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SOME INSTANCES OF THE FOKKER-PLANCK EQUATION
NUMERICAL ANALYSIS

FOR SYSTEMS WITH GAUSSIAN NOISES

Jǐŕı Náprstek*, Radomil Král*

The Fokker-Planck (FP) equation is frequently used when the response of the dynamic
system subjected to additive and/or multiplicative random noises is investigated. It
provides the probability density function (PDF) representing the key information
for further study of the dynamic system. Various analytic and semi-analytic solu-
tion methods have been developed for various systems to obtain results requested.
However numerical approaches offer a powerful alternative. In particular the Fi-
nite Element Method (FEM) seems to be very effective. A couple of single dynamic
linear/non-linear systems under additive and multiplicative random excitations are
discussed using FEM as a solution tool of the FP equation.
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1. Introduction

There exist many methods for the response and stability analysis of dynamic systems
with external excitation having the character of random noises variable in time. It can be
stated that classical methods being based on spectral and correlation principles are effective
in linear cases with additive Gaussian excitation only. Although their application can be
considered even in more general cases, the efficiency should be always carefully premeditated.
A solution procedure could shift out of the predetermined aim very easily and the result
would be far from an original intention. The main reason are various hidden properties of
these methods being based essentially on the superposition principle. Consequently, this
modesty should be applied every time when multiplicative processes appear and mainly
when non-linear systems are to be discussed.

Many difficulties can be reduced or eliminated using methods based on the theory of
Markov processes. They are more general from the viewpoint of the type and structure
of system which should be investigated. However they include certain conditions limiting
admissible types of input processes. For instance, it is usual to presume that excitation
processes are of Wiener type. In such a case the probability density function (PDF) can be
described by means of the Fokker-Planck (FP) equation admitting an evolution of the PDF
in time. So far as the PDF succeeds to be found, it can be treated as a natural extension of
a deterministic result. It includes a complete information concerning a random character of
the system response and enables to derive also its additional attributes as for example its
frequency structure etc.
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2. Physical system and Fokker-Planck equation

The dynamic system behavior is commonly described by means of the differential system
of the first order in the normal form. This system in general is subjected simultaneously
to deterministic and random excitation processes as functions of time. Random effects are
introduced separately in a form of certain linear combinations of input processes. Let us
accept, that satisfactorily general formulation can be written in a form:

dxj(t)
dt

= fj(x, t) + gjr(x, t)wr(t) , x = [x1, . . . , x2n] , n – degrees of freedom , (1)

wr(t) – Gaussian white noises with constant cross-density Krs = E{wr ws}; r, s = 1, m,
m – number of acting noises, E{·} – mathematical mean value operator in the Gaussian
meaning, fj(x, t), gjr(x, t) – continuous deterministic functions of state variables x and
time t; j = 1, 2n.

If input processes wj , wr can be considered to be Gaussian white noises, the respective
FP equation for an unknown PDF in variables x, t can be assigned to Eq. (1) :

∂p(x, t)
∂t

= − ∂

∂xj

[
κj(x, t) p(x, t)

]
+

1
2

∂2

∂xj∂xk

[
κjk(x, t) p(x, t)

]
, (2)

κj(x, t) = fj(x, t) +
1
2

Krs gls(x, t)
∂gjr(x, t)

∂xl
, κjk(x, t) = Krs gjr(x, t) gks(x, t) , (3)

κj(x, t) – drift coefficients; κjk(x, t) – diffusion coefficients.

Eq. (2) is a linear parabolic partial differential equation. It can be found, together with
detailed derivation and analysis of various aspects, in many monographs devoted primarily to
stochastic differential systems, see for instance : [1–5] and many others. Moreover hundreds
of problem oriented papers dealing with various aspects of this topic have been published
during the last several decades. More general and complex versions of FP equation exist
as well (non-Gaussian inputs, problems of optimal filtering, identification problems, etc.).
However the most common is the basic form, Eq. (2).

Also more general formulations of the system (1) can be considered in order to com-
bine external random and deterministic effects absolutely. Then they would be expressed
each one by means of one function on the right hand side of the respective equation in the
system (1). Nevertheless they appear only exceptionally in physical applications and mono-
graphs mentioned above don’t employ them in detail. Even cases when the nonlinear input
of a random process is necessary to be respected, auxiliary variables can be introduced.
Then the input can be modeled as a result of a non-linear filtering of a white noise being
introduced in a form of a linear combination just as in the basic case.

While drift and diffusion coefficients are time independent, the applications are pointed
to the stationary solution of FP equation as a rule, because it provides the most important
information concerning the long term behavior of the system (1). If the system response is
stationary, its PDF becomes time independent and therefore the left hand side of Eq. (2)
vanishes.

In spite of that many problems require necessarily to look for a non-stationary solution
of Eq. (2), even if both drift and diffusion coefficients are time independent. The reason
can be a physical nature of the problem, necessity to assess a transition effect or a simple
fact that the stationary solution doesn’t exist, i.e. [6, 7]. The problem is getting more
complicated in such a case, because a matter of a prospective post-critical convergence
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should be assessed, etc. Nevertheless the FP equation basic form is linear and therefore
some analogies of various methods well known from the deterministic domain are applicable.
However specific properties of the operator (2) must be respected. They can influence or
prevent applicability of those in particular cases.

The question is what method of solution should be selected for a particular mechanical
system. There have been published thousands of papers dealing with this topic. Despite the
fact that a few cases of closed form analytical solution exist, the papers are mostly focussed
on various approximative solution types.

The first group can be called semi-analytical processes. They are based on amendments,
modifications and other treatment of primary analytical results. Various properties of the
Boltzman entropy of probability can be used, some variational principles or decomposition
into a series of stochastic moments or cumulants are also applicable. Asymptotic meth-
ods have been summarised in monograph [8]. Many general methods and algorithms are
described in monographs above, see [1–5]. A large number of special papers, e.g. [9], are
available as well.

The second group is based primarily on numerical procedures. The comprehensive state
of the art concerning applications of numerical methods for analysis of the FP equation has
been published by a team of twenty authors [10]. Before as well as after this date further
papers have been published being oriented to the Finite Element Method (FEM) style of the
FP equation handling. The first attempts at the FEM application in numerical treatment
of the FP equation date back to the early seventies. As the first systematic studies oriented
to FEM introduction to this task can be considered publications by Bergman, Spencer and
co-authors. Let us cite for instance [11–15], etc. A possibility of a numerical solution of the
FP equation by means of the FEM has reminded the Czech community the recent paper [16].
Although contributions of these studies are undisputed, the author basis still remains quite
limited. Whereas earlier referenced papers are focussed to a single degree of freedom systems,
the authors’ objective is to reach into the near future to common solvability of the PDF for
dynamic systems with multiple degrees of freedom.

Many authors have been dealing by various aspects of special FEM variants related with
the Galerkin method applied to FP equation. It is not self-adjoint and therefore variational
methods based on orthogonalization principles should be employed. A stationary solution
has been discussed for instance in [17, 18], for a multi-scale version, see among others [19], etc.
The FEM efficiency when solving FP equation seems to be enormous. The FEM tool makes
it possible to abandon a supposition of Gaussian inputs in Eq. (1) without any principle
difficulties. When FP equation succeeds to be derived for instance for Poisson chains, the
method is working quite reliably, see e.g. [20], with extensive links to additional papers,
e.g. [21–23]. Even if one or several state variables gain values within a finite interval only,
the solution setup doesn’t cause any difficulties.

On the other hand some shortcomings of FEM cannot be overlooked. To introduce the
deterministic initial condition for PDF in a form of the Dirac function is hardly possible.
Nevertheless this circumstance is not too heavy. Much worse it reveals the fact that an
increase of degrees of freedom in the system (1) results in an exponential growth of inde-
pendent variables. Altogether analytical methods also suffer from that. This circumstance
is manifested by two factors. The first consists in a need to evaluate integrals on individual
finite elements in a hyper-space with a large number of independent variables (n degrees of
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freedom leads to a space dimension of 2 n). Another difficulty follows from an exponential
increase of the size of an ordinary differential system which is generated as a result of Eq. (2)
right hand side discretisation. The solution procedure of a stationary problem (with zero
left hand side of Eq. (2)) can become problematic in particular on an infinite multidimen-
sional domain when the discrete character of FP operator eigen values partly or entirely
vanishes. Another inconvenience consists in the fact that every FP equation being assigned
to a particular physical system (1) every time needs a new finite element to be developed
as the drift and diffusion coefficients include all information regarding the structure of the
system (1).

In spite of that it seems that merits prevail in many important cases and FEM could
provide a valuable and effective tool for FP equation analysis. Let us present a few examples
of single degree of freedom (SDOF) systems excited by additive and multiplicative Gaussian
noises. Some numerical results obtained by FEM facilitate being compared with closed
form or approximative solutions, which can be obtained using the Boltzman principle, see
e.g. [4]. It should be remembered that the system (1) after a transformation into the Ito
form can be subdued to the direct numerical solution as a stochastic differential system.
Its stochastic nature however must be carefully respected, see e.g. [24]. These steps enable
verifying the FEM results comparing them with analytical or semi-analytical results and
with those obtained by means of direct numerical simulation.

First of all some properties of finite elements and methods of numerical integration used in
an actual case should be pointed out. With respect to non-symmetry of the FP operator and
its other properties the Galerkin method in the form of the Petrov version has been applied.
In order to avoid any secondary non-homogeneity the integration domain has been split in
all cases into the rectangular elements of identical size without any network condensation
in areas of ‘dramatic’ PDF changes. FP equation remains linear and in individual cases
which will be discussed in two state variables x = (x1, x2) only. Therefore the problem of
the element multi-dimensionality drops out in the meanwhile and a conventional integration
process can be applied.

Taking into account that FP equation is of the second order in x coordinates, elements
with linear approximation between nodes is satisfactory in order to fulfill conditions of
‘smoothness’ of approximation function and therefore to get a guarantee of a convergence
if a stable solution exists. Let us introduce in the domain of one element an approximation
function, see Fig. 1, consisting of shape functions :

pe(xe
1,x

e
2) =

2∑
ij=1

P e
ij · pe

ij(x
e
1, x

e
2) , pe
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e
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e
2) = pe

ij ,
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11 =
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1) (h2 + 2 xe
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4 h1 h2

, pe
12 =

(h1 − 2 xe
1) (h2 + 2 xe
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2)
4 h1 h2

, pe
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(h1 − 2 xe
1) (h2 − 2 xe

2)
4 h1 h2

.

(4)

xe
1, xe

2 – coordinates within one finite element, pe
ij – shape functions, P e

ij – PDF values in
element nodes, h1, h2 – element dimensions.

Let us suppose for a simple demonstration that only one additive noise wa, (n = 2,
m = 1) acts in the system. Into functions gjr following constants should be introduced:
g11 = g1 = 0, g21 = g2 = 1. Approximation (4) should be substituted in Eq. (2). Making
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further alterations in Galerkin-Petrov meaning, matrices Me, Se (2× 2) being valid for one
element can be obtained. Elements of respective matrices read:

M e
ij =

2∑
kl=1

∫
Ω

pe
ij pe

kl dx1 dx2 , Ω – integration domain of one element ,

Se
ij =

2∑
kl=1

∫
Ω

[
pe

ij pe
kl
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∂f1(xe
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e
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∂x1
+
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e
2, t)

∂x2
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+ pe
ij
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f1(xe

1, x
e
2, t)

∂pe
kl

∂x1
+ f2(xe

1, x
e
2, t)

∂pe
kl

∂x2

)
+ Kaa

∂pe
ij

∂x2

∂pe
kl

∂x2

]
dx1 dx2

(5)

Matrices (5) after transformation into the global coordinates should be uploaded into global
matrices M,S. Hence the system of ordinary differential equations arises:

MṖ = SP (6)

where P is a vector of PDF values in nodes of the network. With respect to structure of the
system (1), elements of the matrix S in general are time dependent.

Fig.1: PDF approximation outline in
a domain of one finite element

Fig.2: Outline of an SDOF linear system

Fig.3: Contour diagram of the PDF evolution of an
SDOF sytem response since the excitation
beginning until the stationary state

Fig.4: PDF vertical section x1 (deflection) in se-
lected moments starting from the initial
condition until the stationary state

Fig.5: Axonometric display of the PDF evolu-
tion of an SDOF system response since
the excitation beginning (t = 0) until the
stationary state (t = 90 s)
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Attempts for any higher approximation using Lagrangian polynomials or smooth deriva-
tives in nodes (l’Hermite) didn’t approve. CPU time increased visibly and numerical stability
didn’t get better. As the most effective method of a differential system solution approved the
process of predictor-corrector type based on the Adams algorithm. As the main tool applied
to develop the respective element and to carry out numerical integration of system (6) the
COMSOL MULTIPHYSICSTM code has been used.

3. Linear single degree of freedom system

Let us assume that an SDOF system, see Fig. 2, is excited by an additive noise and
a multiplicative noise in the damping coefficient. The respective differential equation reads :

ẍ + 2 ωb(1 + wb) ẋ + ω2
0 x = wa ⇒

ẋ1 = x2 ,

ẋ2 = −ω2
0 x1 − 2 ωb x2 − 2 ωb x2 wb + wa .

(7)

Processes wb = wb(t), wa = wa(t) are supposed to be centered Gaussian white noises. Their
densities are denoted : Kbb, Kab, Kaa. Drift and diffuse coefficients follows from Eqs. (3) :

κ1 = x2 , κ2 = −[ω2
0 x1 + 2 ωb x2 (1 − ωb Kbb) + ωb Kab] ,

κ22 = 4 Kbb ω2
b x2

2 − 4 Kab ωb x2 + Kaa .
(8)

The FP equation can be obtained substituting formula (8) into its general form Eq. (2).
After some adaptation one obtains :

∂p

∂t
= −∂ (x2 p)

∂x1
+

∂

∂x2

[
(ω2

0 x1 + 2 ωb x2 (1 − ωb Kbb) + ωb Kab) p
]
+

+
1
2

∂2

∂x2
2

[
(4 Kbb ω2

b x2
2 − 4 Kab ωb x2 + Kaa) p

]
.

(9)

It can be shown, see e.g. [3, 4], that a stationary solution of Eq. (9) (i.e. when infinite time
after excitation beginning elapsed) exists having the Boltzman form which reads :

p(x1, x2) = N exp
[
−ωb (ω2

0 x2
1 + x2

2)
Kaa

]
(10)

where N represents a normalization factor. Its value is given by a condition that the integral
of the function (10) over an infinite domain should equal to one.

System parameters for the purpose of numerical solution of Eq. (9) have been chosen as
follows: ω2

0 = 1.0, ωb = 0.05, Kaa = 0.2, Kab = Kbb = 0.0 . The excitation starts at point
t = 0. An initial system position has been put into the point :

x1,0 = 5.0 , x2,0 = 0.0 . (11)

An initial condition for PDF can be selected in a form :

p(x1, x2, 0) = N exp
[
−ω2

0 (x1 − x1,0)2

σ2

]
exp

[
− (x2 − x2,0)2

σ2

]
, (12)

where N = 1/(2 π σ2), σ2 = 1/9. The initial condition (12) approaches for a small value σ2 to
the Dirac function as it was primarily requested. It admits that the system response doesn’t
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begin at point (x1,0, x2,0) for a certainty as it would be required by the Dirac function. The
starting position (10) holds in compliance with the PDF (12) as almost sure only.

The numerical solution flow didn’t bring any severe difficulties which would imply needs
of some adaptations of the computing process. Changes of the PDF form starting from
the initial condition (12) until the stationary state represent rather quantitative alterations.
It doesn’t generate any basic changes in the PDF form within this time interval. The
whole process of numerical integration can be understood as an analogy with the dynamic
relaxation process where a certain initial estimate of the static solution is inserted. The role
of the initial estimate takes over here the respective PDF corresponding to the stationary
and therefore to a time independent state. Consequently, the initial and final state in the
form of an exponential function in both variables x1, x2 doesn’t initiate any endangering of
numerical stability.

Selected results of the FEM solution are depicted in Figs. 3–5. It is obvious from Fig. 3,
that the response PDF peak follows in the plane x1, x2 an exponential spiral coming up
to that being obtained by force of a deterministic analysis of a linear SDOF system eigen
vibration for initial conditions (11). The origin becomes an attractor. The system response
converges either to a standstill at this point (deterministic case without external excita-
tion), or to stationary random movement being described by a product of two Gaussian
functions (10).

The drop of PDF peak with time is obvious in Fig. 4. Individual parts of the figure
demonstrate a vertical section in x1 (deflection). It proves once again a roughly exponential
drop from a level given by an initial condition as far as a horizontal asymptote outlined in the
right lower part of the figure. Indeed this trend is also apparent from the axonometric display
of PDF evolution in Fig. 5. Comparing the FEM solution values with those coming out of
the Boltzman solution (11), their almost absolute coincidence can be learned. Comparative
calculation using the spectral method provided identical results as well.

Particular specification of input noise densities excluded in fact the multiplicative noise
wb. Nevertheless the target was to demonstrate an efficiency of a FEM solution procedure
applied to Eq. (9) under common conditions and to keep a verification possibility with known
results. For increasing density of the additive noise some effects of parametric stability loss
in a stochastic meaning is apparent.

4. Non-linear system of Duffing type

The Duffing equation in basic or normal form under white noise additive and multiplica-
tive excitations can be written as follows :

ẍ + 2 ωb ẋ − ω2
0 x (1 + ws − α2 x2) = wa ⇒

⇒
ẋ1 = x2 ,

ẋ2 = ω2
0 x1 (1 − α2 x2

1) − 2 ωb x2 + ω2
0 x1 ws + wa .

(13)

Eqs. (3) imply relevant drift and diffuse coefficients :

κ1 = x2 , κ2 = ω2
0 x1 (1 − α2 x2

1) − 2 ωb x2 ,

κ11 = κ12 = κ21 = 0 , κ22 = Kss ω4
0 x2

1 + 2 Kas ω2
0 x1 + Kaa .

(14)
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Using Eqs. (13), (14) relevant FP equation can be evolved :

∂p

∂t
= −∂ (x2 p)

∂x1
− ∂

[
(ω2

0 x1 (1 − α2 x2
1) − 2 ωb x2) p

]
∂x2

+

+
1
2

∂2
[
(Kss ω4

0 x2
1 + 2 · Kas ω2

0 x1 + Kaa) p
]

∂x2
2

.

(15)

In the absence of a multiplicative noise (Kss = Kas = 0) the system (13) can be carried
out of a simple Hamiltonian and therefore the Boltzman solution of a stationary version of
Eq. (15) can be simply formulated once again:

p(x1, x2) = N exp
[
ωb ω2

0 x2
1

Kaa

(
1 − 1

2
α2 x2

1

)]
exp

(
−ωb x2

2

Kaa

)
. (16)

Eq. (13) describes the Miesess truss movement under white noise excitation, see Fig. 6. The
stiffness linear part is negative and consequently the system includes an unstable stationary
point in the origin (0, 0). Two stable stationary points have position (±1/α, 0). The repulsi-
vity level in the origin depends on a relation of both stiffness parts and on the multiplicative
noise ws density.

Fig.6: Outline of the SDOF
Duffing system

Fig.7: Contour diagrams of the PDF evolution of the
Duffing system; excitation density Kaa = 4.0

Fig.8: Axonometric display of PDF of the Duffing system response
for Kaa = 4.0 in the moment t = 4 s and in the stationary
state – parts (a), (b); stationary PDF for Kaa = 0.2 – part (c)
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Fig.9: Vertical sections of PDF for Duffing system in the stationary
state for Kaa = 0.2 : x1-deflection, x2-velocity

The domain splitting into elements and other circumstances are similar to the preceding
case : ω2

0 = 1.0, ωb = 0.05 non-linearity ratio α2 = 0.1. If the solution process is started at
point (x1,0, x2,0) according (11) and initial condition (12), the PDF evolution in time can
be followed again. Let us deal thoroughly the case of the additive excitation only.

It emerged that the excitation process density Kaa should be inserted higher than a cer-
tain threshold value. This effect arises from dynamic relaxation properties. The resulting
stationary PDF form (if it exists) cannot be basically different from the initial condition. It
results from numerical experiments that Kaa = 4.0 can be considered. The integration flow
for this excitation density can be observed on contour diagrams in Fig. 7. Part (a) repre-
sents the initial condition. After 1 s, 2 s and 3 s, parts (b)–(d), PDF is still unimodal and
the mathematical mean value doesn’t follow any exponential spiral like in the linear case.
The bizarre PDF form in the moment t = 3 s, part (d) should be noticed. Two extremes
appear after 4 s, part (e). On 90 s, part (d), PDF becomes symmetric having two equivalent
maxima. Their superelevation above a saddle point is not too high. Final phase of this
process for Kaa = 4.0 is visible in Fig. 8(b). It arrives approximately after 60–90 s. In the
final phase, see Fig. 8(a), a periodic alternation of an absolute peak between both extremes
is appreciable. This oscillating rundown successively disappears during transition into the
stationary response process when PDF becomes symmetric in both axes.

Reducing the excitation density to value Kaa = 0.2 and starting from the initial condi-
tion (12), the integration process fails. However it can get through if in the meaning of the
initial condition the stationary PDF for Kaa = 4.0 is used. Result of this computation is
demonstrated in Fig. 8(c). Domination of both stable stationary points is well marked. The
same is obvious observing PDF vertical sections along axes x1, x2, see Fig. 9. Response ve-
locity PDF comes up to usual Gaussian curve, while deflection PDF is concentrated around
both equilibrium points (bimodal character). Let us subjoin that an equivalence of numerical
and analytical results was excellent once again.

If the density of noise wa is low, the movement prevails around one of equilibrium points in
a stationary state, see Fig. 8(c). This markable feature is going to disappear with increasing
excitation density and for its high values the response PDF doesn’t differ much from that
being valid for pure cubic stiffness characteristic. In such a case the bimodal character of
PDF decays rapidly, see Fig. 8(b). The PDF finally changes almost into the unimodal form
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Fig.10: Duffing system in the stationary state under concurrent action of additive and
multiplicative noises; excitation processes wa, ws are independent (Kas = 0)
– parts (a), (b); processes wa,ws are correlated (Kas > 0) – parts (c), (d)

as it holds for the linear system (see the previous section). Indeed a certain difference should
remain due to a dominant cubic part of the stiffness.

Under a certain coincidence of system and excitation parameters the stochastic resonance
can emerge. It manifests by regular jumps between stationary points of the bistable elastic
potential (interwell hopping). Then a local random movement with low variance occurs
around each of stationary points. This quasi-periodic process is very stable if an exact
parameter configuration is kept.
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It comes to light from Eq. (16), that PDF being considered separately along x1 (deflec-
tion) and x2 (velocity) represents independent processes. The difference between a local
extreme in the saddle point and a maximum in stable stationary points drops with the dam-
ping factor increase. This knowledge comes out not only from the well known formula (16),
but also from the FEM analysis of the FP equation (15). An analytical solution (16) and
FEM analysis of Eq. (15) for a solely additive excitation leads to the identical result that
PDF in the stationary state is symmetric along axes x1, x2, see Fig. 7(f).

Let us discuss results demonstrated in Fig. 10. They deal with the stationary response
for four parameter sets. Three pictures in every part (a)–(d) mean (i) PDF contour dia-
gram, (ii) axonometric display of the same surface and (iii) vertical sections along axes x1,
x2. The system itself and additive noise density are identical every time (ω2

0 , ωb, α
2, Kaa).

The multiplicative noise density is variable just like the cross density Kas. So far the mul-
tiplicative noise density increases then the bimodal shape of PDF is going to disappear.
PDF maxima at points (±1/α, 0) are vanishing and a small peak is emerging in the origin,
compare Figs. 10(a) and 10(b). This peak is growing as the density Kss increases. The
peak becomes successively dominant and suppresses both peaks in points (±1/α, 0). This
effect can be explained by an increasing influence of the multiplicative noise which step by
step depresses the control importance of the linear part of the stiffness. Finally the sys-
tem behavior remembers a case when stiffness is almost permanently positive and the most
probable position of the system mass locates in the origin.

If the noises are independent, the surface of PDF in the stationary state is always sym-
metric with respect to the vertical axis in the origin, although it loses the symmetry along
x1, x2 axes which are typical for the state where the multiplicative noise is absent. With
rising levels the PDF surface has a tendency to twist counter clockwise. It holds especially
in peak areas, see Figs. 10(a), (b). Once Kas > 0, the shape of the PDF loses any symmetry.
Only one peak arises and moves into the domain nearby the point (−1/α, 0). The evolution
of this process can be followed in the series demonstrated in Figs. 10(a)–(d).

5. Nonlinear system of Van der Pol type

The Van der Pol equation in basic or normal form being excited by additive and multi-
plicative random noises has a form:

ẍ − 2 ωb (1 + wb − β2 x2) ẋ + ω2
0 x = w0 ⇒

⇒
ẋ1 = x2 ,

ẋ2 = −ω2
0 x1 + 2 ωb (1 − β2 x2

1)x2 + 2 ωb x2 wb + wa .

(17)

Using Eqs. (3) drift and diffusion coefficients can be easily derived :

κ1 = x2 , κ2 = −ω2
0 x1 + 2 ωb x2 (1 − β2 x2

1 + ωb Kbb) + ωb Kab ,

κ11 = κ12 = κ21 = 0 , κ22 = 4 Kbb ω2
b x2

2 + 4 Kab ωb x2 + Kaa .
(18)

FP equation corresponding to Van der Pol system (17) reads :

∂p

∂t
= −∂ (x2 p)

∂x1
+

∂
[
(ω2

0 x1 − 2 ωb x2 (1 − β2 x2
1 + ωb Kbb) − ωb Kab) p

]
∂x2

+

+
1
2

∂2
[
(4 Kbb ω2

b x2
2 + 4 Kab ωb x2 + Kaa) p

]
∂x2

2

.

(19)
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Fig.11: Van der Pol system in the stationary state under random addi-
tive excitation (multiplicative excitation prevented); lower linear
damping – part (a), higher linear damping – part (b)

Contrary to the previous two cases a known simple solution of the stationary version of
Eq. (19) analogous to Boltzman solution (10) or (16) doesn’t exist. Nevertheless the result
for t → ∞ can be compared with a number of approximative analytical solutions, see e.g. [4].

Computations have been done in two series. In the first one the initial condition of the
system has been introduced in the form (12) for x1,0 = 5.0, x2,0 = 0.0, i.e. with a non-zero
initial deflection. On condition that ω2

0 = 1.0, ωb = 0.05, β2 = 1.0, the stationary state
arrives in 60 to 90 seconds. Much like the analytical investigation, numerical evaluation also
proved that the PDF form in the stationary state and the length of the transition process
are very sensitive to an excitation density level Kaa.

Let us notice that from the viewpoint of detailed numerical integration any arbitrary
value in the interval Kaa ∈ (0.2, 6.0) didn’t present a problem. To split the integration
process into two or more stages as with the Duffing system was not necessary.

An outline of the PDF transition process in the time interval from zero to stationary
state for a relatively high value Kaa = 4.0 and with absenting multiplicative excitation is
similar with that concerning the Duffing system under comparable conditions. The final
PDF stationary state for this excitation density level remembers in principle the basic PDF
shape of the Duffing system being turned counter clockwise approximately π/4. It means in
particular that two equivalent maxima and one saddle point can be recognized once again.
The contour diagram is neither symmetric along axes x1, x2 nor z1, z2. It leads to an
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Fig.12: Van der Pol equation in the stationary state under simultaneous action of
additive and multiplicative excitation; excitation processes wa, wb : inde-
pendent (Kab = 0) – parts (a), (b) or correlated (Kab > 0) - part (c)

asymmetry of ascending and descending response phases in time domain from the point of
view of a broad band structure of the response.

Following carefully the transition process for the given parameter specification, it reveals
that once the PDF evolution leaves off a marked unimodal character extrapolating the initial
condition, the process of alternately rising and dropping peaks of the bimodal PDF shape
occurs. This effect is more distinctive here than in the case of the Duffing system as was
pointed out in the previous section. However this effect is going to lose its alternating
character with increasing time as well and PDF approaches to the stationary state which
stands out by a symmetry of PDF with respect to the origin.

Essentially a different shape of PDF in the stationary state is provided for small value
Kaa. For Kaa = 0.2, PDF approaches nearly to a rotating shape with a deep ‘depression’
around the origin. In such a state the system acts as a self-exciting resonator predetermined
by a negative linear part of the damping. This effect originates from a stable limit cycle of
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the Van der Pol system. It emerges for a given deterministic part of parameter configuration
and remains in force even when random low density excitation is applied.

In the second series the multiplicative noise has been concerned, moreover even its cross
correlation with additive noise has been respected. The integration flow came out from the
initial condition (12), i.e. from ‘almost sure’ home position at x1,0 = 0, x2,0 = 0 point.
For some input data sets it was necessary to split the computation flow into several parts
similarly as in the case of the Duffing system for low Kaa values.

Let us evaluate and compare five typical cases for a medium additive noise density
Kaa = 0.8 while ω2

0 = 1.0, β2 = 0.1. Respective results concerning the stationary state
are depicted in Figs. 11, 12. Their layout is the same as in Fig. 10 for Duffing system. Each
of five cases outlines in the contour diagram (on various clearness levels) the limit cycle being
typical for the Van der Pol equation evaluated for discussed parameters in the determinis-
tic domain. Fig. 11 deals with additive excitation only, so that it is linked up to the first
series of computation. The response portrait is significantly influenced by a linear part of
the damping. The PDF for higher linear damping ratio (ωb = 0.3) concentrates even more
and more around the well expressed limit cycle, see Fig. 11(b). Axonometric demonstration
shows a strong PDF variability on the ridge curve indicating the highest probability of the
system position in two points on the z1 axis. Fig. 11(a) (ωb = 0.1) demonstrates a visibly
higher stochastic nature of the response and a dominant role of the first harmonic in the
limit cycle. The drop of stochastic and increase of deterministic response component with
rising damping ratio ωb follows from the negative character of the linear part of the damp-
ing or in other words from the system instability increase in the origin. In this regime the
response is given predominantly by a re-stabilization process due to non-linear part of the
damping which provides positive total values as lately as for higher deflections.

Under a multiplicative noise action in a linear part of the damping the portrait of the
limit cycle for higher ωb is going to lose a unimodal character and evidently takes on higher
harmonics. The PDF has a tendency to expand towards the origin and to limit itself out
of a formation visible in contour diagrams in Figs. 12(a), (b). Including a positive cross-
correlation of both noises the PDF shape loses a symmetry with respect to the origin, see
Fig. 12(c), similarly as for the Duffing system. The most important tendencies of charac-
teristic points of the PDF dependent on individual parameters of the system and excitation
are obvious from vertical sections along z1,z2 axes, see Figs. 11(a), (b) and Figs. 12(a)–(c).
Comparison of Figs. 12(a), (b) implies that an influence of increasing ωb asserts itself much
stronger when the multiplicative and additive noises are operating simultaneously unlike
when the additive noise only is acting.

6. Conclusion

The Fokker-Planck equation represents an important tool determined for probabilistic
analysis of dynamic systems subjected to additive and multiplicative random excitation by
Gaussian white noises. Possibilities to solve this equation using analytical or semi-analytical
methods are limited. It seems that the Finite Element Method is able to occupy an im-
portant position among other numerical methods considered for FP equation analysis. It is
challenging that many aspects of FP equation remaining hidden for analytical solution proce-
dures can be discovered by means of FEM. Demonstration examples of three SDOF systems
with additive and multiplicative random excitation (linear, Duffing, Van der Pol) approved
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good numerical properties of FEM in widespread external excitation density. Comparison
of analytical closed form and approximative results with those obtained by mean of FEM
showed almost perfect equivalence. It should be remembered that FEM offers well known
advantages which are unattainable using analytical methods. Let us mention a possibility
of almost any arbitrary form of the definition domain, any mathematically admissible and
meaningful combination of boundary conditions are acceptable, etc.

On the other hand many specific attributes of the Fokker-Planck operator should be
respected. They differentiate this one from those being typical for linear or non-linear solid
state mechanics. Main differences consist in several facts : non-symmetry of FP operator,
mostly infinite dimensions of definition domain and subsequent need to limit them in some
acceptable way, etc. In general the high multi-dimensionality of finite elements encountered
is non-standard. It will require developing special integration methods being based for
instance on the Monte Carlo principle. At any rate the higher approximation degrees should
be avoided.

In spite of optimistic initial experiences many other questions still remained open. They
refer numerical reliability and stability related to various types of multiplicative noises oc-
curred, formulation of initial conditions, needs to split the integration flow into consecutive
stages, etc. Some possible ways to solve these problems are outlined in the previous text.
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