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ROADWAY AUTOMOBILE STABILITY
A NUMERICAL STUDY

Svetoslav Nikolov*, Valentin Nedev**, Stefan Bachvarov***

A mathematical model of the roadway automobile motion is numerically analyzed.
This model is intended to describe the roadway automobile stability. A previous
paper [6] described the model in detail and the general method of qualitative analysis.
In the present paper, we continue the discussion of stability by numerical simulations
and the specific question we attempted to answer is: which parameter(s) of automobile
geometry and quality of the roadway can serve as a reliable predictor(s) for car crash?
Data from Daimler-Chrysler AG and Ford Motor Company Limited were used for
that purpose, considering three car types – Mercedes-Benz E 320 (T-modelle), Ford
Focus and Mercedes-Benz Sprinter (1). Hence, one can consider the present work as
a natural continuation of [6].

Key words : roadway automobile stability, numerical analysis, nonlinear system

1. Introduction

Mathematical models have been used to investigate the road way automobile mo-
tion [1–6], and optimal car velocity in traffic jam [7]. Those authors introduced the idea of
modeling the automobile motion and automobile stability as simple as possible.

The model we have used for our study is depicted in Fig. 1, which shows the scheme of
roadway of an automobile motion in the plane XOY. According to this scheme and [1], in
a previous our paper [6] we examined qualitatively a modified 3×3 autonomous, nonlinear
system of ordinary differential equations modeling the roadway automobile motion. This
autonomous system (see [1] and [6] for a complete derivation) has the form

ẋ1 = x2 ,

ẋ2 = A1 x1 − A2 x2 − A3 x3 + A4 x3
1 ,

ẋ3 = A6 x1 − A7 x2 − A5 x3 + A8 x3
1 .

(1)

The variables x1 to x3 present dimensionless angles of deviation, angular velocity and cross
velocity, respectively. The constant coefficients A1 to A8 are dimensionless algebraic com-
plexes of the characteristic values of the automobile system and have the form

A1 =
(α1 + 2 K1 a1 − 2 K2 a2)T 2

I
, A2 =

2 (K1 a2
1 + K2 a2

2)T

I V
,

A3 =
2 (K1 a1 − K2 a2)T l0

I V θ0
, A4 =

α2 T 2 θ2
0

I
,

(2)
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A5 =
2 (K1 + K2)T

m V
, A6 =

[2(K1 + K2) + χ1] T 2 θ0

m l0
,

A7 =
2 (K1 a1 − K2 a2)T θ0

I V l0
, A8 =

χ2 T 2 θ3
0

m l0
.

(2)

where χ1, χ2 are constants having the dimension of force, α1, α2 are constants with moment
dimension, m is the mass of the automobile, V is the velocity of the automobile, and a1,
a2, I, K1 and K2 are positive constants which has been introduced by Rocard in [1]. The
constants θ0, T and l0 are the characteristic values of the angle deviation, time and cross
velocity, respectively. In [6], we obtained that the system (1) has three equilibrium points
if the relations ∣∣∣∣∣∣∣

A4 A5 > A3 A8

A3 A6 > A1 A5

A3 = 0
(3)

or ∣∣∣∣∣∣∣
A4 A5 < A3 A8

A3 A6 < A1 A5

A3 = 0
(4)

are valid. If case (3) or (4) are not valid, the equilibrium point is only one with values
xs

1 = 0, xs
2 = 0, xs

3 = 0. The strategy that we adopt throughout this study is to use
all analytical tools (obtained from us in [6]) for investigation of the stability of three car
types, i.e., Mercedes-Benz E-320 (T-modelle); Ford Focus and Mercedes-Benz Sprinter (1).
Basically, all we need for our purposes is the expression of the first Lyapunov value (L1(λ0))
calculated on the boundary of stability R = 0 in equation (20) of the previous paper [6] and
its shown here in Appendix – Eq. (A.2). In this paper we present further numerical results
of this preliminary analytical study. In the previous paper we looked at the conditions for
stability and showed that a very general class of controller parameters would give stable
solutions of the model (1). Here we examine (by numerical experiments) the stable and
unstable states and show that the stability loss can be two types : ‘soft’ – reversible or
‘hard’ – irreversible.

Fig.1: Simplified scheme of roadway of an automobile motion; with here we
denote the external side force which turned away the automobile



Engineering MECHANICS 285

2. Numerical experiments

In this section, we examine the mathematical model presented by the Eq. (1) for the
dimensionless angles of deviation x1, angular velocity x2 and cross velocity x3.

As mentioned earlier, the automobile constants m, a1, a2 were taken from [8–10]. Their
values for Mercedes-Benz E-320 (T-modelle), Ford Focus and Mercedes-Benz Sprinter (1)
are shown in Table 1. Following [1], the automobile inertance moment I was calculated by
the equation

I = m 	2 , (5)

where 	 is the inertial radius. From the literature [2], we take the approximate values for
the inertial radius 	 = 1.2 . According to [4, 11–13] for T , θ0 and l0 we take the average
values : T = 1 s, θ0 = 10, l0 = 0.1m. The different values of I (for the three car types) are
also shown in Table 1. From [1], for the lateral climb, we can write

K = 1.5 mg , (6)

where K can be K1 or K2.

m [kg] Base [mm] I [Nm s2] K [N]
(L = a1 + a2)

Mercedes-Benz E-320 (T-modelle) 2100 2833 3024 30870
Ford Focus 1500 2615 2160 22050

Mercedes-Benz Sprinter (1) 3700 3000 5328 54390

Tab.1: Values of m, L = a1 +a2, I and K for three make automobiles, i.e., Mercedes-
Benz E-320 (T-modelle); Ford Focus and Mercedes-Benz Sprinter (1)

Let us first investigate the system (1), when the corresponding values for the Mercedes-
Benz E-320 (T-modelle) must hold.

(i) Mercedes-Benz E-320 (T-modelle)

In this case, the corresponding numerical values of the dimensionless parameters A1 to
A8 can be calculated by substituting of the first row values (see Table 1) into (4). As a result,
we obtain

A1 = −1.7585 , A2 = 2.86 , A3 = −0.0063 , A4 = 9.92×10−4 ,

A5 = 2.0525 , A6 = 572.667 , A7 = −0.9081 , A8 = −0.019 ,
(7)

where a1 = a2 = 1.4165m, K2 = 30870N, V = 27.78m/s. Because the mass of this make
automobile noted in Table 1 is averaged one, we choose K = K1 = 29000N. Here we note
that K1 a1 − K2 a2 < 0. In view of the lack of data for parameters α1, α2, χ1 and χ2 we
assume to vary the parameters A1, A4, A6 and A8. Also, we vary the automobile velocity V ,
when the parameters α1, α2, χ1 and χ2 are fixed. All numerical realizations of the system (1)
are accomplished at initial conditions x1 = 0.1, x2 = 0, x3 = 0. Certainly, the equilibrium
state (fixed point) of the system is always different from these conditions.

In Figure 2, the curves of the angles of deviation x1, the angular velocity x2 and the cross
velocity x3 are shown. After 3 or 4 seconds, the angular velocity x2 decreases to zero, and
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the angles deviation x1 and the cross velocity x3 increase to 2.8×10−3 and 0.75, respectively.
In this case, the Routh-Hurwitz conditions for stability

p = A2 + A5 > 0 , (8)

q = A2 A5 − A1 − A3 A7 > 0 , (9)

r = A3 A6 − A1 A5 > 0 , (10)

R = p q − r > 0 (11)

are valid, i.e. the steady state xs
1 = 0, xs

2 = 0, xs
3 = 0 of the system (1) is stable. Here we

note that the conditions (3) or (4) in this case are not valid and steady state of (1) is only
one.

Fig.2: Stable solutions for x1, x2 (a) and x3 (b) at A1 = −1.7585, A2 = 2.86,

A3 = −0.0063, A4 = 9.92×10−4, A5 = 2.0525, A6 = 572.667, A7 = −0.9081,
A8 = −0.019; here, the automobile velocity is V = 27.78 m/s, i.e. 100 km/h

In Figure 3, we illustrate the results of the computations for A1 = −1.7585, A2 = 1.43,
A3 = −0.00315, A4 = 9.92×10−4, A5 = 1.03, A6 = 572.667, A7 = −0.454 and A8 = −0.019.
In this case the automobile velocity is V = 55.56m/s, i.e. 200km/h, and the Routh-Hurwitz
condition for stability (Eq. (11)) is equal to 7.94 . Here, we see that for these values of
parameters A1 to A8 the system (1) has stable solutions, too. As V is increased to 83.34m/s,
i.e. 300km/h, there are stable solutions for x1, x2 and x3. This result is shown in Figure 4.
The condition (11) in this case is equal to 3.95 .

Fig.3: Stable solutions of the system (1) at V = 55.76 m/s, i.e. 200 km/h
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Fig.4: Stable solutions for x1, x2 (a) and x3 (b) at A1 = −1.7585, A2 = 0.9533,

A3 = −0.0021, A4 = 9.92×10−4, A5 = 0.6842, A6 = 572.667, A7 = −0.3027,
A8 = −0.019. Here, the automobile velocity is V = 83.34 m/s, i.e. 300 km/h

The numerical results in Figures 2–4 need additional comments. The behavior of the
system (1) depends on a condition (11), the sign of which, characterizes its stability or
instability. It is seen in Figure 2, 3 and 4 that the behavior of the system (1) is stable,
but amplitudes of x1, x2 and x3 are increased when the automobile velocity is greater. In
other words, when the velocity is greater, the system is closer to boundary of stability. For
example : if V = 100km/h then R = 37.59; if V = 200km/h then R = 7.94, if V = 300 km/h
then R = 3.95 . Here, we note that all numerical simulations in Figures 2–4 were made when
K1 a1 − K2 a2 < 0.

In Figure 5, we fix A2 = 1.43, A3 = −0.00315, A4 = 9.92×10−4, A5 = 1.03, A6 =
= 572.667, A7 = −0.454 and A8 = −0.019 and vary the parameter A1 (i.e. α1). For each A1

we plot the solution of x1. We see that for smaller value A1 = −1.818 (i.e., for a smaller
coefficient α1) the solution faster decrease with respect to these obtained at A1 = −1.7535
and A1 = −1.7502 . Here we note that for these values of parameters A1 the system (1) lies
in the region of stability of its parametric space.

The next Figure 6 shows the change of x1 as parameter A6 (i.e. χ1) changes. In this
case, fixed parameters are A1 = −1.7535, A2 = 1.43, A3 = −0.00315, A4 = 9.92×10−4,
A5 = 1.03, A7 = −0.454, and A8 = −0.019 i.e. the automobile velocity is 200km/h. Here,
we note that the system (1) is also stable.

Fig.5: Three stable solutions for x1 at A1 = −1.818; −1.7535 and −1.7502
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Fig.6: Three stable solutions for x1 at A6 = 552; 562 and 572

Comparing Figures 2–6, we conclude that in all cases the equilibrium state of the sys-
tem (1) is stable. In the other words, when K1 a1−K2 a2 < 0, the behavior of the automobile
is always stable. This conclusion is in accordance with the Theorem proofed in [1].

Let us now describe the cases when K1 a1 − K2 a2 > 0. Here, we consider the examples
for which the system (1) has only unstable solutions, i.e. R (in Eq. (11)) is negative. When
the Routh-Hurwitz condition for stability (11) is negative the steady state of the system (1)
becomes unstable. In order to define the type of stability loss (‘soft’ or ‘hard’) of the steady
state (xs

1 = 0, xs
2 = 0, xs

3 = 0) it is necessary to calculate the so-called first Lyapunov
value [14, 15]. In previous paper [6], we obtain the analytical form of the first Lyapunov
value L1(λ0) on the boundary of stability R = 0 in equation (23) – see Eq. (A.3) in Appendix.
Using (23) from [6], we plot of scale α1, α2 versus L1 or χ1, χ2 versus L1.

Fig.7: Dependence of the first Lyapunov value L1 on the parameters α1, α2 (left
panel) and on the parameters χ1, χ2 (right panel); for other details, see text

In Figure 7 (left panel) L1(λ0) is shown for different values of the bifurcation parameters
α1 and α2 when A2 = 1.3667, A3 = 0.0022, A5 = 0.9809, A6 = 604.953, A7 = 3.71 and
A8 = −0.0238 . Here we note that these numerical values of A2, A3 and A5 to A8 are obtained
at the automobile velocity V = 211km/h. It can be seen that L1(λ0) passes through regions
for which it is negative or positive. Figure 7 (right panel) shows the dependence of the
first Lyapunov value L1(λ0) on the parameters χ1 and χ2. It is evident that L1(λ0) also
passes through regions for which it is negative or positive, i.e. the car’s stability loss can
be reversible (‘soft’) or irreversible (‘hard’). Here we note that in this case (automobile
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Fig.8: The angles of deviation x1 and the angular velocity x2 (left panel) and the
cross velocity x3 (right panel) as function of time when the Routh-Hurwitz
condition for stability R (Eq. (11)) is negative; here A1 = 1.3249, A2 = 1.3667,

A3 = 0.0022, A4 = 1.25×10−4, A5 = 0.9809, A6 = 604.95, A7 = 3.71,
A8 = −0.0238

stability) soft stability loss can be connected with the possibility of the driver to rid of car
crash. For example, after decreasing of the velocity or a good reaction. On the other hand,
in the case of hard stability loss the car crash is always valid.

Figure 8 depicts the case when R is negative (R = −0.0062). The left panel demonstrates
the angles of deviation and the angular velocity time behavior, and the right panel – the
cross velocity time behavior. It is evident that in this case the system (1) has unstable
solutions.

(ii) Ford Focus

Following the same procedure, firstly we investigate the behavior of the system (1) when
K1 a1 − K2 a2 < 0. After substitution of the second row values (see Table 1) into (2), for
the dimensionless coefficients A1 to A8 we can write

A1 = −0.7214 , A2 = 2.24 , A3 = −0.0024 , A4 = 0.0045 ,

A5 = 2.143 , A6 = 598.667 , A7 = −0.3452 , A8 = −0.6667 ,
(12)

where a1 = a2 = 1.3075m, K = K1 = 22050N, K2 = 22600N, V = 27.78m/s.

Figure 9 shows x1, x2 and x3 at V = 27.78m/s and Figure 10 shows x1, x2 and x3 at
V = 55.56m/s. It is important to note here that for V = 27.78 and V = 55.56m/s the
system (1) has stable solutions i.e. the Routh-Hurwitz conditions for stability (8)–(11) are
positive but in second case (V = 55.56m/s) the system (1) is closer to boundary of stability.
For example, at V = 27.78m/s, the Routh-Hurwitz condition for stability R (Eq. (11)) is
24.1083 and at V = 55.56m/s R = 4.1559 .

Figure 11 illustrates the dependence of the first Lyapunov value L1(λ0) on the parameters
α1 and α2 (left panel) and on the parameters χ1 and χ2 (right panel). It should be remarked
that the positive and negative regions take place, i.e. the sign of L1(λ0) changes. In the
other words, if L1(λ0) is positive, then we have hard loss of stability and the system (1) has
irreversible behavior, and if L1(λ0) is negative the reversible (soft loss of stability) behavior
of the system (10) take place, see [6] for details. Here we note that the Routh-Hurwitz
condition for stability R (Eq. (11)) is negative and automobile velocity V is 120km/h and
K1 a1 − K2 a2 > 0.
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Fig.9: Stable solutions for x1, x2 (a) and x3 (b) at A1 = −0.7214, A2 = 2.2413,
A3 = −0.0024, A4 = 0.0045, A5 = 2.143, A6 = 598.667, A7 = −0.3452,
A8 = −0.6667; here, velocity is V = 27.78 m/s, i.e. 100 km/h

Fig.10: Stable solutions for x1, x2 (a) and x3 (b) at V = 55.56 m/s, i.e. 200 km/h

Fig.11: Dependence of L1 on the parameters α1, α2 (left panel)
and on the parameters χ1, χ2 (right panel)

Figure 12 depicts the case when the system (1) has unstable solutions i.e. R is negative.
The left panel demonstrates the angles of deviation and the angular velocity time behavior,
and the right panel – the cross velocity time behavior.
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Fig.12: The angles of deviation x1 and the angular velocity x2 (left panel)
and the cross velocity x3 (right panel) as function of time when
the Routh-Hurwitz condition for stability R (Eq. (11)) is negative;

here A1 = 3.0825, A2 = 1.9566, A3 = 0.0092, A4 = −6.94×10−5,
A5 = 1.6481, A6 = 594.067, A7 = 6.3792, A8 = 0.0663

(iii) Mercedes-Benz Sprinter (1)

Finally, we investigate the behavior of the system (1) when K1 a1 − K2 a2 < 0. After
substitution of the third row values (see Table I) into (2), for the dimensionless coefficients
A1 to A8 we can write

A1 = −0.3998 , A2 = 3.3258 , A3 = −0.0012 , A4 = 0.0053 ,

A5 = 2.1285 , A6 = 594.27 , A7 = −0.178 , A8 = −0.523 ,
(13)

where a1 = a2 = 1.5m, K = K1 = 54390N, K2 = 55000N, V = 27.78m/s.

Figure 13 demonstrates the dependence of the solutions of the system (1) on the automo-
bile velocity V , i.e. when V = 27.78m/s, V = 55.56m/s and V = 77.784m/s. We see that
for larger value V = 77.784m/s the oscillation magnitudes are also larger to those obtained
at V = 27.78m/s and V = 55.56m/s, i.e. for V = 77.784m/s the system (1) is closer to
boundary of stability. Here we note that in these cases the Routh-Hurwitz conditions for
stability are always positive.

Fig.13: Stable solutions for x1 (a) and x3 (b) at V = 27.28 m/s,
V = 55.56 m/s and V = 77.784 m/s
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In Figure 14 (left panel) we show L1(λ0) for different values of the bifurcation parameters
α1 and α2. It can be seen that L1(λ0) passes through regions for which it is negative or
positive. Figure 14 (right panel) shows the dependence of the first Lyapunov value L1(λ0)
on the parameters χ1 and χ2. It is evident that L1(λ0) also passes through regions for
which it is negative or positive. Here, the automobile velocity is V = 225.5km/h and
K1 a1 − K2 a2 > 0.

In Figure 15 the case when the system (1) has unstable solutions i.e. R negative is shown.
The left panel demonstrates the angles of deviation and the angular velocity time behavior,
and the right panel- the cross velocity time behavior.

Fig.14: Dependence of L1 on the parameters α1, α2 (left panel)
and on the parameters χ1, χ2 (right panel)

Fig.15: The angles of deviation x1 and the angular velocity x2 (left panel)
and the cross velocity x3 (right panel) as function of time when
the Routh-Hurwitz condition for stability R (Eq. (11)) is negative;

here A1 = 1.3044, A2 = 1.4357, A3 = 0.0021, A4 = 1.8769×10−5,
A5 = 0.9189, A6 = 591.8378, A7 = 3.6681, A8 = 0.0135

3. Discussion and conclusions

In this paper we consider an idealized mathematical model of the roadway automobile
motion. This model is intended to describe the roadway automobile stability and was
developed by us in [6]. The specific question we attempted to answer is: which parameter(s)
of automobile geometry and quality of the roadway can serve as a reliable predictor(s) for car
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crash? The model equations, represented by Eq. (1), are solved numerically and analyzed
by theory of Lyapunov-Andronov.

The dynamic model (1), formulated in our previous paper [6], as well as related analytical
conditions of stability and first Lyapunov’s value L1, were checked numerically in Section 2
of the present work. Data from [8–10] were used for that purpose, considering three car types
– Mercedes-Benz E 320 (T-modelle), Ford Focus and Mercedes-Benz Sprinter (1). Hence,
one can consider the present work as a natural continuation of [6]. It is seen in Figs. 2–6,
Fig. 9, Fig. 10 and Fig. 13 that when K1 a1 −K2 a2 < 0, motion is always stable (which is in
accordance with theorem for stability of automobile proofed in [1]), regardless of car speed
and values of the coefficients α1, α2, χ1 and χ2. For instance, considering Mercedes-Benz
E 320 (T-modelle), the car is ‘less stable’ under speed of 300 km/h, as compared to its
stability under speed of 100 km/h. In terms of our model, this is linked with the stability
condition R (Eq. (11)), and it is that R = 37.59 under 100 km/h and R = 3.95 under
300 km/h, i.e. we are closer to the stability limit. These results are in accordance with
the theorem proved by Rokard in [1]. Note that the numerical simulations of the effect of
coefficients α1, α2, χ1 and χ2 in this case (K1 a1 −K2 a2 < 0) are performed, using data for
Mercedes-Benz E 320 (T-modelle), only. This is so, since one can find similar results for the
other types of cars, i.e. we have stable solutions, only.

Considering a dynamic point of view, the case when K1 a1−K2 a2 > 0 is more interesting.
(This can be attained for : (i) K1 > K2, a1 = a2; (ii) K1 < K2, a1 � a2; (iii) K1 = K2,
a1 > a2; (iv) K1 > K2, a1 > a2. Our studies concern case (i)). Under such condition,
car motion can be either stable or unstable. On the other hand, unstable motion can be
reversible – soft stability loss, and irreversible – hard stability loss. The character of stability
loss depends on the sign of the first Lyapunov’s value [14–17].

The results found and shown in Fig. 7, Fig. 11 and Fig. 14, illustrate how the sign of L1

changes under fixed speed and varying α1, α2 or χ1, χ2, when R < 0 (i.e. when motion
is unstable). Considering Mercedes-Benz E 320 (T-modelle), the speed of unstable motion
and L1 > 0, is 211km/h. Considering Ford-Focus, it is 120 km/h, while for Mercedes-Benz
Sprinter (1) it is 225.5 km/h (Note that the speed of 225.5 km/h can never be attained in
practice). The important point here is that coefficients α1, α2, χ1 and χ2 are approximately
one and the same for all three types of cars, i.e. car behaviour depends on car characteristics,
only. Our conclusion is that cars with the greatest mass and base attain hard stability loss
(car crash) under higher speeds. This is Mercedes-Benz Sprinter (1) in our case, where
V = 225.5km/h. On the contrary, cars with small mass and base attain more easily (with
lower speed) irreversible stability loss. Such car is Ford Focus here, whose stability loss is
irreversible for a speed of 120 km/h.

Another important result is that, except for speed, car stability depends essentially on
the coefficients α1, α2, χ1 and χ2. For instance, for other values of the coefficients (greater
or smaller than the given ones), the speed for which L1 > 0 would be different from the one,
found here for all three cases. This result is a confirmation of Conclusions 1 and 3 of [5],
namely, that the qualitative behaviour of model (1) depends essentially on the coefficients
α1, α2, χ1 and χ2 which define the sign of L1. For instance, Fig. 9, Fig. 11 and Fig. 15 show
solutions of system (1) under hard stability loss.

In conclusion, we note the following : our results are found on the basis of the investigation
of a basic (qualitative) dynamic model – a model of 1 or 2 degrees of freedom. Hence, our
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basic task is not to compare separate types of cars, but to outline qualitative tendencies,
which car full stability would follow. This means that we assess the essential effect of the
discussed parameters on car qualitative behaviour.

References
[1] Rocard Y.: Mechanical instability: automobiles, airplanes, suspension bridges, Paris, Masson

et Cie, Editeurs, 1954 (in French)
[2] Chudakov E.A.: Theory of automobile, Nauka, Moscow, 1961 (in Russian)
[3] Litvinov A.S., Farobin Ia.E.: Automobile. Theory of the service attribute, Maschinostroene,

Moscow, 1989 (in Russian)
[4] Abadjiev V., Gospodinov P.: Identification of the velocity characteristics of a car crash, Journal

of Theoretical and Applied Mechanics, vol. 29, No 4, pp. 3–12, 1999
[5] Abadjiev V., Gospodinov P., Abadjieva E.: Car crash passenger place identification, Archives

of Transport, vol. 13, No 1, pp. 5–14, 2001
[6] Nikolov S., Bachvarov S.: An analytical study of the roadway automobile stability, System

Analysis-Modelling-Simulation (SAMS), vol. 42, No 8, pp. 1271–1281, 2002
[7] Orosz G., Wilson R., Krauskopf B.: Global bifurcation investigation of an optimal velocity

traffic model with driver reaction time, Phys. Rev. E, vol. 70, pp. 026207-11, 2004
[8] Daimler-Chrysler AG, Stuttgart MKP/K 6701·0507·00-04/0701 Printed in Federal Republic of

Germany, pp. 56–57
[9] Daimler-Chrysler AG, Stuttgart VT/KG 633·11301·01-01/0301 Printed in Federal Republic of

Germany, 24
[10] Ford Motor Company Limited (March 2001), PN 172501/0103/7.225m/Engex LHD, Printed

by Mairs Graphische Betriebe ·D-73760 Ostfildern, Federal Republic of Germany, Published
by Ford Automotive Operations – Europe, Marketing Communications, 30

[11] Mitschke M.: Dynamik der Kraftfahrzeuge, Band A: Antrieb und Bremsung, Springer-Verlag,
Berlin, 1995

[12] Mitschke M.: Dynamik der Kraftfahrzeuge, Band B: Schwingungen, Springer-Verlag, Berlin,
1997

[13] Mitschke M.: Dynamik der Kraftfahrzeuge, Band C: Fahrverhalten, Springer-Verlag, Berlin,
1990

[14] Bautin N.N.: Behavior of dynamical systems near the boundary of stability. Nauka, Moscow,
1984 (in Russian)

[15] Nikolov S.: First Lyapunov value and bifurcation behavior of specific class of three-dimensional
systems, Int. J. of Bifurcation and Chaos, vol. 14, No 8, pp. 293–308, 2004

[16] Nikolov S., Petrov V.: New results about route to chaos in Rossler system, Int. J. of Bifurcation
and Chaos, vol. 14, No 1, pp. 2811–2823, 2004

[17] Andronov A., Witt A., Chaikin S.: Theory of Oscillations, Addison-Wesley, Reading, MA,
1966

[18] Shilnikov L., Shilnikov A., Turaev D., Chua L.: Methods of Qualitative Theory in Nonlinear
Dynmics, Part II, World Scientific, Singapure, 2001

[19] Panovko Y., Gubanova I.: Stability and Oscillations of Elastic Systems, Consultant bureau,
NY, 1965

[20] Litvinov A.: Automobile Stability and Control, Maschinostroene, Moscow, 1971 (in Russian)

Appendix

I. Model

From the fundamental (natural) point of view, the external side force F and the external
moment C which changing the direction of the automobile wheels are different from zero.
This hypothesis follows from experimental works [2, 3]. Because of that we propose the
external side force F (θ) and external moment C(θ) to be polynomial functions, which we
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can determine them by using Taylor series. According to [2, 3, 19, 20], we assume for F (θ)
and C(θ) the form

F (θ) = χ1 θ + χ2 θ3 ,

C(θ) = α1 θ + α2 θ3 ,
(A.1)

where χ1, χ2 are constants having the dimension of force and α1, α2 are constants with
moment dimension.

II. Calculation of the first Lyapunov value

In the our previous paper [6], following [14], we calculate the first Lyapunov value (this
is not Lyapunov exponent-see appendix in [16] or for a detailed discussion (Andronov et
al. 1966, Shilnikov et al. 2001, Nikolov 2004) at the boundary of stability region R = 0
of the system (1). Generally, in accordance with Lyapunov-Andronov theory we have :
(i) the sign of Lyapunov’s value determines the character (stable or unstable) of equilibrium
state at R = 0; (ii) the character of equilibrium state, at R = 0 qualitatively determines
the reconstruction of phase space (including stability or instability of limit cycle) at the
transition from R < 0 to R > 0.

In the case of three first-order nonlinear differential equations, this value can be deter-
mined analytically by the formula in [14]

L1(λ0) =
π

4 q
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(A.2)

where λ0 is defined as a value of α1, α2, χ1, χ2, K1, K2, a1, a2 and car velocity V for
which the relation R = 0 takes place. The coefficients An

ij and An
ijk (i, j, k, n = 1, 2, 3) are

defined by corresponding formulas presented in [14]. For the system (1) An
ij = 0. Thus,

after accomplishing some transformations and algebraic operations for the first Lyapunov
value L1(λ0) we obtain :

L1(λ0) = − 3π

4
√

q

(
α2

12 + α2
13

)×
× A1(A1 A8 − A4 A6) + p [A4(A2 A6 − A1 A7) + p q A8]

(p2 + A1) (A2 A6 − A1 A7) +
1

A3
(p A5 − A1) + p A6 (q − A1)

,
(A.3)

where the coefficients α12 and α13 are defined also in [14] and for the system they are

α12 = −A2 , α13 = −p
√

q = −(A2 + A5)
√

q . (A.4)
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