6 is required.
This is a tough request. The relative threshold of the order of 10−3 is more common in
experimental practice. However, in an experiment with the relative precision of the order of
10−3, one would not detect the arrival of longitudinal waves and might wrongly conclude that
the first arriving waves are of the shear nature or would estimate the velocity of propagation
of the order of 3000m/s.

All this fuzz is about the margins of our ability to distinguish something against nothing.
This is, however, crucial for any meaningful human activity.

2.3. Study case 2 – strain distributions of the same task obtained by 3D and
axisymmetric elements

Another check of validity of FE analysis might be based upon analyzing the results of
the transient modeling of the above mentioned tube modeled by eight-node 3D elements
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Fig.5: Comparison of axial strains obtained by 3D and axisymmetric elements

and 4-node bilinear axisymmetric elements with diagonal mass matrix formulations. The
central difference method (CD) with constant timestep = 1e-7 [s] was employed. For
more details see [10].

Axial strains at a certain surface location computed by both time operators are plotted
in Fig. 5. The differences of solutions obtained by two different element types are almost
undistinguishable. We know, however, that distinguishability is a matter of the employed
plotting scale as one can see in the lower part of Fig. 5. In this particular case, the differences
between close solutions, quantitatively expressed by means of relative errors based on the
centred correlation coefficient, which has a nice geometrical interpretation as a cosine of an
angle between two vectors (a signal is considered as the n-dimensional vector in time as
described in [27]), are as follows.

Radial displacements Axial displacements Axial strains

cos(fi) 9.999737901746213e-001 9.999999591806313e-001 9.997847497832014e-001

with following relative differences
2.620982537870908e-005 4.081936866295877e-008 2.152502167985793e-004

Having small differences between two alternative approaches does not automatically im-
ply that the results are correct. It only means that for a given loading and the employed
time and space discretizations, there is almost no ‘measurable’ difference between results ob-
tained by two types of approaches. One has to realize that the existence of close solutions,
stemming from alternative approaches, is only a necessary, but not a sufficient, condition of
‘correctness’. And what is ‘correct’, in the sense of correct modeling the Mother Nature, is
difficult to define.

2.4. Study case 3 – comparison with experiment

In the upper part of Fig. 6 the FE axial strains at a certain location on the outer surface,
whose distance from the loading face is 340mm, are compared with those obtained experi-
mentally. The FE analysis was carried out by 3D elements with consistent mass matrix. The
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NM method (no algorithmic damping) with timestep 1e-7 s was used. The experimental
data were obtained by 3mm strain gauges glued in the middle part of the above mentioned
location. The standard bridge to eliminate bending effects with a digital recorder having
the sampling rate 1 MHz was employed. The used 16-bit amplifier with shunt calibration
had the upper cut-off frequency 0.1MHz. More details can be found in [10] and in the
paragraph 2.5.

Fig.6: Comparison of experimental signal with raw and filtered FE data

2.5. Study case 4 – mesh refinement and frequency analysis of axisymmetric
elements

The results presented in Fig. 6 show that the FE signal contains a greater contribution
of high-frequency components. Among other things, this is due to the fact that the FE
sampling rate, corresponding to the timestep used, is 10MHz, which is the value ten times
greater than that in the experiment.

In the lower part of Fig. 6 the experimental data are compared with FE data that were
subjected to a filtering process with the upper cut-off frequency value being equal to that of
experiment, i.e. 0.1MHz. The Butterworth second order digital filter, as described in [14],
was used. The agreement might be more plausible to naked eyes but not fully satisfying,
because it was reached at the expense of filtering-out high frequency components from the
FE signal, which the experiment, as it was conceived, could not register.

Evidently, a part of the high frequency contents in the experimental signal is missing.
On the other hand it is known that the highest frequencies of the FE signal are corrupted
due to time and space discretization side-effects. See [13].

And this leads to a question. That is, up to which frequency limit is the FE approach
trustworthy?

We know that FE method is a model of continuum. The continuum – also a model
– being based on the continuity hypothesis, disregards the corpuscular structure of matter.



114 Okrouhĺık M. et al.: Self-Assessment of Finite Element Solutions Applied to Transient . . .

It is assumed that matter within the observed specimen is distributed continuously and
its properties do not depend on the specimen size. Quantities describing the continuum
behavior are expressed as continuous functions of time and space. It is known, see [2], that
such a conceived continuum has no upper frequency limit. To find a ‘meaningful’ frequency
limit of FE model, which is of discrete – not continuous – nature, one might pursue the
following heuristic reasoning.

Imagine a uniform finite element mesh with a characteristic element size, say h. Trying
to safely ‘grasp’ a harmonic component (having the wavelength λ) by this element size we
require that at least five-element length fits the wavelength. This leads to λ = 5 h. What
is the frequency of this harmonics? Taking a typical wave speed value in steel of about
c = 5000m/s and realizing that λ = c T and f = 1/T , we get the sought-after ‘frequency
limit’ in the form f = c/(5 h). For a one-millimeter element we get f = 5000/(5×0.001) =
= 1×106 Hz = 1MHz. Let’s call it the five-element frequency, denoting it f5elem in the text.

Observing the original (or raw) FE signal in Fig. 6 we may notice its three significant
characteristics. First, the negative peak representing the input rectangular pulse, as it was
changed on its way from the loading face of the tube to the measurement location; second, the
slow frequency variation of the tail of the signal and finally the high frequency components
superimposed on the signal everywhere.

To estimate the low frequencies, appearing in the signal, let’s consider the lowest radial
frequency of the unsupported infinitely long thin shell of the radius r. In [21] there is derived
the formula

f =
1

2π r

√
E

�

1 − μ

(1 + μ)(1 − 2 μ)
,

which when applied to our case gives the value of 93 kHz. Due to the corresponding mode
of vibration, let’s call this frequency the lowest breathing frequency.

The faster frequency appearing in time distributions of displacements and strains is called
the zig-zag frequency in the text.

For the zig-zag frequency estimation let’s pursue the following reasoning.

According to Huygens’ Principle each point on the surface being hit by a wave is a source
of two kinds of waves – the longitudinal and transversal (shear) waves, respectively [3].

At the beginning of the loading process the frequencies of evoked waves can be crudely
estimated the following way. Each type of wave, being emanated from the outer surface,
propagates through the tube thickness, is reflected from the inner surface, and hits the outer
surface after the time interval

tL =
2 s

cL
, tS =

2 s

cT
,

where the tube thickness is denoted by s. The process is repeated. The corresponding
estimates of frequencies of S- and L-waves hitting the outer surface are

fL =
1
tL

, fS =
1
tS

.

Considering the given geometry and material properties the numerical values for these
frequencies are

fL = 0.93 MHz , fS = 0.54 MHz .
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In the text we will call them zig-zag frequencies with attributes L (for longitudinal waves)
and with S (for shear waves) respectively.

The case we are dealing with is three-dimensional even if its axial dimension is predom-
inant and the thickness of the tube is rather small comparing to its axial length. Also the
applied loading is rather mild – meaning that the time length of the pulse is relatively long
with respect to time needed for a wave to pass through the overall length of the tube. Still,
in reality there is a fully 3D wave motion pattern appearing within the tube cross section
that is dutifully detected by the FE modeling we are employing.

To analyze the frequency contents of the signal and relate it to that of the loading pulse,
let’s employ the Fourier transform treatment using the Matlab Transfer Function Estimate,
providing the transfer function of the system with the loading pulse as input, and the FE
radial displacements, ‘measured’ at the outer corner node of the impacted face, Fig. 1, as
the output, using the Welch’s averaged periodogram method as defined in [27].

Fig.7: Transfer function for mesh1, NM vs. CD, limit frequencies

In the upper part of Fig. 7 there are shown the time distributions of the loading pulse
expressed as the loading forces computed from the loading pressure applied on the impact
face (input signal) and those of radial and axial displacements (output signal), for the outer
corner node of the impacted face of mesh1, as functions of time both for NM and CD time
integration operators. In the lower part of Fig. 7 the transfer functions for NM and CD ope-
rators are shown together with limit frequencies estimated before. In this case the presented
transfer function, as computed by Matlab [27], is the cross spectrum of input signal (loading)
and output signal (radial displacements) divided by the power spectrum of the input signal.
The dimension of the transfer function depends on dimensions of input and output signals,
does not bring a significant piece of information and is not thus presented in figures. The
plotted frequency range is from 0 to the Nyquist frequency. See [26], [27]. The first peak
perfectly coincides with the lowest breathing frequency. The subsequent peaks (different
for NM and CD) are well positioned within the interval of frequencies for S- and L-zig-zag
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waves. The 5-element frequency, together with largest eigenfrequencies stemming from the
solution of the generalized eigenvalue problem are plotted for a comparison as well. They
are obtained from the solution of KV = MVΛ, where K, M are global stiffness and mass
matrices; V, Λ are modal matrix and diagonal matrix of eigenvalues, both for consistent
and diagonal mass formulations. In Fig. 7 and 8 they are denoted FE limit frequency diag
and FE limit frequency cons respectively.

There are clearly visible high-frequency suspicious peaks for the CD transfer function of
radial displacements which do not have their counterparts in the NM spectrum.

Fig.8: Transfer functions for different meshes from 0 to Nyquist

Fig. 8 summarizes the transfer function results for all four the analyzed meshes, i.e. for
mesh1 to mesh4 – each consecutive mesh being twice as fine as the previous one – for the
full range of frequencies (from 0 to Nyquist). The input pulse is normalized to its maximum
value. Let’s concentrate on positions of suspicious peaks – outside of the expected ‘good’
frequency intervals and expressed in dimensionless frequencies f∗ = f/fNyquist. They are
identical for all the analyzed meshes.

Observing the transfer function spectra for mesh1 to mesh4 we claim that the vibration
modes (detected by means of FE analysis) with frequencies higher than f5elem are numerical
artifacts. It is worth noticing that they are substantially more pronounced for the CD
operator.

The ‘fundamental’ frequencies embedded in response of the tube, we are interested in,
are at the beginning of the spectrum as shown in the transfer function results in Fig. 9 – this
time plotted within a shorter frequency range limited to 0 to 2MHz.

Observing Fig. 9 one should notice the subsequent ‘convergence’ of CD and NM peaks
within the zig-zag frequency interval. The natural explanation is that with the finer meshsize,
and with the correspondingly smaller timestep, both methods operate in ‘good’ frequency
intervals where their spatial and temporal discretization errors are insignificant.
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Fig.9: Transfer functions for different meshes from 0 to 2MHz

Fig.10: FE raw signal compared to that in which the frequencies
higher than five-element ones were filtered out

The presented transfer spectra for four studied meshes show
– a distinct indication of the breathing and zig-zag frequencies,
– the ‘convergence’ of CD and NM responses,
– subsequent disappearance of ‘false’ CD responses and
– that the ‘dubious’ CD frequency peaks do not have their counterparts in NM re-

sponses.

What remains to be compared is the ‘raw’ FE signal with that the frequencies higher
than the five-element frequency were filtered out. The results for the ‘raw’ and filtered FE
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signals, for the mesh1 and the NM operator with consistent mass matrix, are presented
in Fig. 10.

In future these FE results might be confirmed by a more sophisticated experiment having
a lower observational threshold, a higher sampling rate and also a higher frequency amplifier
cut-off.

2.6. Study case 5 – assessment of ‘close’ solutions by statistical tools for
results obtained by NM and CD operators for different time and space
discretizations

The variance, covariance and correlation coefficients, see [27], could be used as quanti-
tative measures of quality of agreement between different measurements or solutions. Es-
pecially the correlation coefficient is a good measure for the quality of ‘sameness’ of two
solutions or measurements. Of course closer are the results to unity – the better.

The variance of a signal is the standard deviation squared. It measures how much the
entries of the signal (individual samples, variables) vary. The covariance, on the other hand,
measures, how much two (or more) signals vary together. The diagonal entries of covariance
matrix indicate how the signal varies with respect to itself – so its value is equal to variance
of that signal. The correlation indicates the strength and direction of a linear relationship
between two (or more) variables. The correlation refers to the departure of two (or more)
variables from linear independence. For more details see [14], [22].

Now, we will concentrate on assessment of radial displacements of the corner node of the
impacted face as obtained by four different meshes, i.e. mesh1 to mesh4 and by the Newmark
(NM) and central difference (CD) time operators. The data are presented in Fig. 11. Only
the beginning of the studied time range is depicted.

The finer meshes are processed with proportionally smaller timesteps, so the lengths of
data belonging to individual meshes for the same time interval are different and cannot be

Fig.11: Radial displacements of the corner node,
four axisymmetric meshes, NM and CD
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directly compared, one against another, by means of statistical tools as variance, covariance
and correlation.

To remove this hindrance the coarse mesh data are filled in by linearly interpolated values
which are inserted in such a way that all the data samples are of the same length equal to
that of the finest mesh, i.e. mesh4.

The variance and covariance for mesh1 to mesh4 data, obtained by FE analysis, are
presented in Fig. 12.

Variance shows how noisy is the signal. For mesh1 and for mesh2 the variances of CD data
(stars) are substantially greater (i.e. the signal is noisier) than those of NM data (circles).
For mesh3 and mesh4 it is just the opposite but they have a tendency to converge. This
means that mesh3 and mesh4 data seem to be almost insensitive both to mesh density and
the choice of the integrating operator – under these conditions the method of computation
becomes robust, i.e. independent (of course within the scope of employed method and the
presented example) of the computational approach. Covariance results (diamond markers
in Fig. 12) indicate how the NM results differ from the CD results for individual meshes.

The reasoning based on statistical tools, together with conclusions stemming from the
frequency analysis presented above, indicate that we might be quite satisfied with precision
provided by the finest mesh regardless of the time integration operator used. Temporal and
spatial dispersion effects are negligeable. Assembling, however, the tube of mesh4 elements
(h = 1/8mm) is for practical engineering purposes too expensive. After all, we have to
rely on results obtained by means of the coarse mesh (mesh1). Still, these results guarantee
that within the 1 MHz frequency interval, i.e. within the 5-element frequency range, the
high-fequency zig-zag modes, appearing in FE computed strains, are to be believed.

Authors are aware of the fact that a relatively small number of cases was treated statis-
tically in this paper. But the main motivation for the presented statistical treatment was to
suggest a methodology procedure allowing the quantitative assessment of ‘close’ solutions
replacing thus the commonly used qualitative assertions based on the optical observations
of results leading to statements as the agreement is good within the line thickness.

Fig.12: Statistical assessment of ‘close’ solutions
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Of course the mentioned statistical tool are not omnipotent. They might be wrongly
interpreted in cases when one time signal is a multiple of another, or when two signals are
shifted in value by a constant. But these cases are easily excluded from the considerations
on the bases of engineering judgement.

3. Conclusions

The FE analysis is a robust tool giving reliable results with a satisfactory engineering
precision in standard tasks of continuum mechanics. Nevertheless, employing the FE method
in cases on borders of their applicability is tricky and obtained results have to be treated
with utmost care, since they might be profoundly influenced by intricacies of finite element
technology. It should be emphasized, however, that testing the methods in the vicinity of
borders of their applicability we do not want to discredit them, on the contrary, the more
precise knowledge of their imperfections makes us – users – more confident in them.

Modeling the nature should be independent of employed tools, means and methods. Un-
fortunately plethora of numerical procedures, of which the FE modeling is built up, gives
the FE user a chance to meddle with many optional parameters that might influence the
results significantly. Specifically, the modeling of fast transient phenomena in solid mechan-
ics by FE analysis can be provided by many different approaches based on a wide choice
of element types with different admissible quadrature procedures, employing different time
step operators, different timesteps, mass matrix formulations, details of mesh assembling,
just to name a few.

Generally, the questions concerning the credibility of FE modeling, could only be an-
swered indirectly – comparing the results of the same task obtained by different approaches,
as using different time step operators, coarse and subsequently refined meshes, analyzing
them using Fourier analysis, checking the conditions of logical consistency, etc.

The presented study resulted from the previous extensive treatment of stress waves prop-
agating through a solid cylinder with a spiral groove [23] and from considerations devoted to
comparison of results of experimental and FE analysis of stress waves in thin shells, see [17],
and can viewed as a preliminary study dedicated to experimental and FE treatment of stress
waves in thin tubes, see [10]. The authors believe that the analyzed results might contribute
to intuitive understanding of the scope of validity of FE models in transient dynamics.

The role of the experiment, as a tool for the ultimate verification of the mathematical
modeling, is indispensable but not always at our disposal when needed. Nevertheless the
experiment, as well as in FE analysis, is biased by observational thresholds, systematic
errors, frequency limitations, etc.

So in most cases the credibility of our FE computations has to rely on model self-checking
accompanied by a profound judgment of acceptability of employed theories, hypothesizes and
models.
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[9] Flüge S. (editor): Encyclopedia of Physics. Vol. III. Principles of Classical Mechanics and
Field Theory, Springer Verlag, Berlin, 1960
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