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A SIMULATION STUDY OF THE ROTOR VIBRATION
IN A JOURNAL BEARING

Jǐŕı T̊uma*, Alena Bilošová**, Jǐŕı Šimek***, Rudolf Svoboda***

The paper deals with the rotor vibration in journal bearings to prepare a model for
verifying the rotor vibration active control. The rotor is maintained in equilibrium
position by forces generated in oil film. Bearing forces can be modelled as a spring and
damper system. The main goal of the simulation study is to verify the model principle
and to estimate parameters by comparing simulation results with experimental data,
namely the instability of motion. Test stand with rotor supported in two journal
bearings was designed for these purposes. The stand will be equipped with four
piezoactuators enabling excitation of bearings by practically arbitrary dynamic force.
Theoretical analysis of the influence of external excitation on rotor behaviour was
carried out. Up to now the study shows, that simple kinematic excitation is effective
for reducing rotor excursion while passing critical speeds. To suppress self-exciting
vibration of the rotor it is necessary to look for more sophisticated solution.

Key words : rotor stability, hydrodynamic journal bearing, vibration active control,
piezoactuators, proximity probes

1. Introduction

There are many ways how to model a rotor system, but this paper prefers an approach,
which is based on

– the concept developed by Muszynska [1, 7] and supported by Bently Rotor Dynamics
Research Corporation.

– the lubricant flow prediction using a FE method for Reynolds equation solution.

The reason for using Muszynska approach
is that this concept offers an effective way
to understand the rotor instability problem
and to model a journal vibration active con-
trol system by manipulating the sleeve posi-
tion by actuators [2], which are a part of the
closed loop composed of proximity probes and
a controller. The solution based on Reynolds
equation gives more precise dynamic charac-
teristics of the rotor including rotor stability
threshold, see [3] for instance.Fig.1: Journal coordinates
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The arrangement of proximity probes and piezoactuators in a rotor system is shown in
figure 1. Let the rotor angular velocity is designated by Ω. It is assumed that the sleeve as
a carrier ring of the journal bearing is a movable part in two perpendicular directions while
rotor is rotating. This paper proposes to use complex variables to describe motion of the
rotor and the carrier ring in the complex plane. The position of the journal centre in the
complex plane, origin of which is situated in the bearing centre, is designated by a position
vector r. The position of the carrier ring is determined by a position vector u.

Fig.2: Model of oil film

2. Muszynska lumped parameter model of the rotor system

The internal spring, damping and tangential forces are acting
on the rotor. As Muszynska has stated these bearing forces can be
modeled as a rotating spring and damper system at the angular
velocity λΩ (see figure 2), where λ is a parameter, which is slightly
less than 0.5 . The parameter λ is denominated by Muszynska [1]
as the fluid averaged circumferential velocity ratio. The external
forces refer to forces that are applied to the rotor, such as preloads
in the form of constant radial forces. The fluid pressure wedge is the actual source of the
fluid film stiffness in a journal bearing and maintains the rotor in equilibrium. To sim-
plify modeling in Matlab-Simulink, the quantities in this chapter, like force, velocity and
displacement, are position vectors which coordinates are determined by complex numbers.
Fluid forces acting on the rotor in coordinates rotating at the same angular frequency as
the spring and damper system are given by the formula

Frot = K (rrot − urot) + D (ṙrot − u̇rot) , (1)

where the parameters, K and D, specify proportionality of stiffness and damping to the
relative position of the journal centre displacement vector rrot − urot and velocity vector
ṙrot − u̇rot, respectively. The equation of motion without an active control u = 0 is as
follows

M r̈ + D ṙ + (K − jD λΩ) r = m ru ω2 exp[ j (ω t + δ)] , (2)

where M is the total rotor mass. The unbalance force, which is produced by unbalance mass
m mounted at a radius ru, acts in the radial direction and has a phase δ at time t = 0 [4].

The frequency transfer function relating a harmonic force F at the angular frequency ω

to the centerline position r is given by the following formula

GFr(j ω) =
r(j ω)
F(j ω)

=
1

K − M ω2 + j (ω D − λΩ D)
. (3)

3. Simulink model of the rotor system

The equation of motion (2) contains a complex vector r(t), as an unknown function of
time, and the equation parameters are complex quantities as well. The complex function
can be replaced by the real and imaginary functions and solved as many similar models.
In this paper, the connecting blocks by complex signals are preferred. The Simulink block
diagram for the motion equation is shown in figure 3. The system is excited by an unbalance
force rotating at the same angular velocity Ω (OMEGA) as the rotor and by the non-
synchronous perturbation force rotating by the angular velocity ω (omega), amplitude of
which is proportional to the square of the angular velocity.
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The parameters K and D, specifying oil film stiffness and damping, are a function of the
position vector. The values of these parameters are determined by the oil film thickness. It
is assumed that it is possible to approximate both these functions by formulas

K =
K0

1 −
( |r|

e

)n , D =
D0

1 −
( |r|

e

)n , (4)

where e is a journal bearing clearance and n is a power. The form of the functions (4) assumes
that the influence of the oil film thickness on the value of the mentioned parameter is the
same. It is required that the functions (4) has to be continuously differentiable (a smooth
function) at r = 0. It means that the first derivative with respect to time at r = 0 has to
be equal to zero, which implies that the power n has to be greater than unity (n > 1). The
best agreement between simulation and measurement results was reached for the value of
the exponent, which is equal to 1.1 .

As the rotor system stability margin depends on the oil film stiffness and rotor mass,
the first step is to estimate the parameter K. This task is not an easy problem due to the
rotor static load by the gravity force and the dependence of the oil film stiffness on the rotor
eccentricity. The second problem is an estimation of the parameter D, which predefines the
rotor system vibration mode at the angular frequency, which is approximately equal to the
half of the rotor angular frequency.

The agreement between the mentioned experiment and the simulation model is reached
for the following values of the parameters :

M = 1.6 kg . . . . . . . . . . . . . rotor mass
lam = 0.475 . . . . . . . . . . . . fluid averaged circumferential velocity ratio (lambda)
K0 = 4000 N/m . . . . . . . . . oil film stiffness
D0 = 1000 Ns/m . . . . . . . . oil film damping coefficient
n = 1.1 . . . . . . . . . . . . . . . . . exponent in the formula (4)
e = 0.0002 m . . . . . . . . . . . . clearance in the journal bearing
m ru = 0.00001 kgm . . . . . product of the unbalance mass m mounted at a radius ru.

Fig.3: Model of a journal motion in a plane perpendicular to the rotor axis
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The value of the product m ru corresponds to the ISO balance quality grade between
G 1 and G 2.5 at 2500 rpm. Note the variation in the journal position during the rotor
run up in the right up diagram in figure 4. The experiments show that if the rotor is in
an unstable state (vibration are limited only by the bearing wall), then the frequency of
vibration is slightly less than half the rotor rotational frequency Ω. The ZOOMs of the
position vector real and imaginary parts just before and after the vibration onset, which
are shortened into the time interval of 0.2 s, are shown in the bottom diagrams in figure 4.
Comparison of the number of waves in the time intervals of the same length shows that the
frequency of vibration drops to half the frequency before the vibration onset. The orbit
plots for simulation and measurements on the Bently Nevada Rotorkit RK 4 are shown in
figure 5. It should be mentioned that the measurements were performed at room temperature
about 20 ◦C, oil pressure 1.5 psi (10.3 kPa). It can be concluded that the behaviour of the
simulation model and the true rotor system is the same. All the simulations are done by using
Matlab-Simuling with the variable integration step and the ODE45 integration method.

As the measurement of the rotor system response to the non-synchronous perturbation
is not available yet, the simulation is replaced by the evaluation of the frequency response
magnitude (3) as a function of the dimensionless frequency f/frot, which is shown in figure 6.
The magnitudes of the frequency response on the figure left side are evaluated for the
rotor steady-state speed 1800 rpm and for some multiples (1×, 2×, 5× and 10×) of the
initial values of the parameters K and D. The resonant frequency is approximately at
the mentioned dimensionless frequency λ, i.e. slightly less then 0.5 . The magnitudes of
the frequency response on the figure right side differ in the value of the parameter D. As
the experiments [5] show that the resonant frequency is greater than the dimensionless
frequency 0.4, the assumed relationship between the values of K and D seems to be good.
The experimental results agree with simulation.

Fig.4: Time history of the rotational frequency and journal centreline
coordinates up to the moment when fluid induced vibration
starts up and ZOOM of the journal centreline coordinate time
history just before and after the vibration onset
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Fig.5: Comparison of the orbit simulation and measurement

Fig.6: The frequency response magnitude as a function of the dimensionless pertur-
bation force rotational frequency related to the rotor rotational frequency

4. Experimental stand

For investigation of the rotor active control it is necessary to run the rotor up its stability
limit. Test stand (figure 7) was designed with bearing diameter of 30mm, which enabled to
design the rotor both rigid and light, thus achieving low stability limit.

The base of the stand is the frame 1 composed of hollow aluminium profiles. High
frequency motor 3, fixed in clamping plate 2, is connected to the test shaft 7 by elastic
coupling 6. The motor, enabling to reach speeds over 20 000 rpm, is supplied by high-
frequency current from converter with possibility of control by PC. The elastic coupling
of the multi-plate type constitutes two joints, thus separating the shaft from the drive.
Bearing pedestals 5 contain bearing bushings, inserted into pedestals with clearance. The
bearing bushings are connected by means of screw bars to two vertically and two horizontally
arranged piezoactuators 12. Piezoactuators are secured in frames 13 and 14 respectively,
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Fig.7: Test stand for experimental investigation of the rotor active control

which are fastened to the stand base. Piezoactuators have maximum deviation of 60μm,
maximum force in tension/pressure 800/300N. Four relative vibration sensors 10, fixed
in carriers 9 fastened to bearing pedestals, enable tracing of the shaft movement in both
bearings. The bearings of circular cross section were designed with clearance resulting in
calculated stability limit of about 11 000 rpm. The rigid shaft can be eventually replaced by
an elastic one, enabling tests of running through bending critical speeds of the rotor.

5. Theoretical analysis – kinematic excitation of bearings

In contrast to the previous chapter, model analysis will deal with quantities arranged
into vectors and matrices. Contrary to the scalar variables, vectors and matrices are always
designated by bold characters, matrices in addition by capitals. As the shaft centreline
position was designated previously by r in the meaning of the distance from the bearing
centreline, it was changed to x or y to emphasise its real coordinate structure in rotor
models with multiple degrees of freedom. In general, all vector and matrix variables relative
planar motion of a mass point will be of order 2, whereas order of variables relative rotor
model will be determined by actual model dimensions.

As follows from the Reynold’s equation of hydrodynamic lubrication [6], hydrodynamic
bearing forces acting on the shaft represent in general a non-linear vector function of the
shaft position xb in the bearing and a linear function of its velocity ẋb :

fH(xb, ẋb, ω) ≡ kH(xb, ω) + BH(xb, ω) ẋb . (5)

In case of zero velocity, when shaft is rotating around its longitudinal axis, for each angular
velocity ω there exists corresponding static equilibrium position x0(ω), in which the bearing
load vector qb is balanced by hydrodynamic force. Supposing small vibrations around this
equilibrium position, hydrodynamic bearing force can be linearized, i.e. replaced by first two
terms of Taylor series

fH(xb, ẋb, ω) ≈ kH(xb0, ω) +
∂kH

∂x
(xb − xb0) + BH(xb0, ω) ẋb . (6)

Introducing a relative shaft journal displacement with respect to this equilibrium position
yb = xb − xb0 and relative velocity ẏb = ẋb − ẋb0 ≡ ẋb, hydrodynamic bearing force can
be approximated by relation

fH(xb, ẋb, ω) ≈ −qb − Kb(ω)yb − Bb(ω) ẏb , (7)
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where Kb(ω) = −∂kH
∂x (xb0(ω), ω) and Bb(ω) = −BH(xb0(ω), ω) are so called stiffness and

damping matrices of the oil film in equilibrium position xb0(ω).

General non-linear description of bearing forces is necessary to study rotor systems with
big excursions of the shaft in the bearings. Unlike the linearized case, where sophisti-
cated methods of finding stiffness and damping bearing matrices are known, to find the full
non-linear description of the field of hydrodynamic forces in the whole bearing clearance
range remains still a problem. Non- linear forces have to be determined numerically on the
sufficiently fine net, which requires huge amount of calculations and data. An analytical
formulation of non-linear bearing forces can be derived only for special simplified cases of
so-called ‘short’ or ‘long’ circular bearings.

With respect to intended purposes of decreasing and shifting resonance peaks in critical
speeds as well as for improvement of rotor stability (both mentioned phenomena occur in the
linear range of small shaft displacements in the bearing), linear description of hydrodynamic
bearing forces is fully adequate. Dynamic properties of the bearings are then described by
a sequence of stiffness and damping matrices defined in a succession of equilibrium positions,
which correspond to the succession of shaft speeds {ωj} covering whole operating speed
range.

The rotor shaft itself represents a linear dynamic system, which can be modelled by
means of standard finite element discretization procedures, leading to description of the
system by mass, stiffness and gyroscopic matrices Ms, Ks, Ds and displacement vector x;
its sub-vectors xk (of length 4) represent deflection and tilting in connections of two adjacent
finite elements. The complete rotor and oil film and bearing bushing system can be described
by two equations, the first one for shaft motion, the second one for bushings :

Ms ẍ + ω Gs ẋ + Ks x = n(ω, t) + g + fH(xL − xp, ẋL − ẋp, ω) ,

Mp ẍp + Bp ẋp + Kp xp = gp − fH(xL − xp, ẋL − ẋp, ω) + fA(t, α,x(t),xp(t), . . . ) .
(8)

In these equations vector xp denotes deflections of bushings, Bp and Kp damping and
stiffness matrices of bushing seat, g, gp weight vectors of shaft and bushings, n(ω, t) vector
of external unbalance forces, fH hydrodynamic forces acting on the shaft at bearing locations,
fA exciting forces acting on the bushings.

In case of linearized description of hydrodynamic bearing forces (on condition of small
shaft excursions in the bearing), the static part of these forces is in balance with load vectors
and dynamic part is described by means of stiffness and damping matrices. Introducing
a relative shaft displacement vector y, where displacements are taken relatively to the joint
line of (static) equilibrium position in both bearings, the above equations transform to the
system

Ms ÿ + [ω Gs + B̃b(ω)] ẏ + [Ks + K̃b(ω)]y = n(ω, t) − (Ms P ẍp + ω Gs P ẋp) ,

Mp ẍp + Bp ẋp + Kp xp = fa(t, α,x(t),xp(t), . . . ) + Bb(ω) ẏb + Kb(ω)yb .
(9)

B̃b(ω), K̃b(ω) denote the shaft-system related matrices with bearing matrices Bb(ω), Kb(ω)
at appropriate positions and transformation matrix P ensures a linear distribution of bushing
displacements along the shaft.

Excitation forces acting on bearing bushings, which are generated by piezoactuators,
are formally represented by force vector fa in dependence on parameters α and shaft and
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bearing displacements y and xp respectively. The resulting effect of this additional bearing
excitation on rotor dynamics will strongly depend on their form and functional relations.
Based on the kind and character of generated excitation such rotor systems can be divided
into three basic groups :

I. Rotors with kinematic excitation of bearing bushings,
II. Rotors with parametric excitation of bearing bushings,

III. Rotors with active control of exciting forces.

In case of kinematic excitation the exciting force acting on the bushings is independent
on shaft or bushing deflections and represents therefore another external excitation, which
can have (contrary to unbalance) arbitrary non-synchronous frequency. If the source of
exciting force is sufficiently robust, kinematic trajectory instead of kinematic force can be
prescribed. As will be shown, kinematic excitation enables to change the course of response,
but does not influence rotor stability.

In both remaining cases the exciting forces acting on bushings are generated in such
a way, that either in dependence on the bearing deflections simulate periodically variable
stiffness of bearing bushings (parametric excitation) or in appropriate manner respond to
the deflection at specified shaft location (active control). Through parametric excitation as
well as active control both rotor stability and rotor response can be affected. These problems
are now deeply studied and results will be published later.

Provided that kinematic trajectories of bearing bushings are prescribed, the rotor system
is defined by a single linear differential equation

Ms ÿ + [ω Gs + B̃b(ω)] ẏ + [Ks + K̃b(ω)]y = n(ω, t) − (Ms P ẍp + ω Gs P ẋp) . (10)

As the bearing deflections xp are known, the second term on the right side of equation
represents (analogously to unbalance force) another excitation force only. As a linear system
this equation can be solved by standard methods. The frequency and modal properties of
the system are determined by corresponding eigenvalue problem

S(λ, ω) ŷ =
{
λ2 Ms + λ [ω Gs + B̃b(ω)] + [Ks + K̃b(ω)]

}
ŷ = 0 , (11)

while time-response amplitudes are given by relation

y(t) = Re
{
S−1(i ω, ω) �nω2 ei ω t

}−Re
{
S−1(i Ω, ω) (−Ω2 Ms P+iΩ ω Gs P) x̂p ei Ω t

}
, (12)

where Ω represents angular frequency of kinematic excitation, generally different from shaft
angular frequency ω. Stability properties given by solution of eigenvalue characteristics
therefore do not depend on any kind of kinematic excitation xp. On the other hand, the
course of rotor response as an envelope of time-response amplitude vectors can be substan-
tially changed and modelled by an appropriate choice of bushing trajectory parameters.

Provided that no bearing trajectory is prescribed, but external periodic forces act on
bearing bushings, the entire system is described by two differential equations for shaft and
bushings motion, with unbalance and bearing bushing forces on the right hand side of the
equations. But this is still a linear system of differential equations, whose stability can
depend neither on unbalance forces n(ω, t) nor on kinematic exciting forces fb(Ω, t).
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Fig.8: Stable orbit at 7000 rpm

To illustrate above-mentioned facts, concerning behaviour of the rotor under kinematic
excitation of bearing bushings, simulation program for simple system of Laval’s rotor was
developed. Program enables to take harmonic bushing kinematic excitation either directly,
in the form of elliptical bushing trajectory with non-synchronous frequency and optional
forward/backward precession of motion, or indirectly by introducing external harmonic
force acting on bearing bushings, naturally with similar parameters of excitation. The
motion of the rotor is calculated by numerical integration of motion equations, which are
described above.

Fig.9: Unstable orbit at 8100 rpm

For numerical verification of the system stability two calculations for the same rotor-
bearing configuration can be made alternatively : the 1st one with linearized bearing forces
defined by a sequence of stiffness and damping matrices of the oil film, the 2nd one with
general non-linear description of the field of hydrodynamic forces of a short journal bearing.
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Parameters of this short bearing were chosen so that they best respond to the dynamic
characteristics of test stand bearings.

An example of stable shaft trajectory in the non-linear field of hydrodynamic bearing
forces at 7000 rpm is shown in figure 8. Bearing bushings were kinematically excited by
harmonic backward rotating force with frequency 2000 rpm. Superposition of unbalance
response with non-synchronous response of this kinematic bushing excitation is well visible
n vibration time history diagram in vertical direction. The linearized calculation of the
system predicts stability threshold at approximately 8200 rpm. However, as is shown in
figure 9, the instability in case of non-linear system occurs a little sooner – at 8100 rpm,
where self-excited vibrations with frequency ≈ 4100 rpm develop.

The situation described above was characteristic for all calculated examples of kinematic
excitation of bearing bushings. In all cases, regardless of chosen excitation frequency, type
of precession, direction and amplitude, self-excited vibration of the shaft occurred always at
speeds near the predicted linear stability threshold. Usually, as in example demonstrated
above, the non-linear stability threshold was a little lower than the predicted linear one.

6. Conclusion

The lumped parameter model of the journal centreline motion in the journal bearing
is based on Muszynska’s model and on Reynolds equation. The Muszynska’s equation of
motion contains the complex vector and parameters. The main goal of the simulation
study was to verify the model principle by comparing simulation results with results of
experiments. Test stand for investigation of journal bearing active control on rotor behaviour
was designed and manufactured. Theoretical study was carried out in order to predict the
effect of excitation mode on the rotor behaviour. It was shown, that kinematic excitation
can affect amplitudes of vibration, but cannot influence stability limit. For suppression of
rotor instability it will be apparently necessary to use more complicated excitation modes.
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