Engineering MECHANICS, Vol. 15, 2008, No. 2, p. 115-132 115

AN EFFECTIVE SOLUTION
OF THE COMPOSITE (FGM’S) BEAM STRUCTURES

Justin Murin, Vladimir Kutig*

The additive mixture rules have been extended for calculation of the effective longitu-
dinal elasticity modulus of the composite (Functionally Graded Materials — FGM’s)
beams with both the polynomial longitudinal variation of the constituent’s volume
fraction and polynomial longitudinal variation of the constituent’s elasticity modulus.
Stiffness matrix of the composite Bernoulli-Euler beam has been established which
contains the transfer constants. These transfer constants describe very accurately
the polynomial uni-axially variation of the effective longitudinal elasticity modulus,
which is calculated using the extended mixture rules.

The mixture rules have been extended for calculation of the effective elasticity
modulus for stretching and flexural bending of the layer-wise symmetric composite
(FGM'’s) sandwich beam finite element as well. The polynomial longitudinal and
transversally symmetric layer-wise variation of the sandwich beam stiffness has been
taken into the account. Elastic behaviour of the sandwich beam will be modelled by
the laminate theory. Stiffness matrix of such new sandwich beam element has been
established. The nature and quality of the matrix-reinforcement interface have not
been considered. Four examples have been solved using the extended mixture rules
and the new composite (FGM’s) beam elements with varying stiffness. The obtained
results are evaluated, discussed and compared.

Key words: composite beam finite element, sandwich beam, functionally graded ma-
terials, mixture rules

1. Motivation

Composite structure elements, like the laminate, sandwich, or FGM’s beams with the
simple or double symmetric cross-sections are very important in engineering applications.
Macro-mechanical modelling and analysis of the composites are based on the homogenisation
of material properties. Micro-mechanical modelling leads to a correlation between properties
of the constituents and the average effective properties of composite. Mixture rules are used
in the engineering applications for the derivation of average material properties. These rules
of mixture are based on the statement that the composite longitudinal property (Young’s
modulus, Poisson’s ratio, coefficient of thermal and electrical conduction) is the sum of the
properties of each constituent multiplied by its volume fraction. To increase the accuracy of
the composite material properties calculation, new homogenisation techniques and improved
mixture rules have been applied (for example [1, 2, 3]).The multiscale computation represents
the most actual trend in the homogenisation [4, 5].

In many publications, for example [6], the constant volume fractions and material proper-

ties of the composite constituents in the whole composite beam have been considered. The
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similar consideration is made for sandwich beams, where the constant properties in each
layer were assumed. But in several current papers, for example in [7], new beam finite ele-
ments for static and dynamic analyses of beam structures with varying thermal and elastic
properties along the beam thickness has been presented. To the best of author’s knowl-
edge, no finite element formulation is available in the literature for FGM beam with either
longitudinal or with the both longitudinal and transversal variation of material properties.

The main topic of this contribution lies in extension of the mixture rules for deriving
of the effective longitudinal elasticity modulus of composite beam with varying stiffness.
Firstly, a longitudinal polynomial variation of volume fractions and elasticity modulus of
the composite constituents will be considered. Secondly, both longitudinal and symmetric
transversal layer-wise variation of the above-mentioned material parameters will be assumed.
The elastic behaviour of this sandwich beam will be modelled by the laminate theory. The
nature and quality of the matrix-reinforcement interface have not been taken into the ac-
count. Four numerical examples have been solved using the extended mixture rules and
the new FGM beam elements with varying stiffness. The analysis results will be evaluated,
discussed and compared with those obtained using the beam and solid finite elements of the
FEM-program ANSYS [8], where a very fine mesh of these elements with varying material
properties had to be used.

2. Derivation of an effective longitudinal elasticity modulus

The 2D Bernoulli-Euler beam finite element of composite or FGM’s is depicted in Fig-
ure 1. The material of the composite beam consists of the matrix and the fibres. The
FGM of such a beam element consists of two or more constituents that have been built
together by powder metallurgy, for example. Variation of the material properties can be
caused by the varying percentage (volume fraction) of constituents and/or by variation of
their material properties (which is caused by varying temperature field, for example). Then,
the new materials will have graded properties in spatial direction. Longitudinal variation
of the volume fractions and longitudinal variation of the elasticity modulus of constituents
will be assumed in this chapter. The material properties will be assumed constant along
the beam width and depth. A constant cross-sectional area can have various geometries but
it has to be symmetric to the bending (x-y) plane. The symmetric transversal layer-wise
stiffness variation of the sandwich beam element will be assumed in the part 3 of this paper.
Longitudinal variation of the stiffness of layers will be considered by this sandwich beam
element, as well.

2.1. Composite beam with uni-axially varying volume fractions

We assume constant values of the elasticity moduli of the fibres and the matrix (or the
two FGM constituents) in the beam element: Ef = const.; Fy, = const.. The fibre volume
fraction ve(z) is chosen as a polynomial function of x:

ve(z) = 1 — vm(2) = vg () = Vg5 (1 +) nuwe x"“) : (1)

k=1
The matrix volume fraction vy, (z) is then

Um (2) = 1 — v¢(x) = Vmi Ny (T) = Vg (1 + vamk x"“) (2)

k=1
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Fig.1: Composite beam element with longitudinal variation of volume
fractions and elasticity moduli of the constituents

where vg; and vy,; are the fibre and the matrix volume fractions at node i, respectively. 7y¢(x)
and 7ym(2) are the polynomial of fibre and matrix volume fractions variation, respectively.
The constants 7ygx and Nymk, (k= 1,...,7), and the order r of these polynomials depend
on the variation of the fibre and the matrix volume fractions. The effective longitudinal
elasticity modulus Fy,(x) can be derived using the extended additive mixture rule as

Er(x) = ve(x) Ef + v (x) By - (3)
After some manipulation we get
Ev(z) = Evi g, (z) (4)
where Ep; = vy Er + (1 — vg;) By is the effective elasticity modulus at node 4, and

r r
k k
Ef Vf; Z Tivfk T + Em VUmsi Z Thvmk T
k=1 k=1

o ()

NEL (‘T) =1+
is the polynomial of the effective longitudinal elasticity modulus variation.

Example 1:

Now we consider a cantilever composite beam loaded by axial and lateral forces FF = 1N
(Figure 2). The material of this beam is a mixture of the matrix (epoxy — with the elas-
ticity modulus E,, = const. = 3GPa) and fibres (E-glass — with the elasticity modulus
E¢ = const. = 72.4GPa). The varying fibre volume fraction (1) is chosen as a quadratic
polynomial

ve(z) =0.5(140.92 — 0.42?) .
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The varying matrix volume fraction (2) was then obtained as (Figure 3A)
vm(2) =0.5(1—0.92 4 0.42%) .
From (3) we get the polynomial variation of the effective longitudinal elasticity modulus (4)
Er(z) = 37.7(1+0.8284 2 — 0.3682 2°%) [GPa] ,
where Er,; = 37.7GPa and Er; = 55.05 GPa (Figure 3B).
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Fig.3: Components volume fractions (A), effective elasticity modulus (B)
The cross-section is a square (0.05x0.05m) with an area of A = 0.0025m?, [ =
= 5.2083x10""m?* is the quadratic area moment of inertia. The length of the beam is
L=1m.
The axial and transversal displacements have been obtained from the local linear elastic
(Bernoulli-Euler) beam finite element stiffness relation [9] that has now the following form
for the FGM beam

where ¢ = FEp;I/(bogibyg — bsgrbyy;) is the bending stiffness constant.

r Fr; A FEr,; A T
= 0 0 - 0 0
dyag dyam R
0 cbhpr cblhpr 0 —cbhp ¢ bagr Z’ R"
? y
0 cbigp ¢ (L byg—bskr) 0 —c by ¢bamr wi | _ z
Er A Er A || F
-k 0 0 L 0 0 1 T
dyag dyag vi
0 —cbhpr —cblpy 0 cbhpr —cbagr ¥i 0
L0 cbagr cbsgr 0 —cbagr ¢ (L bapr —bsE1) |

The transfer

constants by, ngI, bopr and bsgr, which can be calculated using a simple numerical al-
gorithm [10,11], depend on the cross-sectional characteristics and effective longitudinal
elasticity modulus variation.
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A vector of unknown parameters contains displacements in x direction u;, u;, displace-
ments in y direction v;, v; and rotations around z axis ¢; and ;. The right-hand side of
this relation represents axial and transversal forces, and in-plane moments (external loads
at node j and reactions at node ¢). Figure 4 shows axial displacements and strains of the
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Fig.4: Axial displacements (A) and strains (B)

beam caused by the axial force F'. As it can be seen (Figure 4), their dependence on z is
non-linear. The maximal axial displacement is u; = 0.83135x10~® m and the maximal axial
strain is e; = 1.0610x10~8. The average axial stress is equal to 400 Pa and it will be constant
along the beam length. Figure 5 shows the deflection of this beam caused by the lateral
force F. The deflection and the rotation at the free beam end are v; = —1.4668x10~° m and
;= —2.1199x107° rad respectively. The reactions at node i satisfy fully the equilibrium
equations. The same task has been solved with the finite element BEAM3 (ANSYS [8]),
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Fig.5: Deflection curve of the cantilever beam
with varying volume fractions

where the number of elements has been increased. When the whole beam was divided into
200 elements, the analysis results were in good agreement with the results obtained with
only one new finite element. The average Young’s modulus of each BEAM3 element has been
stated from the effective elasticity modulus Ep,(z). The ANSYS analysis results are: maxi-
mal value of the axial displacement (caused by axial force) at the free end of the beam has the
value of u; = 0.83135x107® m; the maximal value of axial strain at the clamped end of this
beam is g; = 1.0588x10~%; the maximal deflection (Figure 5) and rotation (caused by the
vertical force) at the free beam end are v; = —1.4641x10~%m and p; = —2.1196x10~° rad
respectively. It can be seen that the axial displacements, the strains and the deflection curve
are in a very good agreement with those depicted in Figure 4 and 5, if a very fine mesh of
the BEAM3 element has been used.
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2.2. Composite beam with uni-axially varying elasticity moduli of the
constituents

Let us consider constant values of the fibre and the matrix volume fractions: vy = const.;
vm = const.. The fibre elasticity modulus F¢(z) and the matrix elasticity modulus Ey,(x)
are chosen as polynomial functions of x:

E¢(z) = Ey;nee(x) = By (1 + Z NEtk Ik) ; (6)

k=1

k=1

Ey; and Ey,; are the fibre and the matrix elasticity moduli at node i, respectively. nge(z) is
the polynomial of fibre elasticity modulus variation. Its constants ngg, where k =1,... | r,
and order r of this polynomial depend on the fibre elasticity modulus variation. ngm, () is the
polynomial of matrix elasticity modulus variation. The constants ngmg, where k =1,... s,
and the order s of this polynomial depend on the matrix elasticity modulus variation. The
effective longitudinal elasticity modulus is

EL(x) = vt Ee(z) 4+ v Em () . (8)

Similarly to (4), we can write
Ey(x) = ELing, (z) 9)

where Er; = ve E; + (1 — v¢) En; is the effective elasticity modulus at node 4, and

™ S
Egive > nuek 2 4+ Emi Um Y. NEmk °

i, () = 14— PR (10)

is the polynomial of effective longitudinal elasticity modulus variation.

Example 2:

Now let us consider a cantilever composite beam with the same geometry, loads and
constrains as above (Figure 2). The volume of this beam is filled with a mixture of matrix
(epoxy — with the volume fraction vy, = const. = 0.7) and fibres (E-glass — with the volume
fraction vy = const. = 0.3). The varying fibre elasticity modulus (6) is chosen as

Ey(z) =72.4(1 - 0.52 4 0.012%) [GPa] .

The varying matrix elasticity modulus (7) is chosen as
Em(z) =3.0(1-0.52+0.012%) [GPa] .

From (8) we get the polynomial variation of an effective longitudinal elasticity modulus (9)
Er(z) =51.58 (1 — 0.5z 4 0.01 %) [GPa]

where Er; = 51.58 GPa and Er; = 26.3058 GPa. All the three variations of the elasticity
moduli are shown in Figure 6.
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Fig.6: Elasticity modulus variations

The axial and transversal displacements have been obtained from the same local linear
elastic beam finite element stiffness relation as above. Figure 7 shows the axial displacements
and the axial strains of the beam caused by the axial force. The maximal axial displacement
is u; = 1.06809x1078 m, the maximal axial strain is £; = 1.5205x10~8. The average axial
stress equals to 400 Pa and it will be constant along the z-axis.
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Fig.7: Axial displacements (A) and strain (B) of the beam
with varying moduli of components

Figure 8 shows the deflection of this beam caused by the lateral force. The deflection and
rotation at the free end of this beam are v; = —1.4356x107° m and ¢; = —2.2777x10° rad,
respectively. The reactions at node ¢ exactly fulfiled the equilibrium equations.
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Fig.8: Deflection curve of the beam with varying
elasticity moduli of components

The same task has been solved with the BEAMS3 finite element using the same
mesh density as in the Example 1. The following results have been obtained: maxi-
mal value of the axial displacement is u; = 1.0822x107®m and the adequate strain is
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g; = 1.5785x107%; maximal value of the deflection and rotation is v; = —1.4403x107°m
and ¢; = —2.2912x1075 rad, respectively. The obtained axial displacements and deflection
curve agree well with those obtained using only one new beam finite element.

2.3. Composite beam with the uni-axially varying elasticity moduli and volume
fractions of the constituents

We assume polynomial variation of the fibre and matrix volume fractions that are given
by expressions (1) and (2). The fibre elasticity modulus Ef(zr) and the matrix elasticity
modulus E,,(x) are chosen as polynomial functions of z too; see expressions (6) and (7).

Then the effective longitudinal elasticity modulus of the composite beam is given by
Ep(z) = ve(x) Et(2) + vm(x) Em(z) . (11)
Similarly to (4), we can write
Ey(z) = Eving, (z) (12)

where Er; = vg; By + (1 — vg;) F s the effective longitudinal elasticity modulus at node 1,

and
nvf(x) nEf(x) + Thvmm (LL') TEm (LL')
Ey;

is the polynomial of effective longitudinal elasticity modulus variation.

e (1) =14 (13)

Example 3:
For the beam (Figure 2) the varying fibre volume fraction (1) is chosen as
vi(z) =0.5(1 —0.52 +0.001 22) .
The varying matrix volume fraction (2) we get is
V() = 0.5 (1 +0.52 —0.001 2%) .
The varying fibre elasticity modulus (6) is chosen as
Ei(z) =72.4(1 - 0.5z + 0.012?) [GPa] .
The varying matrix elasticity modulus (7) is chosen as
Em(z) =3.0(1-0.52+0.012%) [GPa] .

From (10) we get the polynomial variation of the effective longitudinal elasticity modu-
lus (11)
FEr(z) = Br; (1 —0.960 2 + 0.241 22 — 0.005 2° 4 0.920x107° 2)

where Fy,; = 37.7GPa and Er; = 10.396 GPa.

Figure 9 shows distributions of volume fractions, elasticity moduli of the constituents
and the longitudinal effective modulus of the composite beam. The axial and transversal
displacements have been obtained from the same local linear elastic beam finite element
stiffness relation as above.
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Fig.9: Volume fractions (A) and elasticity moduli (B) of constituents
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Fig.10: Axial displacements (A) and strains (B) of the beam
with varying volume fractions and elasticity moduli

Figure 10 shows the axial displacements and strains of the beam caused by the axial
force.

The maximal axial displacement is u; = 2.0251x107®m, the maximal axial strain is
g; = 3.8475x107%. The average axial stress is constant and equals to 400 Pa.

Figure 11 shows the deflection curve of this beam caused by the lateral force. The deflec-
tion and rotation at the free beam end is v; = —2.2758 1075 m and ¢, = —3.8306x10~° rad
respectively. It can be shown that the reactions at node 4 fulfil the equilibrium equations
exactly.
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Fig.11: Deflection curve of the beam with varying
volume fractions and elasticity moduli

To compare the accuracy and effectiveness of our new composite beam element, the
200 BEAMS3 elements with varying elasticity modulus F,(x) have been used for solving the
above example.
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Using this fine mesh of the BEAMS3 beam elements a very good agreement of results
of the both analyses has been obtained. The maximal values of axial displacement and
strain at the free end of this beam are u; = 2.0244x107°m and ¢; = 3.8270x107%, re-
spectively. The following maximal values of deflection and rotation have been obtained:
v; = 2.2758x1075m, ¢; = 3.8307x10~° rad.

3. Longitudinal elasticity modulus for the symmetric sandwich beam element
with the longitudinal and symmetric transversal layer-wise varying stiffness

Let us consider a sandwich straight beam with double symmetric cross-sections A that
are predominantly rectangular. The beam is loaded orthogonally to the plane of lamination.
Debonding of layers is not considered. If the lamination is symmetric, the elementary theory
of homogeneous isotropic beams can be used for all solutions, but the elasticity modulus has
to be replaced by its effective value [6]. The single layers are built from composite material
with longitudinal variation of the volume fractions and elasticity modulus of the constituents
as described in part 2. The two-node beam element (Figure 12) with three composite layers
has the following geometric and material properties:

— Ay = As, Ay are cross-sections of the layers, where v1 = v3 = A1 /A, va = Az /A are
volume fractions of layers in the sandwich beam,

- E1 (I) = Eli ’I’}El(I) = Eli (1 + 22:1 NE1k Ik) = Eg(l‘) = Egi ’I]Eg(l‘) = Ef(l‘) is an
effective longitudinal elasticity modulus of layers 1 and 3 (faces),

— Ey(x) = Eo; nea(x) = Eo; (1 + 31 MB2 xl) = E°(x) is an effective longitudinal elastic-
ity modulus of layer 2 (core),

— Eq1; = Es3;, Es; are effective longitudinal elasticity moduli of layers 1, 3, and 2 at node ¢,
respectively,

—ng1(x) = nes(x) and nga(z) are the polynomial variations of the effective longitudinal
elasticity moduli of layers 1, 3 and 2, respectively,

— Layers 1 and 3 (faces) have the same thicknesses hf and they are of the same material;
layer 2 (core) has thickness h°. Parameter d = h¢ + hf.

h_/

).g
>

N =
v
™
=

W b

E@)E @)

T
0.2L 0.4L 0.6L 0.8L L

Fig.12: Symmetric sandwich (three layers) composite beam
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Using the mixture rule, the effective longitudinal elasticity modulus for stretching is
3
ELI\II(:L‘) = Z Un EH(LL') = ELNi T]ELN(:L‘) (14)
n=1

where Ern; = Eq;v1 + Fojva + E3;v3 is an effective longitudinal elasticity modulus for
stretching at node 4, neLn(x) is the polynomial variation of the effective longitudinal elas-
ticity modulus for stretching of the sandwich beam. The advanced effective longitudinal
elasticity modulus for flexural loading of the sandwich beam, according the laminate the-
ory [6], is

Byl (x)

12 <Ef(:c) (hf)3 N Ef(z) hf (h¢ + h)? N E°(z) (h°)3

== = Fra G
B 6 2 12 > L oL () - (15)

Here, Ern; is an effective elasticity modulus for flexural loading at node i, ngpm(z) is
its polynomial variation, h = h® + 2hf is the total beam depth. Elasticity moduli (14)
and (15) affect the stiffness matrix parameters of the new sandwich beam element with
varying stiffness. The stiffness matrix of this sandwich beam (with the classical six degrees
of freedom) has the form (16):

K= (16)
r EiNg A FEiNi A B
LN 0 0 _ N 0 0
b 7
2AEN 2AEN
0 em bypm e bypnv 0 —cm bopry em borv
_ 0 embypn o (L Vg —bsem) 0 —cm by M bapiv
_ /LN 0 0 LN 0 0
b b
2AEN 2AEN
0 —em bhppy —cm bypmv 0 em bapig —cm bepv
L 0 cm barm cm b3emm 0 —cmboeeiv em (L bapmva —bsgim) -

where e = Erwi I/ (bormv by — bseiv bhgpy) is the bending stiffness parameter. I is
a quadratic area moment of inertia of the whole cross-sectional area A. The transfer con-
stants by, gy and bopng, Vspmv, b2EmM, bserv (these constants can be calculated using the
algorithm in [10,11]) depend on the cross-sectional characteristics and the effective longi-
tudinal elasticity modulus variation for stretching (marked with the index N) and flexural
bending (marked with the index M), respectively.

The strains due to longitudinal loading are constant over the cross-section high but
non-linear along the beam length axis. The axial stresses are constant over each layer
cross-section, but there is a jump in the stresses at the face/core interfaces. If we define the
second derivative of the transfer function for stretching boapn as

1

naeN(z) | 17

/2/AEN (z) =

than its first derivative is

bapN(T) :/ sann () dz . (18)
0
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The transfer constant for stretching is then

L
b/2AEN = b/2AEN(L) = / lz/AEN(x) dx . (19)
0

If the polynomial nagn(z) = 1, which means EN(z) = Ern; = const., then by py(z) = @
The axial displacement at the point x could be expressed using the new shape functions
for a beam with varying stiffness [12,13]:

b2AEN b2AEN

From (19) we get the expression for the axial strains (due to in-plane loading):

du(x) u; — Uy
eNz) = = J ! . 21
(=) dz NAEN(2) by AN (@)

The longitudinal variation of stretching stresses in the layers will be non-linear along the
beam length axis

o1 (z) = " (2) B1(z) = 03 (2)
on (x) = eN(x) Ba(x) .

The bending strains vary linearly with y over the whole cross-section and non-linearly along

(22)

the beam length axis. The advanced flexural sandwich beam rigidity, according the laminate
theory [6], is

D(x) = b (Ef(‘"”g(hf)g’ NG i 2(h°)3> o)
and the bending strains are: .
M(x

where M (z) is the bending moment at point z.

The bending stresses vary transversal linearly (with the y position) within each layer,
but there is a jump in the stresses at the face/core interfaces:

M) = M) Py = ).
Es(z) (25)

7' (ry) = M) FTy

The longitudinal variation of the layers bending stress will be non-linear as usual.

The shear stresses for the core and the faces, according to the laminate theory [6], can
be calculated using the following expressions (Q(z) is the shear force at point x):

’ ( (2)hfd+E°2(x) ((h;)z_y2)> 7

Q(z)
D(x)
T f h¢)? . )
Tf(l‘,y) gix)) E2( ) <( 4) +hchf+(hf)2_y2> )

xT

m(2,y) =
(26)
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The maximum shear stress appears at the neutral axis and it is described by the function:

e gy Q@) (Ef@)hd | E(x)(he)
The shear stress in the core/face interface is described by the function :
. Ef(z)h'd
a0, = 1) = (g = hj2) = D) BN (29)

D(x) 2

There is no jump in the shear stresses at the interfaces, and the shear stresses are zero at
the outer fibres of the faces.

Example 4:

The following academic parameters have been chosen for the sandwich beam (Figure 12):

— the cross-section is square (bxh = 0.01x0.01m), its area is A = 0.0001m?, I =

= 8.3334x10"8m? is the quadratic area moment of inertia, the length of the beam is
L =1m;

— the cross-section area of layers is: A; = Ay = A3 = A/3 = 3.3334x10~° m?

— the effective longitudinal elasticity modulus of layers is:

E1 (.’L‘)
E2 (.’L‘)

Es(z) = Ef(z) = 1x10'° (1 + z) [Pal,
E°(x) = 2x10' (1 + 2) [Pa).

The whole beam was modelled with only one of our sandwich beam element. Two load
cases have been considered.

Load case 1

In the first load case the longitudinal displacement u; = 0.001 m was prescribed at the
free end of the cantilever sandwich beam. Distribution of the longitudinal stress has been
searched in the beam layers.

In our case, the effective longitudinal elasticity modulus for stretching (14) of the
sandwich beam, EN(z) = 1.3334x10'°(1 + 1.5z) [Pa], changes linearly, where Epn; =
= 1.3334x10'° Pa and Epy; = 3.3334x10'° Pa.
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Fig.13: Displacements (A) and strains distribution (B) along the beam length
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Fig.14: Longitudinal stress distribution in layers 1 and 3 (A), and layer 2 (B)

Figure 13 shows the non-linear displacement and the strain distribution along the beam
length. Figure 14 shows the non-linear distribution of the normal stresses in the layers.
The middle layer is loaded the most and the maximal stress is placed at its free end
(3.9289x107 Pa); the layers 1 and 3 have the same stress distribution and the maximal
stress is placed at their clamped ends (1.6370x107 Pa). The equilibrium equation is sat-
isfied at each position of z; the average normal stress is equal to 2.1827x107 Pa and it is
constant over the sandwich beam length. This average stress has a virtual meaning only.
Normal stresses in the layers have a crucial meaning for the beam strength assessment.

To compare the above-described results, the 4800 of SOLID45 finite elements have been
used for solution of this problem (see Figure 15). Figure 16 shows the axial displacements
and the axial strains difference distribution obtained using this fine mesh.

4 elements

200 elements
6 elements

Fig.15: SOLID45 — FE model of the sandwich beam
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Fig.16: Difference of the axial displacements (A) and strains (B) between
results achieved using BEAM and SOLID elements

How it can be seen from these figures, that the analysis results using this SOLID45 finite
element mesh were in a very good agreement with only one our new beam element results.
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Load case 2

In the second load case the transversal unit force (F' = 1N) has been applied at the
free end of cantilever sandwich beam (Figure 12). A linear — elastic analysis has been done.
The deflection curve and distribution of normal stresses along the beam layers and over the
beam depth have been examined.

In this case, the effective longitudinal elasticity modulus for bending (15) of the sandwich
beam changes linearly and has this form:

EM(x) = 1.037037x10° (1 + 1.071428571 z) [Pa] ,

where Epn; = 1.037037x10'° Pa and Fyuv; = 2.148148x10'° Pa (see Figure 17). Using this
elasticity modulus, the deflection and rotation at the free beam end is v; = —0.031188m
and ¢; = —0.044056 rad respectively. As it can be shown, the reactions at node ¢ satisfy the
equilibrium equations exactly.
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Fig.17: Effective longitudinal elasticity modulus
for bending of a sandwich beam
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Fig.18: Bending strain distribution at the top of layer 3

The bending strain (24) has been obtained as the following function at the top of the
layer 3:

M(y) = 0.005 (1 — z) .
8.6419 + 9.2592

This function is depicted in Figure 18. Its value at note ¢ is 0.0005785. Longitudinal
distribution of the bending normal stress (25) is shown in the Figure 19. Figure 19A shows
the bending normal stress at the top of the layer 3 and Figure 19B shows the bending normal
stress at the top of the layer 2 and bottom of the layer 3. The same problem has been solved
using the SOLID45 finite elements (see Figure 15). By this very fine mesh the ANSYS
solution converged to our sandwich beam element solution. For example, the deflection at
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the free beam end coincided with our value; the maximal normal stress at the top of the
layer 1 and 3 (at the clamped beam end) has the value of 5.7689 MPa. The shear stress has
been calculated using the expressions (26)—(28). In Figure 20 distribution of the maximal
core shear stresses (27) (shear stress at the middle of the layer 2) and the shear stresses at
the face/core interfaces (shear stress at the top of the layer 2 and shear stress at the bottom
of the layer 3) are shown along the beam length.
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Fig.19: Longitudinal distributions of the bending normal stress
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Fig.20: Longitudinal distribution of the maximal core shear stress and
the shear stress at the face/core interfaces

Maximal core shear stress in the both ends are: 7°(z = 0,y = 0) = 16071.4Pa;
7°(xz = L,y = 0) = 17068.9Pa and the values of stress at the face/core interfaces at the
same nodal points are: 75, (v = 0) = 7f (v = 0) = 12857.1Pa; 75, (v = L) =

m max m
=7f (z=L)=12413.7Pa.
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Fig.21: Transversal distribution of the normal and shear stress across the beam depth

The transversal distribution of the normal and shear stresses across the beam depth at
the node i is shown in Figure 21. As we can see, there is a jump in the normal stresses at
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the face/core interfaces (this stress jump can not be reached using the SOLID45 element
because of averaging of the nodal stresses), but there is no jump in shear stresses in this
location.

The normal stresses at individual points have these values: point 1 (top of the core):
3.8571 MPa, point 2 (bottom of the face): 1.9285 MPa, point 3 (top of the face): 5.7857 MPa
and, between these points, there is a linear distribution of the normal stresses in core
o%opri(v) and in faces ok opp; (y) — see Figure 21.

The shear stresses at individual points have these values: point 4 (middle of the core):
16.0714kPa, and point 5 (top of the core and bottom of the face): 12.8571kPa. The shear
stress distribution in core is described by

Tsopei (T =0,y € (0,h°/2)) = 16071.4285 — 1.1571x10° y* [Pa]
and in the faces by

Thopmi (T = 0,y € (h°/2,h/2)) = 14464.2857 — 5.7857x10% 4 [Pa] .

4. Conclusions

Mixture rules have been extended to account for polynomial longitudinal and layer-wise
symmetric transversal variation of the composite (FGM’s) beam elasticity modulus. Longi-
tudinal variations of the volume fractions of constituents and longitudinal variations of the
elasticity moduli of constituents were considered in the first part of this contribution. The
material properties were considered constant along the beam width and depth. A constant
cross-sectional area can have various geometries but it must be symmetric to the bending
(z-y) plane. The symmetric transversal layer-wise stiffness variation of the sandwich beam
element was considered in the second part of this paper. Longitudinal variations of the
stiffnesses of layers were considered as well by this sandwich beam element. Stiffness matri-
ces of the composite (FGM) Bernoulli-Euler beam finite element and three-layer composite
(FGM) sandwich beam finite element have been proposed. They contain the longitudinally
varying effective elasticity moduli for axial stretching and transversal bending. The effective
longitudinal elasticity moduli of the sandwich beam have been accomplished using the lam-
inate theory (including transverse shear) and homogenisation by using the above mentioned
extended mixture rules.

Stiffness matrix of the homogenized sandwich beam contains in-plane, bending and shear
stiffness of all layers, i.e. for the faces and core. Any restriction has not been assumed either
for thickness of the faces nor for weakness of the core. This new sandwich beam element can
be used for analysis of the beams according to the assumptions of the linear elastic beam
theory. The bars of analysed beam structure have to be meshed with larger number of the
proposed finite elements in the case of longitudinal discontinuity of the material properties,
cross-sectional area and loads. The numerical examples have been solved using the advanced
mixture rules and the new FGM’s beam finite elements with varying stiffness. The analysis
results have been evaluated, discussed and compared with those obtained using the common
beam and solid finite elements. Implementation of the new sandwich beam element in the
existing FEM-cods is very easy. Algorithm for calculation of the transfer constants has to be
included additionally into the code. This algorithm is described in the references. Our new
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composite sandwich beam finite element can be used not only in the case when the extended
mixture rules have been used for homogenization of material properties, but also it can be
used for all cases, when the variation of homogenized material properties is known and it
can be described with the polynomial function. The new composite beam finite elements
are very effective and accurate.
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