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ON THE MODELLING OF STEADY GENERALIZED
NEWTONIAN FLOWS IN A 3D CORONARY BYPASS

Jan Vimmr, Alena Jonášová*

Blood’s non-Newtonian behaviour is investigated in an idealized coronary 3D bypass
model, which includes both the proximal and distal parts of the occluded native
artery and the connected end-to-side bypass graft. Considering the blood to be a ge-
neralized Newtonian fluid, the shear-dependent viscosity is given by two well-known
macroscopic non-Newtonian models (the Carreau-Yasuda model and the modified
Cross model). Both non-Newtonian steady flow fields are analyzed with regard to
the bypass geometry and are compared with the case of the Newtonian fluid. In order
to perform all numerical simulations, we developed an incompressible Navier-Stokes
solver based on the pseudo-compressibility approach and on the cell-centred finite
volume formulation of the central explicit fourth-stage Runge-Kutta time stepping
scheme defined on unstructured hexahedral computational grid.
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1. Introduction

The investigation of bypass hemodynamics is one of the topical themes in biomechanics
because of the need to better understand the influence of local hemodynamics on the vascular
wall in order to explain and also to predict a possible failure of implanted bypass grafts.
The damage of blood cells, thrombus formation and development of intimal hyperplasia at
the distal anastomosis are the main consequences, which result from the unnatural bypass
geometry applied in the high-pressure bloodstream.

Until now quite many studies dealt with the problem of bypass hemodynamics, whereas
it is possible to separate their objectives into two categories. The first one investigates
the influence of various geometric and flow parameters on the resulting blood flow. One
of the studies, [7], considered the steady blood flow through an occluded bypass model for
various inlet Reynolds numbers and junction angles. Similar problem with the exception of
stenosed native artery was introduced in [1], where one of the main objectives was to state
the importance of so-called distance of grafting on the blood flow downstream from the
artery narrowing. The second category of published studies is devoted to the improvement
of the anastomosis geometry, which is known to be connected with the development of
intimal hyperplasia in implanted bypass grafts. For example, the connection between the
distal native artery and the bypass graft in the form of autologous vein cuff (Miller cuff),
was already clinically tested on several patients with interesting conclusions. In order to
support the experiments, the benefits of this surgical technique were discussed in several
studies, e.g. [5] and [9].
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Concerning the problem of blood flow through a complete idealized 3D bypass model with
either occlusion or stenosis, we performed several numerical simulations in the past, [10],
whereas we assumed the blood to be a Newtonian fluid. Since the consideration of shear-
dependent viscosity in connection with bypass hemodynamics is one of the less investigated
problems, the main objective of the study presented here is to improve our existing compu-
tational model with the consideration of blood’s non-Newtonian behaviour.

Regarding the wide variety of shear-thinning viscosity models used for human blood,
one of the most often applied non-Newtonian model is probably the power-law model as is
shown in [4]. The authors modelled an unsteady blood flow through the distal part of bypass
with results implying a significant role of bypass/anastomosis geometry. Another study, [2],
investigated the blood’s non-Newtonian effects in a bypass model with 75% stenosis applying
the Carreau-Yasuda model with regard to different grafting distances and various inlet flow
rates.

In the last ten years, the growing popularity of non-power-law viscosity models in
connection with numerical simulation of blood flow through medium-sized arteries, was
noted. Therefore, this article introduces the application of two well-known macroscopic non-
Newtonian models, the Carreau-Yasuda model and the modified Cross model, in comparison
to the Newtonian flow. The new original numerical results obtained by own developed com-
putational software, represent the investigation of steady non-Newtonian blood flow through
an idealized occluded 3D bypass model, which compared to the common practice, consists
of both proximal and distal parts of the native artery and of the connected end-to-side by-
pass graft. In order to approach this problem adequately, physiological parameters (artery
diameter and inlet Reynolds number) corresponding to the coronary artery were applied.

2. Problem formulation

Compared to the usual practice to model only the distal part of the bypass, in
this study, we present a complete idealized 3D bypass model, which includes both the
proximal and distal parts of the damaged native artery and the connected end-to-side
bypass graft with the junction angle 45◦. The modelled bypass corresponds to the in me-
dicine applied coronaro-coronary bypass with following average physiological parameters :
Dartery = 0.0033 m, Reinlet = 230. The graft diameter is set equal to the diameter of the
artery, i.e. Dartery = Dgraft, whereas the length of native artery is L = 0.05 m. In prac-
tice, the most of applied bypass grafts are either venous or synthetic with negligible elastic
properties. Therefore, we assume the model walls to be impermeable and rigid.

The flow restriction inside the native artery, which in our case is represented by an oc-
clusion, is modelled as a wall blocking the direct flow through the artery. In Fig. 1 (left),

Fig.1: Computational grid with marked artery occlusion modelled as
a wall (left); computational grid in the cross-section (right)
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the applied unstructured hexahedral computational grid is shown including the marked oc-
clusion position. For the purpose of obtaining hexahedral cells in the entire bypass model,
the software Altair Hypermesh was used, whereas much attention was paid to the needed
refinement in the wall vicinity, Fig. 1 (right), in order to resolve the boundary layer with
sufficient accuracy. Although such computational grid may be very useful for the later ana-
lysis of recirculation zones by the bypass walls, it involves relatively complex generation in
the anastomosis region considering the condition in the form of hexahedral cells. Therefore,
a partly manual technique in combination with the algorithms of the software Altair Hyper-
mesh had to be applied in order to achieve the grid connection between the native artery
and the bypass graft.

Blood’s rheological properties are influenced by many factors such as hematocrit and
plasma protein concentration. Since it is impossible to consider the effect of all of them in
a numerical simulation and since our investigation is restricted to blood flow in medium-sized
arteries, we describe the fluid viscosity only as the function of shear rate. For this purpose,
we apply two well-known macroscopic viscosity models, which enable us to model the blood’s
non-Newtonian behaviour by low shear rate values :
• the Carreau-Yasuda model

η(γ̇)(1) = η(1)
∞ +

(
η
(1)
0 − η(1)

∞
)[

1 +
(
λ(1)γ̇

)m]n−1
m

, (1)

• the modified Cross model

η(γ̇)(2) = η(2)
∞ +
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)b]−a
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where λ(k), k = 1, 2 is the characteristic relaxation time, η
(k)
0 and η

(k)
∞ , k = 1,2 are the zero

shear viscosity and the infinite shear viscosity, respectively. The remaining parameters m,
n, a, b are used in order to control the transition to the lower Newtonian range. In our
numerical simulations, we applied following positive parameters :

• η
(1)
∞ = 3.45×10−3 Pa s, η

(1)
0 = 56×10−3 Pa s, λ(1) = 1.1902 s, m = 1.25, n = 0.22, see [6];

• η
(2)
∞ = 3.5×10−3 Pa s, η

(2)
0 = 160×10−3 Pa s, λ(2) = 8.2 s, a = 1.23, b = 0.64, see [8].

Fig.2: Dependence of blood viscosity on shear rate described by the
Carreau-Yasuda model and the modified Cross model
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According to the source articles, all parameters mentioned here were derived from two
independent viscometric experiments using dissimilar blood samples. In order to distin-
guish between both non-Newtonian models, the dependence of viscosity on shear rate is
displayed in Fig. 2 by applying the given parameters. For comparison, the solid line in the
graph represents the viscosity of the Newtonian fluid, which in this study was set equal to
η = η

(1)
∞

.= η
(2)
∞ . From the obtained curves, we can deduce that for higher values of shear

rate γ̇ (100–200s−1) the values of molecular viscosity η(γ̇) evaluated by either the Carreau-
Yasuda model or the Cross model are almost equal to the viscosity of the Newtonian fluid.
Considering the relatively high inlet Reynolds number corresponding to the coronary artery
(Reinlet = 230), it is possible to assume that the differences between the non-Newtonian
and Newtonian flow fields in our case will be probably very small. On the contrary by low
shear rates, the graph implies significant viscosity differences between the Newtonian and
non-Newtonian fluids, which should be notable in the flow fields consisting of recirculation
and low-velocity zones.

3. Mathematical model of steady incompressible generalized Newtonian fluid
flow

In this study, the 3D blood flow in large and medium-sized arteries is considered to be an
isothermal laminar flow of an incompressible fluid with the density � = 1050 kgm−3 and with
the constant molecular viscosity η = 3.45×10−3 Pa s in the case of Newtonian flow or with
the shear-dependent molecular viscosity η(γ̇)(k), k = 1,2 given either by the Carreau-Yasuda
model (1) or by the modified Cross model (2), respectively, in the case of non-Newtonian flow.
Applying the Einstein’s summation convention, the governing equations for incompressible
generalized Newtonian flow in a bounded computational domain Ω ⊂ �

3 and in a time
interval (0, T ), T > 0 constitute the non-linear system of the incompressible Navier-Stokes
(NS) equations written in non-conservative form

∂vi
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= 0 , (3)
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where i, j = 1, 2, 3. For solving the steady flow problem, the pseudo-compressibility me-
thod [3] is applied. Hence, the system of the incompressible NS equations (3)–(4) can be
rewritten in the conservative pseudo-transient compact flux vector form as

∂w
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+
3∑

s=1

∂FI
s(w)
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=
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∂FV
s (w)
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in Ω × (0, T ) . (5)

The vector w of conservative variables and the inviscid and viscous flux vectors FI
s(w) and

FV
s (w), respectively, are defined as
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4 ,
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Here vs are the Cartesian components of the velocity vector v = (v1, v2, v3)T in the directions
ys, δij is the Kronecker delta, p is the pressure, P = p/� and the parameter β represents the
pseudo-speed of sound of the system (5) transformed by the pseudo-compressibility method.

According to Reinlet = Uref Dref �ref/ηref = 230, where ηref ≡ η = η
(1)
∞

.= η
(2)
∞ =

= 3.45×10−3 Pa s, Dref ≡ Dartery = 0.0033 m and �ref ≡ � = 1050 kgm−3, the reference
velocity is evaluated as Uref ≡ Ūinlet

∼= 0.229 ms−1, whose value serves for the determination
of parameter β. In all performed computations, we set β = 2.5 Ūinlet

∼= 0.573 ms−1, which
approximately corresponds to β = max(

√
v2
1 + v2

2 + v2
3) in Ω ⊂ �

3. Our previous experi-
ences with the application of the pseudo-compressibility method for the modelling of bypass
hemodynamics confirm the suitability of such setting, which showed positive influence on
the convergence history to the steady state solution.

In order to evaluate the shear-dependent viscosity η(γ̇) in (8) for both non-Newtonian
models, it is necessary to determine the scalar shear rate γ̇ using the definition

γ̇ = 2
√

DII , (9)

where DII denotes the second invariant of rate of deformation tensor D =
(
∇v + (∇v)T

)
/2.

The second invariant DII is a scalar measure with suitable invariance properties with respect
to the reference coordinate system and it can be expressed for the incompressible flow
(trD = 0) as

DII =
1
2

trD2 =
1
2

dij dij , (10)

where dij are the components of rate of deformation tensor D given by
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1
2

(
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∂vj
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)
, i, j = 1, 2, 3 . (11)

4. Numerical method

To solve the pseudo-transient system (5) of the incompressible NS equations, the cell-
centred finite volume formulation of the central explicit fourth-stage Runge-Kutta (RK)
time-stepping scheme defined on unstructured hexahedral computational grid, Fig. 1, is ap-
plied. In this numerical scheme, the pseudo-time has the role of iteration time with no
physical significance. The applied computational grid consists of non-overlapping hexahe-
dral finite volumes Ωi with the boundary ∂Ωi, i ∈ I, where I = {1, 2, . . . , N} is the index set.
The finite volumes Ωi cover the whole computational domain Ω ⊂ �

3, so that Ω =
⋃

i∈I Ωi.
The boundary of hexahedral finite volume Ωi is ∂Ωi =

⋃6
m=1 Γim, where Γim are the quadri-

lateral faces of Ωi. According to this notation, the algorithm of the RK time-stepping scheme
may be written as
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i ,
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i = w(0)

i − αr ΔtRw(r−1)
i + Dw(0)

i for r = 1, 2, 3 ,
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i = w(0)

i − Δt

6

(
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i + 2Rw(1)
i + 2Rw(2)
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i

)
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i ,

wn+1
i = w(4)

i ,

(12)

where α1 = 0.5, α2 = 0.5, α3 = 1, wn
i is the approximation of the vector w over the finite

volume Ωi, i ∈ I at the pseudo-time level n and D is a dissipative operator. This scheme is
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fourth-order accurate in time. The stationary residual Rw(r)
i is defined as

Rw(r)
i =

1
|Ωi|

(
6∑
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)
, r = 0, 1, 2, 3 ,

where |Ωi| denotes the volume of the hexahedral cell Ωi and Sm
i , m = 1, . . . , 6 are the

outer vectors normal to the quadrilateral faces Γim of the finite volume Ωi. The total
inviscid numerical fluxes F I
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)
through the quadrilateral faces Γim,

m = 1, . . . , 6 are evaluated at the cell faces as the average of the values from two neighbouring
cells. For example, for the neighbouring cells Ωi and Ωj , which share a quadrilateral face
Γi1 (for m = 1) so that Γi1 = ∂Ωi∩∂Ωj , the Cartesian component (FI
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For the determination of the total viscous numerical fluxes FV
m =

(
(FV

1 )m, (FV
2 )m,(FV

3 )m

)
through the quadrilateral faces Γim, m = 1, . . . , 6 the finite volume version of central diffe-
rences is applied using dual cells in the form of octahedrons. For more details see e.g. [10].

In order to stabilize the numerical convergence process, an artificial viscosity term Dw
has to be added to the numerical computation at each stage of the RK scheme. To save
computational time, the artificial dissipation term is evaluated only once at the pseudo-time
level n. With regard to the possibility that the added dissipation may negatively influence
the shear-dependent viscosity of the fluid, the choice of a suitable artificial viscosity is crucial.
In this study, we have chosen an artificial dissipation term

DP =
ε d2

Δt

(
∂2P

∂y2
1

+
∂2P

∂y2
2

+
∂2P

∂y2
3

)
, (13)

which is added to the continuity equation (to the first row of the system (5)). The artificial
viscosity parameter ε ∈ �

+ is a small constant (in our computations ε ∼= 10−8), d denotes the
maximum body diagonal of the hexahedral finite volume Ωi, i ∈ I and Δt is the numerical
integration time step. The second derivatives of P in (13) are computed using central
differences of the second order accuracy.

5. Results

Regarding the objective of this study to investigate the blood’s non-Newtonian behaviour
in an occluded coronary 3D bypass model, Fig. 1, and to compare the obtained numerical
results with the Newtonian flow, we prescribed the same steady boundary conditions for all
three performed computations :
– at the inlet a fully developed velocity profile characterized by the inlet Reynolds number

corresponding to the coronary artery (Reinlet = 230)

v1(r) = 2 Ūinlet

[
1 −

(
2 r

Dartery

)2
]

, where r =
√

y2
2 + y2

3 ,

v2 = 0 ms−1 ,

v3 = 0 ms−1 ;

– at the outlet a constant pressure stated as the average arterial pressure (p2 = 12 kPa)
– at the walls the non-slip boundary condition.
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Fig.3: Distribution of shear rate γ̇ at the longitudinal section through the
occluded coronary 3D bypass model (Carreau-Yasuda model)

Fig.4: Distribution of shear rate γ̇ at the longitudinal section through the
occluded coronary 3D bypass model (Cross model)

Fig.5: Distribution of molecular viscosity η(γ̇)(1) at the longitudinal section through
the occluded coronary 3D bypass model (Carreau-Yasuda model)

Fig.6: Distribution of molecular viscosity η(γ̇)(2) at the longitudinal section through
the occluded coronary 3D bypass model (Cross model)

According to the definitions of the Carreau-Yasuda model (1) and the Cross model (2),
the evaluation of the molecular viscosity is dependent on the determination of shear rate
inside the considered bypass model with occluded native artery. For a better understanding,
the resulting distributions of shear rate γ̇ at the longitudinal section of the 3D bypass model
in the case of the Carreau-Yasuda model and of the Cross model are shown in Fig. 3 and
Fig. 4, respectively. According to our expectations, it is visible that the low values of shear
rate are localized mainly around the occlusion, where the fluid is mostly motionless, and
inside the main stream. The value range in both figures had to be lowered due to extremely
high values of shear rate (around 3×103 s−1) in the regions of both proximal and distal
anastomoses. On the one hand very high values of shear rate and on the other hand values
almost equal to zero are the main reason for the unsuitability of the standard power-law
model in our case. The standard power-law model is known to have problems with high
gradients and infinite viscosity predictions. Therefore, the selection of the Carreau-Yasuda
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model and the Cross model, which both have lower and upper viscosity limits, seems like the
optimal solution regarding the non-Newtonian blood flow through our considered coronary
bypass model.

Considering the reached value range of shear rate γ̇, which is mostly restricted to values
around 150 s−1 for both non-Newtonian flows, see Fig. 3 and Fig. 4, the computed distri-
bution of the molecular viscosities for the Carreau-Yasuda model, Fig. 5, and for the Cross
model, Fig. 6, do not differ very much from each other inside the occluded coronary bypass
model. In reference to the graph in Fig. 2, where the dependence of molecular viscosity on
shear rate is shown, it is apparent that by high values of shear rate the viscosity of both non-
Newtonian models is very similar and almost equal to the viscosity of the Newtonian fluid.
The fact is also supported by the resulting flow fields of both the Carreau-Yasuda model and
the Cross model in comparison with the Newtonian flow as is visible in Tab. 1. In the table,
the velocity isolines are shown at several selected cross-sections for all three considered cases.
For the position of the selected cross-sections along the occluded coronary bypass model,
see Fig. 7. Another possibility to compare the results is in the form of velocity profiles, which
are shown in Fig. 8 for the Newtonian fluid and in Fig. 9 and Fig. 10 for the non-Newtonian
fluids. Once again the differences between the Newtonian and non-Newtonian flows are
rather insignificant.

Fig.7: Positions of selected cross-sections along the occluded 3D bypass model

Fig.8: Velocity profiles at several cross-sections in the occluded
coronary bypass for the Newtonian flow

Fig.9: Velocity profiles at several cross-sections in the occluded coronary
bypass for the non-Newtonian flow (Carreau-Yasuda model)
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cross-section non-Newtonian fluid Newtonian fluid non-Newtonian fluid
(Carreau-Yasuda model) (Cross model)

A

B

C

D

E

F

G

H

Tab.1: Velocity isolines at selected cross-sections marked in Fig.7
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Fig.10: Velocity profiles at several cross-sections in the occluded coronary
bypass for the non-Newtonian flow (Cross model)

Fig.11: Wall shear stress τW – a) Newtonian flow, b) non-Newtonian flow
(Carreau-Yasuda model), c) non-Newtonian flow (Cross model)

Even though the obtained flow fields from both non-Newtonian models seem relatively
similar with the case of Newtonian flow, the values of shear stress at the model walls demon-
strate a significant increase at the proximal and distal anastomoses and inside the bypass
graft for both generalized Newtonian models compared to the Newtonian flow, Fig. 11.

6. Conclusions

In order to investigate the blood’s non-Newtonian behaviour in an idealized occluded
coronary 3D bypass model, several numerical computations were performed with the appli-
cation of two well-known macroscopic non-Newtonian models (the Carreau-Yasuda model
and the Cross model). In our case, the use of the standard power-law model was avoided
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due to extremely high and low values of shear rate, which for the power-law model may lead
to problems with high gradients and infinite viscosity predictions at both anastomoses and
around the occlusion. Compared to other studies, which also dealt with the non-Newtonian
bypass hemodynamics, a complete bypass model was considered applying average physio-
logical parameters connected with coronary arteries.

The obtained numerical results showed small differences in the velocity distribution by
comparing the non-Newtonian flows with the Newtonian one. The in sense of human biome-
chanics high Reynolds number for the blood flow through a coronary artery (Reinlet = 230),
is probably the main reason for relatively high shear rates leading to small viscosity increase
in the entire bypass model and therefore, to small changes in the resulting flow field. On the
other hand, the distribution of wall shear stress for the case of considered non-Newtonian
flows demonstrated significant dissimilarities at the graft walls and at both anastomoses in
comparison with the Newtonian flow. Considering the undeniable importance of wall shear
stress as one of the main hemodynamical factors by the analysis of bypass hemodynamics
in connection with the late graft failure, the obtained values indicate a significant role of
blood’s non-Newtonian behaviour even in medium-sized arteries such as the coronary artery.
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