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NUMERICAL SIMULATION OF THE STRATIFIED
FLOW USING HIGH ORDER SCHEMES

Luděk Beneš*, Jǐŕı Fürst*, Philippe Fraunie**

The article deals with the numerical simulation of unstable, incompressible flows with
stratifications. The mathematical model is based on the Boussinesq approximation
of the Navier-Stokes equations. The flow field in the towing tank with a moving
cylinder is modeled for wide range of Richardson numbers. The obstacle is modeled
via appropriate source terms. The resulting set of PDE is then solved by the fifth
order WENO scheme, or by a second order finite volume AUSM MUSCL scheme.
Both schemes are combined with the artificial compressibility method in dual time.
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1. Boussinesq approximation

Flows in the atmosphere are characterized by relatively small velocities. It allows us
to consider them as incompressible (∇ · u = 0). Nevertheless, their density isn’t constant
due to different temperature, gravity etc. Therefore the equation for the density has to be
considered. The Navier-Stokes equations describing such flows are

Dρ

Dt
= 0 , (1)

ρ
Du

Dt
= −∇p + μ Δu + ρg + f . (2)

Here ρ is the density, u = (u, v, w) is the velocity, p is the pressure, μ is the dynamic viscosity,
g = (0, 0, − g) is the gravity, and f are other forces (e.g. Coriolis force).

These equations are simplified by Boussineq approximation. Density and pressure are
divided into two parts − background part + perturbation

ρ = ρ0(z) + ρ′(x, y, z, t) , (3)

p = p0(z) + p′(x, y, z, t) . (4)

Background part is chosen to fulfill hydrostatic balance ∂p0(z)/∂z = −ρ0(z) g. Appear-
ing system of equations is partly linearized around the average state ρ∗. Resulting set of
equations can be written in the next form

Dρ′

Dt
= −w

dρ0

dz
, (5)
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Du

Dt
+

1
ρ∗

∇p′ = ν Δu +
ρ′

ρ∗
g +

1
ρ∗

f , (6)

∇u = 0 . (7)

For the description of the stratification effects, the bulk Richardson number of the following
form

Ri =
g L ∂�0

∂z

�∗ U2
(8)

was introduced. Here L is characteristic length and U characteristic velocity. This non-
dimensional parameter follow directly from the non–dimensional form of the Boussinesque
equations as the parameter associated with gravity force.

We will assume ρ∗ = 1 and we will drop the primes above density and pressure distur-
bances.

2. Artificial compressibility method

The equations (5)–(7) are rewritten in the conservative form. The equations in 2D are
(y is the vertical coordinate and v is the velocity component parallel to gravity force in the
following text)

PWt + F (W )x + G(W )y = S(W ) .

Here W = [ρ, u, v, p]T, F = F i − ν F v and G = Gi − ν Gv contain the inviscid fluxes F i, Gi

and viscous fluxes F v and Gv, S is the source term, and P = diag(1, 1, 1, 0). The numerical
solution is achieved using the artificial compressibility method in dual time, hence the steady
state solution (with resp. to artificial time τ) of

P̃ Wτ + P Wt + F (W )x + G(W )y = S(W ) , (9)

is computed in each physical time step. The matrix P̃ is given as P̃ = diag(1, 1, 1, 1) and
the fluxes and the source term are

F i(W ) = [ρ u, u2 + p, u v, β2 u]T , Gi(W ) = [ρ v, u v, v2 + p, β2 v]T ,

F v(W ) = [0, ux, vx, 0]T , Gv(W ) = [0, uy, vy, 0]T ,

S(W ) = [−v dρ0/dz, 0,−ρ g, 0]T .

(10)

3. Numerical schemes

Two different numerical schemes were used for the spatial semidiscretiaztion. The first
scheme is based on a flux splitting method and WENO interpolation. The second one were
the AUSM MUSCL scheme with Hemker–Koren limiter.

3.1. Flux splitting for incompressible flows

The discretization in space dimensions are achieved by standard fourth order differences
for viscous terms and by the following high order flux-splitting method.

The inviscid flux F i(W ) is divided onto two parts, the convective flux F c(W ) = [ρ u, u2,

u v, 0]T and pressure flux F p(W ) = [0, p, 0, β2 u]T. The derivative Fx is then approximated
as

F i(W )x

∣∣
i
≈ 1

Δx

[
F c

i+1/2 − F c
i−1/2

]
+

1
Δx

[
F p

i+1/2 − F p
i−1/2

]
. (11)
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The high order weighted ENO scheme [1] is chosen as the interpolation method. The
original WENO interpolation uses an upwind bias and it can be formally written in the
following form (function weno5 is described in [2]):

φi+1/2 =

{
φ+

i+1/2 = weno5(φi−2, φi−1, φi, φi+1, φi+2) if ui+1/2 > 0 ,

φ−
i+1/2 = weno5(φi+3, φi+2, φi+1, φi, φi−1) if ui+1/2 ≤ 0 .

(12)

It is still necessary to determine the velocity ui+1/2.

This interpolation is applied to incompressible case separately for convective and pressure
terms. Eigenvalues of Jacobi matrix of convective part are λ1 = 0, λ2,3 = u, λ4 = 2 u.
Eigenvalues of Jacobi matrix of pressure part are λ1,2 = 0, λ3,4 = ±β and characteristic
variables [ρ, v, (βu + p)/(2β), (βu − p)/(2β)]T. According to this analysis, the convective
part is discretized by simple upwind, the third component of pressure part is approximated
by backward difference and the fourth component by forward difference. Finally, the scheme
takes next form

ui+1/2 := (u+
i+1/2 + u−

i+1/2)/2 , pi+1/2 := (p+
i+1/2 + p−i+1/2)/2 , (13)

F c(W )i+1/2 :=

⎡⎢⎢⎣
(ρ u)±i+1/2

(u2)±i+1/2

(u v)±i+1/2

0

⎤⎥⎥⎦ , F p(W ) :=

⎡⎢⎢⎣
0

pi+1/2 + β
u+

i+1/2−u−
i+1/2

2
0

ui+1/2 +
p+

i+1/2−p−
i+1/2

2 β

⎤⎥⎥⎦ , (14)

where + or − is taken in the convective flux according to the sign of ui+1/2.

Similar algorithm is applied in y direction for the flux G. The resulting scheme posses
high order of accuracy in space. Referred scheme was validated through computation of
shock–vortex interaction, see [5] and by comparison with different schemes see [3].

3.2. AUSM scheme

In the second scheme, the finite volume AUSM scheme was used for spatial discretization
of the inviscid fluxes:

∫
Ω

(F i
x + Gi

y) dS =
∮
∂Ω

(F i nx + Gi ny) dl ≈
4∑

k=1

⎡⎢⎢⎣un

⎛⎜⎝
�
u
v
β2

⎞⎟⎠
L/R

+ p

⎛⎜⎝
0
nx

ny

0

⎞⎟⎠
⎤⎥⎥⎦Δlk (15)

where n is normal vector, un is normal velocity vector, and (q)L/R are quantities on left/right
hand side of the face. These quantities are computed using MUSCL reconstruction with
Hemker-Koren limiter.

qR = qi+1 −
1
2
δR , qL = qi +

1
2
δL , δL/R =

aL/R (b2
L/R + 2) + bL/R (2a2

L/R + 1)

2 a2
L/R + 2 b2

L/R − aL/R bL/R + 3
,

aR = qi+2 − qi+1 aL = qi+1 − qi , bR = qi+1 − qi , bL = qi − qi−1 .
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Because of the pressure is discretized by central way, the scheme is stabilized by the pressure
diffusion

Fdi+1/2,j =

⎛⎜⎜⎝
0
0
0

η
pi+1,j−pi,j

βx

⎞⎟⎟⎠ , βx = wr +
2 ν

Δx

where wr is reference velocity (in our case the maximum velocity in flow field).

Viscous fluxes are discretized in central way on dual mesh. This scheme is of the second
order accuracy in space.

3.3. Time integration

The derivative with respect to the physical time t is discretized either by the second
order BDF formula,

P
3 Wn+1 − 4 Wn + Wn−1

2 Δt
+ Fn+1

x (W ) + Gn+1
y (W ) = Sn+1 ,

Rezn+1(W ) = P

(
3

2 Δt
Wn+1 − 2

Δt
Wn +

1
2 Δt

Wn−1

)
+

+ Fn+1
x (W ) + Gn+1

y (W ) − fn+1 − Sn+1 .

(16)

Arising system of equations
Rezn+1(W ) = 0

is solved by artificial compressibility method in the dual time τ by an explicit 3-stage Runge-
Kutta method.

Both schemes are of the second order in time.

4. Obstacle modeling

We are interested in the solution of the stratified flows in a towing tank with spherical
obstacle. The obstacle is modeled using very simple source term emulating a porous media
with small permeability. The source term S would be in this case

S(W ) =
[
−v

dρ0

dz
, 0,−ρ g, 0

]T

+
χ(x, y, t)

K

[
0, Uob − u, V ob − v, 0

]T
, (17)

where K corresponds to small permeability, χ(x, y, t) is the characteristic function of the
obstacle moving with the velocity (Uob, V ob).

Fig.1: Towing tank



Engineering MECHANICS 43

5. Numerical results

The towing tank (see fig. 1) is a 2D channel with the dimensions 8×4 meters with ho-
mogeneous Dirichlet boundary conditions for velocity and Neumann conditions for density
and pressure disturbances. The flow field is initially at rest with the stable density gradient
dρ0/dz = −0.1 kg/m4. The average density is ρ∗ = 1 kg/m3 and the kinematic viscosity is
ν = 10−4 m2/s. The obstacle is located 1m from the left wall in the middle height.

The obstacle is a cylinder with radius L = 0.1m, and in the time t = 0 the obstacle
starts moving to the right with a constant velocity U = Uob = 1m/s. The permeability was
chosen K−1 = 10 s−1.

The problem was solved on a Cartesian mesh with 320×160 nodes and, for testing of
mesh independence, on the fine grid with 640×320 nodes.

Various level of the stratification was modeled. The degree of the stratification isn’t
changed by the changing of density gradient, but by the modification of the gravity constant
in the range g ∈ 〈0, 1000〉. Corresponding Richardson numbers varies in Ri ∈ 〈0, 100〉. Both
numerical methods were compared.

The figures 2–4 show comparison of both schemes. The first picture shows the comparison
of density isolines in given time t = 5 s. On the next two figures is displayed comparison of

Fig.2: Comparison of isolines of the density disturbances for towing
tank problem at the time t = 5 s, g = 100, Ri = 10; AUSM
MUSCL scheme left and WENO5 right

Fig.3: Comparison of both schemes, Ri = 10, g = 100, time t = 5 s;
longitudinal distribution of the u–velocity component (left)
and density disturbances (right), y = 2.25
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Fig.4: Comparison of both schemes, Ri = 10, g = 100, time t = 5 s;
transversal distribution of the u–velocity component (left)
and density disturbances (right), x = 1

Fig.5: Dependance on the mesh, AUSM MUSCL scheme, Ri = 10, g = 100,
time t = 5 s; longitudinal distribution of the u–velocity component
(left) and density disturbances (right), y = 2.25

Fig.6: Dependance on the mesh, AUSM MUSCL scheme, Ri = 10, g = 100,
time t = 5 s; transversal distribution of the u–velocity component
(left) and density disturbances (right), x = 1
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distribution of selected quantities in transversal and longitudinal directions. On figs. 2–4 we
can see good agreement both methods. Only maximal values predicted by WENO 5 scheme
in the middle height are rather lower.

The next two figures (figs. 5, 6) show dependency on the mesh for the AUSM MUSCL
scheme. From this one can see, that solution is relatively mesh independent. Only maxima
of quantities in the middle height are lower and probably they aren’t correctly resolved on
corse mesh.

On figures 7, 8 we can see development of the flow for two different Richardson numbers.
For the lower level of stratification behind the obstacle Karman vortex street forms. When
the level of stratification increase, the character of the flow is changing. Turbulent mixing
is damped by the stratification, internal gravity waves are clearly visible. Behind the ob-
stacle generates strip with constant density (see also [4], [6]). On the figure 9 was displayed
transversal and longitudinal distribution of the computed quantities in the case of AUSM
MUSCL scheme. The changing of the character of the flow and the wave character of the
flow is well shown.

Fig.7: Isolines of the density disturbances for two different Richardson
numbers, Ri = 1, g = 10 (left), Ri = 10, g = 100 (right), at the
times t = 2, 4, 6 s AUSM MUSCL
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Fig.8: Isolines of the u–velocity component for two different Richardson
numbers, Ri = 1, g = 10 (left), Ri = 10, g = 100 (right), at the
times t = 2, 4, 6 s AUSM MUSCL

6. Conclusion

Two numerical schemes for stratified flows have been developed and they has been used
successfully for towing tank problem. Several numerical results for different Richardson
numbers were obtained. The performed computations show a good applicability of our
methods to simulations of stratified flows. The results obtained using these schemes are in
good agreement each other. These results also correspond to linear theory of gravity waves
(see fig. 9).

On the other hand, there are some open questions. One of them is the influence of
permeability parameter on the flow behind the obstacle. Other question is the choice of
the boundary conditions. The conditions used in the current approach are suitable for the
simulation of the flows in a bounded domain with walls. Another kind of conditions should
be considered for the flows in free atmosphere.
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Fig.9: Transversal distribution of computed quantities for different Richardson
numbers, AUSM MUSCL scheme, x = 1, time t = 6 s

References
[1] Issa R.I.: Solution of the implicitly discretized fluid flow equations by operator-splitting, Jour-

nal of Computational Physics, 62:40–65, 1985
[2] Jiang G.-S., Shu Ch.-W.: Efficient implementation of weighted ENO schemes, Journal of

Computational Physics, 126:202–228, 1996
[3] Fürst J., Fraunie P.: The High Order Schemes for Stratified Flows, Proceeding of conference

Topical Problems of Fluid Mechanics 2007, p. 49–52, ISBN 978-80-87012-04-8
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