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ELECTRO-MECHANICAL IMPACT SYSTEM EXCITED
BY A SOURCE OF LIMITED POWER

Ladislav Půst*

Electromechanical system with one degree of freedom in mechanical oscillating part
and with other degrees in rotation a electrical subsystems is investigated by means
of numerical solution of derived equations in dimensionless form. The most impor-
tant nonlinearities are impacts of the main body on the stiff but deformable stop.
Other nonlinear effects are introduced into system by the force transformation from
unbalance exciter with limited power into the oscillating subsystem and also by non-
linear magnetic flux in the driving electromotor. Presented numerical simulation was
focused on the study of the influence of exciting unbalance level on the time histo-
ries of oscillations and on phase trajectories. The various responses were shown and
discussed in examples.

Key words : mechanical oscillations, impacts, multiplicative impact damping model,
limited power of exciter, electro-mechanical interaction

1. Introduction

The nonlinear properties of dynamic system have been studied very intensively during the
last 50 years, but nonlinearity was mainly considered as consequence of internal nonlinear
elements – springs or damping – in the investigated mechanical system. The nonlinearity
caused by the non-ideal characteristics of the exciting force source has been taken into
account only exceptionally [1–4, 7, 8], in spite of the fact that the energy sources of the real
structures are always non-ideal with limited power and limited inertia.

The interaction of such non-ideal source of energy with the nonlinear mechanical system
at forced or self-excited vibration can produce new phenomena [10–12], especially at strongly
nonlinearities as are impacts, dry friction, clearances, etc. [9].

The presented article is focused on such a case. The impacts are supposed to be soft
but sufficiently strong and with different losses of kinetic energy during contact. Mechanical
system has one degree of freedom and the source of excitation is an unbalance exciter driven
by an electromotor with nonlinearity in the inner electromagnetic circuit.

2. Electro-mechanical system

Such a system in its simplest form is shown in Fig. 1. It consists of a mechanical sub-
system build of mass m, linear springs s with stiffness k, linear dashpot with damping
coefficient b and an nonlinear stop with characteristic f(x, ẋ1), (where x1 = x− r) and with
clearance r in the equilibrium position. This subsystem is excited by the centrifugal exciter
with unbalance mne, driven by electrical motor with moment of inertia Im. Mass of this mo-

* Ing. L. Půst, DrSc., Institute of Thermomechanics AS CR, v.v.i., Doleǰskova 5, 18200 Praha 8
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tor is included into the mass m, which can move
only in the vertical direction, due to the parallel
leaf springs S.

Fig.1: Electromechanical system

Rotor of the electric motor rotates with a an-
gular velocity ϕ̇ = dϕ/dt and is driven by the
electromagnetic moment Mem = r c Φ(i) i depen-
dent on the current i, where r is radius of motor
gap, c Φ(i) is magnetic flux roughly constant at
the permanent magnet, but increasing with cur-
rent i at electromagnet. Current i is generated in
the electric circuits with elements L, R, c Φ(i) of
motor fed by the prescribed voltage U , which we
suppose to be constant or slowly varying in time.

3. Mathematical model of 1DOF mechanical subsystem

The forced vibration of 1DOF mechanical subsystem is described by equation

m ẍ + b ẋ + k x + f(x, ẋ) = mn e (ϕ̇2 sin ϕ − ϕ̈ cosϕ) , (1)

where the function f(x, ẋ) describes the impact stop characteristic, which we suppose to be
viscous-elastic. The corresponding hysteretic loop is shown in Fig. 2a and its mathematical
description is :

f(x, ẋ) = kc (x − r) (1 − bc ẋ)H(x − r) , (2)

where kc [kg s−2] and bc [sm−1] are stiffness coefficient and damping parameter of stop,
H(x − r) is Heaviside function, H = 0 for x ≤ r, H = 1 for x > r.

Fig.2: a) impact hysteresis loop; b) hysteresis loops at different impact velocities

We use here the so called ‘multiplicative model’ of the impact damping, where the de-
formation function kc (x − r) is multiplied by a function of velocity (bc ẋ). The advantages
of this model in comparison to the classical ‘additive model’ (kc (x − r) + bc ẋ) are proved
in [15, 16]. The properties of different impact velocities on the hysteresis loop are shown
in Fig. 2b.

The energy input into the oscillating system is given by the rotation of rotor with in-
stantaneous angular velocity ϕ̇ [5, 6] determined by the equation

Im ϕ̈ = −Mz + r c Φ(i) i − e mn ẍ cosϕ , (3)
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where Mz is resistance moment. The last expression on the right hand side of eq. (3) gives
the feedback loop force of oscillating system motion x(t) on the centrifugal exciter.

Current i, contained in the active driving electromagnetic moment r c Φ(i) i is generated
in the electric circuit controlled by the voltage U and described for the direct current electric
motor by the following differential equation

L(i)
di

dt
+ R i + r c Φ(i) ϕ̇ = U(t) . (4)

The resistance R is supposed to be constant for the used range of current i. The in-
ductivity L(i) and magnetic flux Φ(i) change their values with current i in larger scale
then the resistance R. In this contribution the nonlinear function of magnetic flux is consi-

dered. The magnetic saturation of iron causes
the weak nonlinearity of magnetic flux charac-
teristic, which can be expressed by the ‘arctg’
function [13]

Φ = Φm
2
π

arctg
(

π

2
i

ik

)
(5)

drawn in Fig. 3. This curve has the tangent in
origin (

dΦ
di

)
i=0

=
Φm

ik
, (5a)

where Φm [kgm s−2 A−1] is the maximum
asymptotic magnetic field for i → ∞.

Fig.3: Proposed magnetic saturation curve

Point 1 of intersection of asymptotic flux Φm with tangent in origin gives the characteristic
current ik.

Equations (1, 3, 4) contain 18 dimension parameters or variables.

Simpler form of these equations can be get by introducing the dimensionless variables,
with using e, k, r and Φm as the comparison values :
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e k
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(6)

The equations of motion in the dimensionless form using these only 14 dimensionless
parameters are

Λ I ′ + RR I + c Φ̃ ϕ′ = u ,

Θ ϕ′′ = −μz + � I c Φ̃ δ − μn X ′′ cosϕ ,

X ′′ + β X ′ + X + f̃(X, X ′) = μn [ϕ′2 sin ϕ − ϕ′′ cosϕ] ,

(7)

where we use the symbol ( )′ = d( )/dτ .
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Variable ϕ and parameter c, which depends on the internal design of electromotor, are
dimensionless and therefore they do not change during the transformation. Two expressions
of (2) and (5) of nonlinear functions have to be considered in addition to equations (7) and
transformed.

Using dimensionless magnitudes

rr =
r

e
, κc =

kc

k
, βc = bc e

√
k

m

it gives
f̃(X, X ′) = κc (X − rr) (1 + βc X ′)H(X − rr) . (2a)

Similarly we obtain

Φ̃ =
2
π

arctg
(π

2
I
)

. (5b)

For easy numerical solution it is useful to eliminate the derivatives X ′′ from the second
equation (7) and derivatives ϕ′′ from the third equation. We get

Λ I ′ + RR I + c
2
π

arctg
(π

2
I
)

ϕ′ = u ,

(Θ + μ2
n cos2 ϕ)ϕ′′ = −μz + � I c

2
π

arctg
(π

2
I
)

δ −
− μn cosϕ [−β X ′ − X − f̃(X, X ′) + μn ϕ′2 sin ϕ] ,

(8)

(
1 − μ2

n cos2 ϕ

Θ

)
X ′′ + β X ′ + X + f̃(X, X ′) = μn

[
ϕ′2 sin ϕ − (−μz + � I c Φ̃ δ) cosϕ

Θ

]
.

If a small voltage U feeds the excitation of this electromechanical system, then the
magnetic characteristic can be simplified to Φ̃ = I.

Analogous, if motion in mechanical subsystem would be realized without any impacts,
f̃(X, X ′) = 0, then equations (8) are simple :

Λ I ′ + RR I + c I ϕ′ = u ,

(Θ + μ2
n cos2 ϕ)ϕ′′ = −μz + � c I2 δ − μn cosϕ [−β X ′ − X + μn ϕ′2 sin ϕ] ,(

1 − μ2
n cos2 ϕ

Θ

)
X ′′ + β X ′ + X = μn

[
ϕ′2 sinϕ − (−μz + � c I2 δ) cosϕ

Θ

]
.

(9)

The equations (8) are used for numerical solutions of the motion of studied electrome-
chanical system.

4. Examples

A) The equations of motion contain a lot of parameters describing investigated system.
We will focus on the influence of increasing amplitude of excitation, defined by dimensionless
parameter μn = mn/m, on the type of oscillations.

Other parameters are supposed to be constant : damping of mechanical system β = 0.04,
moment of inertia Θ = 30, loading moment μz = 0.01, stiffness of stop kc = 100 and its
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damping βc = 0.1, clearance between stop and main mass m at its central position rr = 0.5,
resistance RR = 1, ratio of electric and mechanic values δ = 0.2 and feeding voltage u = 2.

Response on the small excitation given by the mass ratio μn = mn/m = 0.1 is very
near to harmonic motion shown in Fig. 4. The mass m touches the stop very slightly at its
maximum displacement, which is seen from the short vertical straight line in the phase plane
trajectory in Fig. 5. The mechanical motion is periodic with constant revolutions containing
very small disturbances.

This motion can be however strongly influenced by the transient oscillations at general
initial conditions. Therefore we begin the solution always firstly with roughly estimated
initial conditions X , X ′, η, I, ϕ and consider record for a long dimensionless time τ (e.g.
τmax = 200), sufficient for reverberation of these disturbing components. The gained end
conditions X , X ′, η, I, ϕ were then (after repetition if necessary) used as initial conditions
for records presented in the article. Small distortions, as well as their reverberations, are seen
on the left sides of records in Fig. 4, 6, 8, 10. The right sides of these time histories records
(e.g. τ = 60–120) were then applied for creation of phase plane trajectories (Fig. 5, 7, 9, etc.).

Twice greater excitation μn = 0.2 changes considerably the type of oscillations. Time
histories of displacement X (upper record) and of dimensionless velocity V (bottom record)

Fig.4: Time history of displacement
and velocity at slight impact

Fig.5: Phase trajectory at slight impact,
unbalance μn = 0.1

Fig.6: Time history of displacement and
velocity, unbalance μn = 0.2

Fig.7: Phase trajectory at
unbalance μn = 0.2
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Fig.8: Time history of displacement and
velocity, unbalance μn = 0.3

Fig.9: Phase trajectory at
unbalance μn = 0.3

Fig.10: Time history of displacement and
velocity, unbalance μn = 0.4

Fig.11: Phase trajectory at
unbalance μn = 0.4

show the impacts in every second period (Fig. 6) – peaks in X, τ and vertical jump in V, τ

record. This jump is distinct in Fig. 7. Due to the small damping in impact βc = 0.1 and
nonlinear characteristic shown in Fig. 2, the incidence and reversal velocities are roughly the
same but with opposite sign.

The similar oscillations with double period is gained at excitation with three times heavier
unbalance μn = 0.3 and shown in Fig. 8. Nonlinear impact effects – sharp peaks in X, τ and
jumps in V, τ – are emphasized, double period keeps.

The similar is also the phase plane portrait shown in Fig. 9, with an additional bump in
the inner loop. This bump is evident also in the course of velocity in the previous Figure.

Further increase of excitation to μn = 0.4 (Fig. 10) surprisingly change the intensity of
oscillations to the lower level and the motion returns to the one-period oscillations, very
similar to the oscillations at μn = 0.1 (Fig. 4) but with strong impacts.

Interesting form has also the trajectory of motion in phase plane X, V , shown in Fig. 11.
The triangular form consists of the quick jump of velocity V from V ∼= 0.6 to V ∼= −0.6 at
X ∼= 0.5 . The two other sides intersect in the point X ∼= −0.4, where the velocity stays near
zero for a long time (approximately 1/4 period – see Fig. 10). The absolute displacement of
this point from origin is smaller than the displacement on the side of the stop.
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Another view on the vibration of the impact we can get, if we draw the displacement and
velocity versus dimensionless frequency η = ω

√
m/k. This is done in Fig. 12, where at slowly

decreasing frequency is the displacement drawn in the upper half of Figure, in the middle
is the time τ reduced 100 times and in bottom is the course of velocity. The fluctuation
of angular velocity η during the monotone increasing time τ and also the deformation of
displacement X and velocity V is clearly evident.

Fig.12: Displacement X and velocity V versus angular frequency η

B) In comparison with the previous example, the mass of unbalance is constant : μn =
= mn/m = 0.2, but the clearance rr = r/e is variable. The further physical quantities
are also constant : β = b/

√
km = 0.05, Θ = Im/(m e2) = 30, μz = Mz/(k e2) = 0.15,

Λ = L ik/(r Φm) = 1, � = r/e = 1, δ = ik Φm/(e k) = 0.2, RR = R ik
√

m/k/(r Φm) = 1.
The parameters of the stop are κc = kc/k = 100 and ten times higher impact damping than
is : βc = bc/

√
km = 1. The input voltage has to be increased to u = U

√
m/k/(r Φm) = 2.8

in order to hold the system in resonance. The clearance rr is selected from a maximum one
rr > 3 to a stepwise decreasing rr = 2, 1, 0.

Phase trajectories are recorded in Figures 13–16. The impact-less system (rr > 3)
oscillate very near harmonic motion with amplitude X = x/e = 2.68 represented by an
ellipse shown in Fig. 13. Drawing the stop nearer to the mass m on the distance rr = 2
reduces the maximum displacement in negative direction X = −2.2 and to X = 2.08 in
positive displacement. In Fig. 14 is also seen that the incidence velocity Vi = dX/dτ = 1.05
and returning (reflecting) velocity Vr = −0.7.

Further decreasing of the clearance on the value rr = 1 (Fig. 15) reduces again the
vibration of mechanical subsystem. The maximum displacements are X = −1.42 and 1.09
and the incidence and reflecting velocities are Vi = 1.35 and Vr = −0.6 .

The total removal of clearance on rr = 0 causes the strong minimization and deformation
of phase trajectory X, V as shown in Fig. 16. The incidence and reflecting impact velocities
are Vi = 1.2 and Vr = −0.618 .

If we illustrate the motion of mechanical subsystem in time histories X(τ) and V (τ),
we get for the high clearances rr > 3 and rr = 2 roughly harmonic courses of vibrations.
Greater differences from harmonic forms occur at the smaller clearances. Time histories
dimensionless displacement X (full line) and velocity V (dashed line) for rr = 1 are drawn
in Fig. 17. Maximums X are sharp, given by the jump off from the stop. In the same times τ
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Fig.13: Phase trajectory at impactless motion Fig.14: Phase trajectory, impacts at rr = 2

Fig.15: Phase trajectory, impacts at rr = 1 Fig.16: Phase trajectory, impacts at rr = 0

Fig.17: Time histories X and V ,
impacts at rr = 1

Fig.18: Time histories X and V ,
impacts at rr = 0

of impacts, the velocities V jump from the positive to negative values approximately along
the vertical straight lines. These phenomena are even more emphasized in Fig. 18, where
the displacement X and velocity V versus time τ are plotted for the system with zero
clearance rr = 0.

The bottom record V (τ) in Fig. 18 can be used also for determination of equivalent
coefficient of restitution [15] by means of ratio of extreme values (beginning and end of
impact) of negative reflecting velocity (Vr) and positive, incidence one (Vi). Equivalent
coefficient of restitution is then

Re =
|Vr|
Vi

=
0.618
1.2

= 0.515 .
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Fig.19: Displacement X and velocity V
versus η at rr = 1

Fig.20: Oscillations of current I and
angular frequency η at rr = 1

Due to the limited power of the electric motor of the inertia exciter connected with the
non-uniform consumption of energy the angular velocity ϕ̇ resp. η = ϕ̇

√
m/k fluctuates

in time. The fluctuations of dimensionless displacements X and velocity V versus angular
velocity η are drawn in Fig. 19. Very small displacements X exceeding clearance rr = 1
(upper record) correspond to the stop deformation. Roughly horizontal line at maximum
value of X graphically represents the sudden drop of angular velocity Δη during the impact.
During this impact, the quick transition of incidence impact velocity Vi into negative reflected
velocity Vr occurs at the simultaneous decrease of angular velocity Δη what is represented
by a oblique straight line in the bottom record V (η).

The short stage of alternating component of angular velocity η is in the Fig. 20 bottom.
In the interval Δτ = 40, there are recorded approx. 7 periods containing not only nearly
harmonic change of η caused by the finite power of electric motor, but also the abrupt
reduction of angular velocity η during impact, in extent 1% of average velocity η ≈ 1.2 .

Fluctuation of energy consumption by a vibrating system influences also the fluctuation
of current I = i/ik in electric circuit of exciter motor, as shown in the record of fluctuating
component (I − 1.8) versus time τ in the top of Fig. 20. The impacts become evident here
as well, but only by the breaks, not by jump as in η(τ).

All these phenomena can be amplified by further reduction of electric and for mechanic
parameters of exciter, e.g. Im, r, Φm, L, R etc. The chaotic motion can occur as well. In
the presented examples, the chaos does not appear due to the sufficient damping both in
the main electro-mechanical system and in the stop.

5. Conclusion

Mathematical model consisting of three equations describing the behaviour of mechanical
oscillating system with impact on a stop with general nonlinear characteristic is derived and
transformed into a dimensionless form. This system is driven by an electric motor with
limited power and limited inertia. Constant voltage feeds the electric circuits of motor.

The numerical solution of derived dimensionless motion’s equation for various values of
unbalance mass μn = 0.1–0.4 shows the different type of oscillations – periodic with one or
two periods – as time histories and as phase plane trajectories. The oscillations of mechanical
system influence also the angular velocity of driving electromotor and its feeding current.

This article is the extended version of the paper [14].
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