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QUALITATIVE ANALYSIS OF NONLINEAR GEAR DRIVE
VIBRATION CAUSED BY INTERNAL KINEMATIC

AND PARAMETRIC EXCITATION

Miroslav Byrtus*

The methodology of modelling and of qualitative analysis of large rotating systems
with gear and bearing couplings is presented. The emphasis is laid on the modelling
of nonlinear gear and bearing couplings and on their influence on the dynamic system
response to the internal kinematic excitation in gearing and to parametric excitation
caused by the time-varying meshing stiffness. The aim is to introduce a method of
investigation the behaviour of the rotating system influenced by the mentioned excita-
tion and to examine the influence of chosen operational parameters. The methodology
of modelling and of qualitative dynamic behaviour analysis is tested on a two-stage
gearbox.
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analysis

1. Introduction

This contribution is focused on modelling and analysis of nonlinear systems with a par-
ticular application on gear drives that are representatives of nonlinear systems with impacts
due to the possibility of gear mesh interruption and consequent impacts in gearing. Similar
situations can occur in bearings between rolling-elements and inner or outer race. More-
over, the contact forces transmitted by rolling elements are nonlinear depending on their
deformations. And secondly, the gear mesh stiffness can be supposed to be time varying
because of the change of number of teeth in gear mesh. These nonlinear phenomena, which
are investigated for systems with several DOF number in [3], are sources of nonlinear effects
in solution of the model. The time responses of such systems are accompanied by bifur-
cation of solution in dependence on chosen operational parameters. Vibro-impact systems
are characterized by period-doubling scenario, when the period number of the time response
increases unexpectedly twice for a certain values of operational parameters. This scenario
could repeat till the motion becomes chaotic or the motion could be governed by the reverse
period-doubling when the number of periods decreases in the system solution. The ratio
of the lengths of successive intervals between values of parameters, for which bifurcation
occurs, converges to the first Feigenbaum constant [3].

The paper [5] shows the applicability of presented methodology on a real more-stage
gear drive and is focused on detailed description of modelling of nonlinear couplings, but
the influence of time varying meshing stiffness is neglected. The aim was to detect boundaries
of gear mesh interruption using so called maps of constant gear mesh. The methodology
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of modelling is extended here and the influence of time-varying meshing stiffness and of
damping in the gear mesh is taken into account.

2. Nonlinear condensed mathematical model of gear drive

Here, a mathematical model representing a general rotating mechanical system which
can be suitably disassembled into S subsystems will be derived. After discretization, each
subsystem is described in the local generalized coordinate space qs(t) ∈ �

ns by a system of
ns ordinary differential equations in the matrix form [4]

Ms q̈s(t) + (Bs + ωs Gs) q̇s(t) + Ks qs(t) = fE
s (t) + fB

s + fG
s , s = 1, 2, . . . , S , (1)

where Ms, Bs and Ks are symmetrical mass, damping and stiffness matrices of the uncou-
pled subsystems of order ns. Let us suppose the subsystem s rotates with constant angular
speed ωs, then the mathematical model of the subsystem is extended by a skew symmetrical
matrix of the gyroscopic effects Gs of the same order as the matrices mentioned above.
All matrices are usually created by means of finite element method combined with discrete
parameters, which can represent masses of rigid bodies mounted on the subsystem s. Ex-
ternal forced excitation is described by vector fE

s (t) and vectors fB
s and fG

s express bearing
and gearing coupling forces including appropriate internal excitation forces. All force effects
described in vectors above are acting on the subsystem s.

Fig.1: Scheme of bearing and gearing coupling

2.1. Modelling of couplings in gear drives

There are two significant couplings in each gear drive, which are sources of internal
excitation and have nonlinear character as well. First, let us focuse on the bearing coupling
respecting real number of rolling elements uniform distributed between the inner and outer
race (Fig. 1 left). Let us suppose, the rolling-element j of the bearing i touches the outer race
at the contact point Hi,j . Radial (axial) force Fi,j (F ax

i,j ) transmitted at this point depends
nonlinearly on the rolling-element deflection Δi,j (Δax

i,j) according to the Hertz’s contact
theory, as described in [6]. The calculation of the deflections Δi,j supposing the rigid inner
and flexible outer race and the possibility of loss of contact between the rolling-element and
the race is in detail described in [1].
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Then we can define the global bearing coupling vector, which is expressed in the general
coordinate space

q = [qT
1 qT

2 · · · qT
S ]T ∈ �

n , n =
S∑

s=1

ns (2)

of the whole system in the form [1]

fB = −KB q − BB q̇ +
∑
i,j

(ci,j fi,j + cax
i,j fax

i,j) . (3)

where KB and BB are global stiffness and damping bearing matrices. Their structure
depends on the number of rolling elements and on the nodal points to which they are fixed
on the shafts (for details see [6]). The damping matrix is supposed to be proportional to
the stiffness matrix

BB = βB KB (4)

and functions fi,j (fax
i,j ) take into account nonlinear dependence of rolling-element stiffnesses

and the possibility of contact loss for each rolling-element. Vectors ci,j and cax
i,j describe

global geometrical properties of contact point j in bearing i.

Secondly, let us deal with the force effect of the spur helical gear coupling Gz, which is
expressed in (1) by the vector

fG
s = ±

∑
z

δ̃z,i Fz(t, dz , ḋz) , (5)

where sign ‘−’ (minus) corresponds to driving gear and sign ‘+’ (plus) corresponds to driven
gear (see Fig. 1 right). The driving (driven) gear is fixed on the shaft at the nodal point i (j).
Vector δ̃z,i is the ns-dimensional vector given by extension of the vector δz,i, whose dimen-
sion equals to 6 and describes the basic gearing geometrical parameters. The extension is
performed in such a way, when the vector δz,i is placed in the vector δ̃z,i on the position
corresponding to generalized coordinates of the nodal point i. Details are shown in [5]. The
resultant force Fz transmitted by gearing Gz considers the gear mesh interruption, the ad-
justment of backlash in mesh and eventually the influence of time-varying meshing stiffness.
The parameter dz represents the gearing deformation.

Analogous to the bearing model, we can express the global gear coupling vector in the
general coordinate space (2) in following way

fG = −KG q− BG q̇ +
Z∑

z=1

cz fz(t,q) + fG(t) , (6)

where KG and BG are global linearized stiffness and damping matrices of gear couplings,
whose structure is in detail described in [6]. The function fz(t,q) corrects the linear elastic
part of the gearing force in phases of gear mesh interruption and takes into account the time
varying meshing stiffness. The vector fG(t) describes internal kinematic excitation generated
in gear mesh that can be expressed in the form

fG(t) =
Z∑

z=1

(
kz(t)Δz(t) + bz Δ̇z(t)

)
cz . (7)
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The function Δz(t) expresses the kinematic transmission error in gearing Gz and the cor-
responding global vector of geometrical parameters of the gearing in the general coordinate
space (2) is of following structure

cz = [ · · · −δT
z,i · · · δT

z,j · · · 0T ]T , (8)

where the meaning of vectors δz,i and δz,j is given above. Indices i and j correspond to
nodal points to which the driving and driven wheels are fixed. And these vectors are placed
on positions determined by generalized of coordinates of the nodal points.

The behaviour of the gear coupling is moreover influenced by the periodic time-varying
meshing stiffness. The stiffness of a particular gear mesh is considered to be periodic. The
period depends on the time duration of one tooth pair mesh. It is influenced by the tooth
profile, profile error, gear contact ratio and lubricant properties in gearing.

Fig.2: Relative gear mesh stiffness for different values of contact ratio εγ

Particular courses of the mesh stiffness can be expressed in a analytical way. Authors [2]
proposed the gear mesh stiffness kp(t) for a single tooth pair p in the form

kp(t) =

⎧⎨
⎩ km

[
− 1.8

(εγ T )2
(t − tp)2 +

1.8
εγ T

(t − tp) + 0.55
]

for t ∈ {tp, tp + εγT } ,

0 otherwise
(9)

depending on the contact ratio εγ and on the period of the gear mesh T . The parameter km

represents maximum value of the gear mesh stiffness of one tooth pair on the assumption
that at time t = tp teeth enter into mesh and at t = tp + εγ T get out of the mesh. The gear
mesh period fulfills

T =
2π

pz ω
, (10)

where parameter pz indicates the number of the teeth of the driving gear mounted on a shaft
rotating with angular velocity ω. The resulting meshing stiffness can be then expressed in
following form

kz(t) =
∑

p

kp(t) , (11)

where index p is restricted to the tooth pairs which are in gear mesh for the given time t.
Chosen courses of meshing stiffness are plotted for different contact ratios εγ in Fig. 2. The
thin lines correspond to meshing stiffness of single tooth pairs and the bold lines display the
resulting meshing stiffness influenced by changing of number of tooth pairs being in the mesh.
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2.2. Condensed mathematical model of the gear drive

Using the modal transformations

qs(t) = mVs xs(t) , s = 1, 2, . . . , S , (12)

defined by modal submatrices mVs ∈ �
ns,ms obtained from modal analysis of the mutually

uncoupled, undamped and non-rotating subsystems, whereas ms (ms ≤ ns) is the number
of the chosen master modes of vibration, we can introduce the new configuration space of
the dimension m by the vector

x = [xT
1 · · · xT

2 · · · xT
S ]T , m =

S∑
s=1

ms . (13)

The model (1) can be then rewritten using terms (3) and (6) in the global condensed form

ẍ(t) +
[
B + ω0 G + VT (BB + BG)V

]
ẋ(t) +

[
Λ + VT (KB + KG)V

]
x(t) =

= VT
[∑

i

∑
j

(
ci,j fi,j(q) + cax

i,j fax
i,j (q)

)
+

Z∑
z=1

cz fz(t,q) + fG(t) + fE(t)
]

,
(14)

where fE(t) = [ (fE
1 (t))T, (fE

2 (t))T, · · · , (fE
S (t))T ]T is the global vector of external excita-

tion,

B = diag
(
mVT

s Bs
m Vs

)
, G = diag

(
ωs

ω0

mVT
s Gs

m Vs

)
, V = diag (mVs) (15)

are block diagonal matrices (ωS = 0 holds for the stator subsystem) and Λ = diag (mΛs) is
diagonal matrix composed of spectral submatrices mΛs ∈ �

ms,ms of the subsystems.

3. Analysis of two-stage gearbox nonlinear vibration

This chapter presents an application of the above mentioned methodology of mathema-
tical modelling of large rotating systems and shows some ways how to analyze the dynamic
behaviour of this class of mechanical systems.

3.1. Description of the model

The presented methodology of modelling was applied to a two-stage test gearbox (Fig. 3).
The gearbox can be decomposed into three subsystems – driving shaft with gears (s = 1),
driven shaft with gears (s = 2) and the housing (s = 3) wired in several nodal points with
the fixed frame. Subsystems are joined by discrete couplings – gear meshes (G1 and G2)
and rolling-element bearings (B1 to B4) considering twenty rolling-elements. The initial
number of DOF of the uncoupled subsystems after discretization by FEM was n1 = 91,
n2 = 92 (driving and driven shaft) and n3 ∼ 15000 (housing) using MATLAB code for
rotating subsystems and software package ANSYS for the housing. Numerical experiments
show that the reduced (condensed) model (14) of the complete system of the order m = 160
(m1 = m2 = 30, m3 = 100) is acceptable in the frequency range up to 5000Hz.

The main source of excitation is the internal transmission error in the gear mesh G1

transmitting the power in the gearbox. It was approached by the Fourier series taking
into account only first three amplitudes (7) of values Δ1,1 = 5 μm, Δ1,2 = 2.5 μm and
Δ1,3 = 1.66 μm. The second gear mesh G2 does not transmit the power and includes one gear
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fixed on the driving shaft and one gear which can freely rotate around the driven shaft. The
mathematical model of the gear drive is then strongly nonlinear due to the possibility of gear
mesh interruption in both gear meshes and in consequence of nonlinear bearing couplings
respecting loss of contact in some contact points in dependence on position of journal centre.
The stiffness of each rolling element is a nonlinear function of its deformation. To perform
the dynamic analysis the condensed mathematical model (14) has to be transformed into
the state space to use the time integration method started from initial state defined by

x(0) = [Λ + VT (KB + KG)V]−1 VT fE(0) , ẋ(0) = ω0 (16)

to minimize the startup transient motions. In general, the vector fE(0) can describe an
arbitrary external excitation at the start of numerical integration and the vector ω0 defines
angular velocity in each nodal point in dependence on angular velocity of the driving shaft. In
this case, the vector fE(0) expresses the external static load defined by the static deformation
of the torsion couplings Δϕ = Δϕ1 = Δϕ2 (see Fig. 3).

Fig.3: Scheme of two-stage test gearbox

3.2. Dynamic analysis

Here, we are concerned with the qualitative analysis of the behaviour of the two-stage
test gearbox vibration. The motion of the gearbox is mostly influenced by the transmission
error in gearing G1 transmitting the power, which can cause not only the interruption of
gear mesh G1 but it can also influence the motion of the freely rotating gear in gear mesh G2.
The next internal excitation source is the time dependent change of the meshing stiffness,
which we suppose in the gear mesh G1 only. The final behaviour of the complete system
depends then on operational parameters, which were chosen in following way: revolution
of the driving shaft and the static load (power) transmitted by the rotating parts that is
described by the deformation Δϕ.

The nonlinear behaviour of the system is displayed using bifurcation diagrams, where the
maxima (gray) and minima (black) of gearing deformation (GD) are plotted on the vertical
axis. Numerical simulations have shown the direct dependence between the character of
behaviour of the system and the character of GD. The change of the chosen operational
parameter is plotted on the horizontal axis. This representation of results is illustrative for
detection of gear mesh interruption, bifurcation of solution and chaotic motion.

Fig. 4 displays the bifurcation diagram of GD in dependence on revolutions per minute of
the driving shaft for static load defined by Δϕ = 0.03 rad. Negative values of GD correspond
to gear mesh interruption. The backlashes of both meshes have a value of 12 μm. The
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Fig.4: Bifurcation diagram of gearing deformation in dependence on revolutions
of driving shaft under assumption of constant meshing stiffness

Fig.5: Detection of period-doubling scenario

diagram shows the structure of behaviour of the gearing and consequently of the whole
system. The solution is accompanied by gear mesh interruptions in the whole operational
area and by transitions among solutions and their bifurcation.

If we zoom a chosen area of the bifurcation diagram in the range from 2200 to 2400 rpm,
we obtain more transparent view of the character of the system behaviour. On fig. 5 the
changes among solutions can be clearly seen, especially the bifurcations of solution. There
are designated four areas by I, II, III, IV and borders between them correspond to values
of revolutions of the driving shaft, for which the bifurcations occur. We can observe, the
characteristic of nonlinear behaviour is determined by the period-doubling scenario, when the
ratio of two following length of mentioned areas is approximately equal to first Feigenbaum
number δ = 4.66292, especially the ratios of I/II and III/IV.

Fig. 6 shows the evolution of solution character in dependence on external static load of
the gear drive. For a small load Δϕ ∈ 〈0.001, 0.022〉 the motion is chaotic and is characterized
by impacts and changing of normal and inverse mesh. For Δϕ ∈ 〈0.022, 0.031〉 the motion
is still chaotic but the inverse mesh disappeared. Increasing the external load, the motion
becomes periodic with impacts till Δϕ = 0.083 and then the gear mesh is constant.

Further, the influence of damping coefficient b1 in gearing G1 was examined. We have
defined the damping ratio b1/bref

1 , where the parameter bref
1 is a reference damping coefficient

of value bref
1 = 1.63×103 kg s−1. Fig. 7 and Fig. 8 show the character of solution in dependence
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Fig.6: Bifurcation diagram of gearing deformation in dependence on
external static load which is represented by static deformation
Δϕ under assumption of constant meshing stiffness

on the damping ratio b1/bref
1 . The first figure corresponds to solution gained considering the

constant meshing stiffness. The second one is obtained under the assumption of time varying
meshing stiffness with no shift between phases of kinematic transmission error in gearing and
the varying meshing stiffness. The character of solutions changes by increasing the damping
ratio in general. But the difference of solutions according the mentioned assumptions is not
significant. The time-varying meshing stiffness does not change the range of maxima and
minima of GD, but it influences the character of solution. The areas of periodic or quasi-
periodic solutions (for b1/bref

1 ∈ 〈0.3, 2〉) plotted in Fig. 7 overcame into areas of chaotic
solutions (for b1/bref

1 ∈ 〈0.3, 1.2〉) in Fig. 8.

Fig.7: Bifurcation diagram of gearing deformation in dependence on damping ratio

b1/bref1 of gearing G1 under assumption of constant meshing stiffness

Fig.8: Bifurcation diagram of gearing deformation in dependence on damping ratio

b1/bref1 of gearing G1 under assumption of time-varying meshing stiffness
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Fig.9: Time course of gearing deformation G1 for different damping coefficients

Fig.10: Time course of gearing deformation G2 for different damping coefficients

Time courses of GD G1 and G2 are plotted for four different damping coefficients b1

in last two figures. The change of damping b1 causes time shifts and change of shape of
gearing deformation in G1. Moreover, it influences the time points of impacts in G2 with
the freely rotating gear. The impacts appear at the point of normal mesh as well as at the
point of inverse mesh. For long time simulation the system becomes unstable (see Fig. 10,
t > 0.076 s). Probably, it is caused by the unstability of chosen numerical method.

4. Conclusion

The paper describes the methodology of large coupled rotating systems modelling repre-
sented by gear drives. The models of these systems suppose a flexible stator and nonlinear
gear couplings between rotor subsystems, nonlinear rolling-element bearings and the para-
metric excitation in gearing. The model of the whole system is created by means of the modal
synthesis method which allows to reduce the degrees of freedom number of the mathemati-
cal model. The goal of this contribution was to show the applicability of the methodology
on multi-stage gear drives and to perform the dynamic analysis of nonlinear vibrations ex-
cited by kinematic transmission error and parametric excitation in gearing accompanied by
impacts in gear mesh. According to gained results, the motion of nonlinear model of the
gear drive is represented by nonlinear phenomena for certain operational parameters. These
kinds of solution are very interesting from the theoretical point of view.



480 Byrtus M.: Qualitative Analysis of Nonlinear Gear Drive Vibration . . .

Acknowledgement

This work was supported by the research project MSM 4977751303 of the Ministry of
Education, Youth and Sports of the Czech Republic.

References
[1] Byrtus M.,Zeman V.: Modal synthesis method applied to nonlinear systems, In Proc. of Col-

loquium Dynamics of Machines 2007, pages 21–28, Prague, February 6–7, 2007
[2] Cai Y., Hayashi T.: The linear approximated equation of vibration of a pair of spur gears

(Theory and experiment), In Journal of Mechanical Design, 1994, 116, pp. 558–564
[3] Thompson J.M., Stewart H.B.: Nonlinear dynamics and chaos, John Wiley & Sons, Chichester,

2002
[4] Zeman V.: Vibration of Mechanical Systems by the Modal Synthesis Method, In ZAMM – Z.

angew. Math. Mech., 1994, 75(4), pp. 99–101
[5] Zeman V., Byrtus M.: Mathematical modelling of nonlinear gearbox vibration, In Proceedings

of 12th world congress in mechanism and machine science, June 17-21, 2007, Besançon, France.
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