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CRACK INITIATION CRITERIA FOR SINGULAR
STRESS CONCENTRATIONS
Part III: An Application to a Crack Touching
a Bimaterial Interface

Lubos Nahlik* Zdenek Knésl, Jan Klusdk**

The paper deals with crack propagation through an interface between two elastic
materials. The basic idea of developing stability criteria of general singular stress
concentrators introduced in the first part is applied to the case of a crack with its
tip at the interface between two different materials. Three different stability criteria
based on different physical principles are presented and a numerical example with their
mutual comparison is carried out. A procedure based on a generalized strain energy
density factor is shown which makes it possible to estimate the further direction of
crack propagation after the crack has passed the interface. The procedure presented
is applied in the numerical examples.

Key words : bimaterial interface, stability criteria, crack propagation, critical stress,
threshold stress

1. Introduction

The advanced materials, such as fiber or particle reinforced composites, metal-ceramic
interfaces, laminated ceramics, adhesive joints, protective layers etc. have many important
applications in the industry. Their behavior is strongly influenced by the existence of ma-
terial interfaces. Interface failures are common features in these materials and the design
process requires a better understanding of the corresponding failure mechanisms. It is an
important task to make detailed investigations into the fracture characteristics of cracks
propagating through bimaterial interfaces.

An interface between two dissimilar media represents a weak point for many applica-
tions of structures composed of different materials. The presence of regions with different
mechanical properties and the existence of an interface between them have a pronounced
influence on the stress distribution of composite bodies. The characteristics of fracture in
the vicinity of and at the interface are strongly influenced by the properties of the interface
and of the material on either side of the interface. A basic problem is to assess the influence
of the interface on a crack penetrating from one material into the other in a bimaterial body.

The concentration of stress due to interface defects has recently been studied extensively
and basic ideas of the fracture mechanics of interfaces have been developed, but many
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Fig.1: A crack touching the interface between two materials (M1 and M2)

questions are still to be answered [1-6]. The propagation of cracks which approach and
intersect the interfaces between dissimilar solids is a topic of considerable academic and
practical interest. In the past most of the investigations dealt with crack growth near
interfaces [7-10].

In this paper we report the results of a theoretical study concerning mainly the behavior
of a crack with its tip at the interface. This contribution directly relates to the preceding
papers [11,12] (in the following referred to as Part I and Part II, respectively). The confi-
guration studied here is shown in Fig.1. The problem is studied under the assumptions of
linear elastic fracture mechanics (LEFM) and the interface is assumed of a welded type (ideal
adhesion is considered). The fact that in the studied cases the stress singularity exponent(s)
are different from 1/2 (p # 1/2) complicates the formulation of stability criteria. To solve
the problem, the general approach suggested and formulated in Part I of the contribution
is applied.

2. Stress distribution around the crack tip

The stress distribution around the crack tip can be determined by means of a combination
of analytical and numerical approaches [13-15]. The common detailed procedure based
on the Airy stress function is introduced in Part IT (see equations 1-10). The geometric
configuration studied here differs from that considered in Part II mainly in the formulation
of the boundary conditions. The solutions for the biharmonic stress function for the confi-
guration shown in Fig. 1 are sought such that the crack faces (§ = +m) are traction-free for
all values of r [14]. In terms of the stress components the condition requires that (the first
index relates to number of the region, see Fig. 1)

o100 (1, ™) = o1r0(1, ™) = 0300 (1, — ) = O300(r, —7) =0 . (1)

Perfect bonding along the interface 8 = ¢, 0 = ¢ — 7 is ensured by the following stress and
displacement continuity conditions

ulr(ra ¢) = Ugr(”f‘, ¢) 5 Ugr(’f‘, ¢ - ﬂ-) = UZr(T7 (rb - ﬂ-) )
Ule(ﬁ ¢) = u29(r> ¢) ) ’LL39(’I", ¢ - 7T) = Ugg(’r, ¢ - 7T) )

and

a100(7, ) = o200(7, 9) , 0399(r, ¢ — ) = 0299 (1, — )
= O

o1:6(7; P) 200 (7, 0) 03c0(r, ¢ — ) = 020 (1, 0 —



Engineering MECHANICS 101

These twelve conditions lead to the system of 12 linear equations B(A)x = 0, where B()\)
is the matrix of the system and x is the vector of 12 unknown coefficients. The system
contains 13 unknowns in total. The thirteenth unknown is the eigenvalue A\ which can be
obtained from the condition of the existence of a nontrivial solution of the system, i.e.

det B(A) =0 .. (3)

Following the basic idea of Chapter 2, Part I, the general expression describing the stress
field around the crack tip touching the interface between two materials (see Fig. 1) is given
by the following equations (generally, two stress singularity exponents exist) :

H H
5= 7" F1ig (0,00, 00,0) + =77 faij(6,00, 0, 6) (4)

where Hy [MPam?'] and Hy [MPamP?| are generalized stress intensity factors, fi;; and fa;;
are known functions, (r,6) are polar coordinates with their beginning at the crack tip and
p1 and po are stress singularity exponents. The values of p; and p, are determined from the
condition (3) and p; = 1 — A\ and pa = 1 — g respectively. ap, fp are Dundurs parameters
(see [16] for details) and represent elastic constants of a bimaterial body.

0i5 =

— (k2 +1) 4 po (k1 +1)
w1 (ke + 1)+ pa (k1 + 1)

— (k2 —1) 4 po (k1 — 1)
w1 (ke + 1)+ pa (k1 + 1)

ap = ﬂD = (5)

where the shear modulus piy = En/[2 (14 Vm)] (Em is Young’s modulus) and the parameters
km = (3—wvm)/(1 4+ vy) for the case of plane stress or K, = 1 — 41y, for plane strain
(m = 1,2 corresponds to the number of the material).

Note that the values H; and Hy do not mark the appurtenance to the normal or the
shear mode of loading, but the values include both modes of crack propagation.

Generally, two singularity exponents pi, pe lying within the interval (0;1) exist for the
case of a crack touching the interface. For a crack perpendicular to the interface (¢ = 7/2)
only one real singularity exponent p exists in this interval. For the angle ¢ smaller than
90 degrees two real exponents exist (see Fig. 2). For small angles ¢ we can find only complex
stress singularity exponents, see e.g. [13], [14] for details. For a crack touching the interface
the general form of the stress components is given by the expressions (6).

il r_pl (pi — 1) [a; (7) (2 —p;) sin(2 — p;)0 + bgj) (2 —p;) cos(2 —p;)0 +

HMM

+ e (—pi — 2) sin(—pi)8 + d) (—pi — 2) cos(—p:)8] ,

2
Z Hi = TP —pi)(2—pi)rTP [a; () sin(2 — p)0+b(]) cos(2 — p;)0 + ©)

+ cgj) sin(—p;)0 + dz(‘j) cos(—pi)d] ,

rPi (p; — 1) [al?) (2 = p;) cos(2 — i) — b (2 — pi) sin(2 — p;)0 +

03 i

+ (J)( —pi) cos(—p;)0 d(] (—p;) sin(—p;)0] .
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The subscript ¢ = 1,2 means the number of singularities within the interval (0;1). The
superscript j = 1,2, 3 marks the number of regions in Fig.1. The constants a;, b;, ¢;, d;
represent the known eigenvector x, see e.g. [17] for details. The existence of more singularities
complicates the formulation of stability criteria. However, in many practical cases a crack
is perpendicular to the interface and there is only one real stress singularity.

Note that for an interfacial crack (i.e. for ¢ = 0) the stress singularity exponent p is
complex and has the form p = 1/2 + ie, where € is a complex part of the solution of the
equation (3), see [18,19].

0.35

04t E,

0.500
045 ) 0.625
//\_// 0.770

1.000

—=pl-]

1.333

0.55

3.333

0.65

5.566

0.75 L 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

— = ¢[ deg]

Fig.2: Real parts of the stress singularity exponents p in dependence
on the orientation angle ¢ between the crack and the material
interface for the selected ratio of Young’s moduli [17]; Poisson’s
ratios of the materials were chosen v1 = v = 0.3

2.1. A crack perpendicular to the interface

The stress field around the crack tip (only one singularity exists) can be described by
the expression :

oij = Hir™? fi;(6, 0, B) (7)

where f;;(0, o, 8) is a known function and p is the corresponding stress singularity exponent.

Its dependence on the ratio of Young’s modulus ratio is shown in Fig.3. The problems of
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p and Hj determination were in detail described in Parts I and II of this work. Let us
consider in the following that the crack propagates in mode I and under the conditions of
plane strain.

In this case the equation (7) can be rewritten in the form (see e.g. [20]):

Txx = \%r r P (1 =p)[(2fr — gr) cos(—p)0 — (2 fi — g1) sin(—p)d +
+p(fr cos(—p = 2)0 — fi sin(—p - 2)0)] ,
Oy = % 17 (1= p) [(2 fr+ gr) cos(—p)0 — (2 fi + g1) sin(—p)0 — (8)
—p(fr cos(—p —2)0 — fi sin(—p — 2)0)] ,
Oxy = j% r (1 —p)[gr cos(—p)f + g1 sin(—p)6 —

—p(fr sin(—p = 2)0 + f1 cos(—p — 2)0)] ,

where
=1, fi=q=0,
a+2(1—-p)—[1+2a—4a(l—p)? cos(l—p)r (9)
D(p)

gr=(1—p)—cos(1—p)r -4

and
D(p)=1+2a+20*>-2a(l+a)cos(l —p)r —4a? (1 —p)*.

The constants « and  were introduced in [20] and characterize the elastic mismatch
between the materials of the bimaterial. The bimaterial composite parameters « and (3 are
conveniently defined in plane strain terms as

2 |
1
oo M2 and e t1)

m+1 Cpe(m+1)

where p; and ps are the shear moduli of the materials M1 and M2 respectively, vy, v are

(10)

Poisson’s ratio of both materials and 7; = 172 = 3 — 4 v for plane strain conditions. Note
that the definition of the parameters o and § used here differs from those used in Part II.
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Fig.3: The stress singularity exponent for a crack perpendicular to the
interface in dependence on the ratio of Young’s moduli; Poisson’s
ratios are the same for both materials; (v1 = v = 0.3)
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3. Stability criteria

In the following three criteria based on the procedure intimately described in Part I are
presented. As it is stated in Part I, the fact that for a crack with its tip at the interface
between two different materials the stress singularity is no longer r~/2 means that the

classical linear elastic fracture mechanics arguments and criteria cannot be applied.

3.1. Criterion based on average stress ahead of the crack tip

This stability criterion is suitable especially in the case of brittle fracture failure and for
cracks perpendicular to the interface, where only one real singularity exists. The stability
condition for a crack with an exponent of the singularity different from 1/2 is related to the
average stress ¢ calculated across a distance d ahead of the crack tip [21], i.e. the quantity L
(see Part I) is thus chosen as L = 7, see Fig. 4.

4A0go

M1 M2

Fig.4: The average value of the stress component oy
within the distance d in front of the crack tip

The propagation of the crack is controlled by the opening stress in the direction of the
crack propagation, i.e. for 8 = 0. In this case the expression for the stress normal to the
crack plane (the crack is considered parallel to the axis ) can be written in the following
form (see eq. (8)):

H;

ogo(r,0 = 0) = oyy(z,y =0) = N 1-p)2-p+gr)r?. (11)

The average stress ahead of the crack tip is then given by the expression :

o =

ISR

d
/099(7‘, 0 =0)dr. (12)
0

For a crack in a homogeneous material it holds ogg(r,0 = 0) = K1/v/27r and

d
1 Ki 2 Ky

Z dr = . 13
do Vorr " Vard (13)

5’ =
This value is related to the critical fracture stress g it which is a material constant and can

be expressed by means of the fracture toughness Kic :

_ 2Kyc
ord

(14)

Ocrit =

Ul

d
/099(7‘, 0 =0)dr
0
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In the bimaterial body the value Gt is related to the average stress a(d, o, §) calculated
across a distance d in the material M2. Corresponding to (11) and (12) it is:

d
1
a(d,a,B) = p /000 0)dr=Hid?(2—-p+gr), (15)
0

where gg is defined in (9). The average stress (d, «, ) depends on the distance d and on
the bimaterial composite parameters «, § (10), i.e. on the elastic mismatch of the materials.

The material ahead of the crack tip fractures when the value of the mean stress 6(d, «, )
exceeds its critical value 7t defined in (14):

a(d,c, 3) > Gerit (16)
and the fracture condition has the form
HI > HIC s (17)

where Hic is the critical value of the generalized stress intensity factor (the generalized
fracture toughness). The value Hic can be expressed as

2dp71/2

Hic = Kijgc m———— .
1C 102_>\+9R

(18)
The value of the critical stress d.,it depends on the fracture toughness K¢ of the material
M2, on the elastic mismatch of both materials and on the value of d.

The choice of the dimension d in front of the crack tip depends on mechanisms of crack
propagation. Usually, it is related to the grain size of the material M2, if the intergranular
cracking is assumed.

3.1.1. The critical stress

The application of (18) makes it possible to estimate the critical applied stress o¢it. The
critical stress is the value of the external applied tensile stress at the moment when the crack
starts propagating from the bimaterial interface into the material M2 (we assume that for
crack propagation the mode I is predominant)

HIC Oappl

i (Gapot) (19)

Ocrit =

If the value of the applied stress oappl > 0crit the crack will grow into the material M2.
The value of ¢,y depends on the geometry and the boundary conditions, on the composite
parameters « and 3, and on the fracture toughness Kic of the material M2. Unlike the
critical applied stress ot in the case of a homogeneous material, it depends on the chosen
distance d, see eq. (16).

3.2. Criterion based on a plastic zone size ahead of a crack tip

Typically of ductile materials, crack propagation is controlled by the plastic zone area R,
ahead of the crack tip (see Fig.5). The fact that the plastic zone size is a controlling variable
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for fatigue crack propagation, e.g. [22-24] is the idea underlying the next criterion. The
following criterion of stability can be used for estimation of the threshold stress value oy
for a crack with its tip at the interface which is cyclically loaded.

For cyclic loading, the plastic zone forms ahead of the growing crack. Assuming small
scale yielding conditions and a homogeneous body, there exists a single-valued relationship
between the size of the plastic zone at the crack tip and the value of the corresponding
stress intensity factor controlling the fatigue crack propagation rate. The behavior of a fa-
tigue crack with its tip at an interface is then controlled by the plastic zone created in the
material M2, see Fig. 5 and [25].

Fig.5: The plastic zone in the material M2 created
by the crack with its tip at the boundary

In the following we assume that for fatigue crack propagation the controlling variable is
the area of the plastic zone R, around the tip of the crack, i.e. the variable L = R,,.

The shape of the plastic zone predicted by LEFM for small scale yielding can be obtained
by substituting the corresponding stresses into the Mises yield condition:

Oef =— 00 (20)

where e is the effective stress and o is the yield stress (for the material M2 in our case).
For a homogeneous body and the loading level K7 (we assume a normal mode of loading)
the value of the area Ry, is given by (e.g. [22])

Ry = (05) from() (21)

64(12v4m — 240371 + 2127 — ur + 3204 — 640° + 5202 — 20v + 3) + 1237
102472 '

fhom(V) =

In bi-material body the location of the curve corresponding to the elastic-plastic boundary
in M2 for the crack with its tip at the boundary can be obtained by substituting the stress
components (8) into the Mises condition (20). The radius of the plastic zone rp is then

o= (i) {% 6gmp (s ) sin((-p - 2)6) -

L (22)

—cos(pB) cos((—p —2) 9)) + 16 v cos(ph)? (y + i - 1) +3 (g2 +p2)] }E .
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By analogy to (21), in the case of a crack with its tip at the interface and for the loading
level Hi, the plastic zone size can be written in the form

Ry = (f—) FenBor) (23)

where f(a, 8,v) is a known function obtained by integration (22).

We assume that the areas of the plastic zones in homogeneous and bimaterial bodies,
given by the equations (21) and (23) are the same, if K1 = Kt (Kt is the threshold value
of stress intensity factor) and Hy = Hyy, i.e.,

Ry (K1 = Ku) = Ry(Hy = Hy,) . (24)

The relation Hy, = Hin (K, o, §) can then be written in the form

72 (1—2p) fhom(V) £
ch = Kﬂf ) {m} ) (25)

where o is the yield stress of the material M2.

If Hi(oappl) < Hyn, the rate of propagation of the fatigue crack will be zero, i.e. the
fatigue crack will stop at the interface and will not propagate into the material M2. The
condition Hy(oy,) = Hip, then makes it possible to determine the threshold applied stress oy,
as a function of the composite parameters « and 3 (10):

ch Oappl

B Hi(oapp1) . (26)

Oth

If the value of the applied stress is gappl < otn then the fatigue crack will not propagate into
the material M2.

3.3. Criterion based on the strain energy density factor

One of the basic criteria existing in LEFM is Sih’s strain energy density concept [26], [27].
The strain energy density concept was originally proposed for a crack in homogeneous ma-
terial.

The strain energy density w is given by :
AW

w -

==

1
— [k (0w + 099)° + (0w — 000)* + 4039] =
L (27)

a11 Kf 4+ 2 a1 K1 K + as K7)

8

1
=5
where 7 is a distance from a crack tip, p is a shear modulus, oy, 0gg and o9 are polar
stress components and the constant & = (1 — v)/(1 + v) for plane stress and k = (1 — 2v)
for plane strain conditions. ai1, a12 and ass are known functions of 6. Sih introduced the
strain energy density factor S, which is independent of the distance r:

S=wr =ay K} +2a12 K1 K11 + ag K7 . (28)
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It is assumed that the crack starts to grow in the direction 6, where S possesses the

minimum, i.e.:
a8 9%S
— =0 — 0. 29
(7). ().~ 29)

By substituting the stress components (6) into the relation (28) we can obtain a genera-
lized form of the strain energy density factor X(r) for bimaterial body, which contrary to S
depends on the radial distance from the crack tip, ¥ = X(r, 0):

E(T‘, 0) = 7‘1721‘)1 A11 H12 —+ Tliplipz 2 Alg H1 HQ + 1"1721)2 A22 H22 5 (30)

where Hy, H, are generalized stress intensity factors and

All = L [k (frrl +f991)2 + (frrl - f991)2 +4fr291] ’

16 i
Agp = ﬁ [(k+ 1) (fI‘I‘l frrz +f991 f992) + (k - 1) (frrl f992 +f991 frrg) +4fr91 fre?] ’
Agy = ﬁ [k (frrz + f992)2 + (frr2 - f992)2 +4fr292] ’

for = -\t [a(l) (A + 1) sin(Ag + 1)8 + 0D (A + 1) cos(A\ +1)0 +
+ e (A —3) sin(\ — 1)0+dD (A — 3) cos(Ag — 1)9} ,
Foos = Ao [a@) (2 +1) sin(Az + 1)8 + 5@ (Ag + 1) cos(Az +1)8 +
+ ¢ (Mg = 3) sin(Ag — 1)0 4+ d? (A\g — 3) cos(Aa — 1)9] ,
foo, =\ (A +1) [a<1> sin(\ + 1) + b0 cos(Ay +1)0 +
+ ¢ sin(\; —1)8 + dY cos(A\; — 1)0} )
foo, =X (A2 +1) {a@) sin(Ag + 1)8 + 0@ cos(\y + 1) +
+¢@ sin(\y —1)0 + d® cos(Ny — 1)0} )
fio = —\1 [a@) (M + 1) cos(Ar + 1)8 — b (A + 1) sin(\ +1)0 +
+c® (A = 1) cos(\ — 1) — dD (A — 1) sin(A — 1)9] )
Fos = — o [a@) (2 +1) cos(ha + 1)8 — b (Ag + 1) sin(Aa + 1)0 +
@ (Mg —1) cos(ha — 1) — d® (Ag — 1) sin(g — 1)9} .
The formulation of the stability criterion derived from Sih’s strain energy density factor
for the general singular stress concentrator was introduced and in detail described in Part IT
of this work. In the following the strain energy density concept is used for the formulation

of the stability criteria in the case of a crack generally oriented with the interface, where
two singularities exist.
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By substituting the expressions for the stress components (8) to the general expression
for strain energy density (27) we can obtain the following final expression for the threshold
value of the generalized stress intensity factor for the normal mode of loading :

1-2v 2 b1
H“l‘<<1—p>2[4<1—2u>+<gR—p>p]) T (31)

The distance r at which the criterion is applied influences the resulting values of the
threshold stress, but the dependence is not very strong. The distance r is related to the
crack propagation mechanism. For a cleavage type of fracture, the distance r can be related
to the grain size of the material or the size of the plastic zone in front of the crack tip in the
case of crack propagation under the conditions of high cycle fatigue. The threshold stress
o can then be calculated from (26).

This criterion is able to be used with an advantage for mixed mode loading (e.g. a crack
arbitrarily oriented to the bimaterial interface) in the case of brittle fracture or fatigue.

Existence of two singularities

If there are two different singularities (a crack arbitrarily oriented to the bimaterial
interface, a bimaterial V-notch, etc.), it is possible to make full use of the stability criteria
described above. In order to determine the critical stress, the following simplification can be
applied. The expression for the stress field around the crack tip (4) may be formally written

as:
1 1

rP1 ii(0,...)+k
\/ﬁ fl J ( ) \/ﬂ
where k = Hy/H;. The values H; and Hy determined from the numerical solution are both
linearly dependent on the applied loading. This dependence is valid for the critical value of

7 = H, ro P2 f2lj(9,) s (32)

the applied stress as well and some of the introduced criteria can be used. The introduced
stability criteria are advantageously usable for general stress concentrators, too.

Estimation of the crack propagation direction

The strain energy density approach can be used to estimate the direction in which the
crack will propagate after passing through the bimaterial interface [17]. The crack will
propagate into the material M2 in the direction of § = 6,,,, which is related to the direction
of the minimum of the strain energy density factor %(r,8):

E(amem) = Emin(am 0) . (33)
The value 7 = a, depends on the crack propagation mechanism and can be chosen, e.g.
like corresponding to the plastic zone size ahead of the crack tip [28]. It is assumed that the

next behaviour of the crack is controlled by the rules of LEFM. The unknown angle 6,, can
be obtained from the solution of the relationship:

1) 0°y
(%)em 0, (aT) > 0. (34)

The equation (30) for the generalized strain energy density factor can be rewritten as:

H Hy\?
Y = H12 [r1—2p1 A+ 2 pl—P1=p2 Ao F2 + plm2p2 Aso (f) ] . (35)
1 1
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The values H; and H, are independent of the polar coordinate 6. The condition for the
crack propagation direction has the form :

pl=2m % + 2 plmPimp2

o0 H, 00 =0 (36)

O

Hy 0A1 -2 Hy > 0As0
H, 00

It is evident that the crack propagation direction does not depend on the absolute values
of Hy and Hs.

4. Numerical examples
4.1. Estimation of the threshold stresses

As an example of the approaches presented, the results concerning a fatigue crack growing
perpendicularly in a protective coating and penetrating through the interface and into the
substrate material are presented and a comparison of the suggested criteria is made in the
following.

Mi Mi t

M2 T

Pritttttteg

AEIRRERRE!

L

Fig.6: The bimaterial body with an edge crack under tensile loading considered
in the numerical example; T'= 25 mm, t = 12.5 mm, L = 75 mm

For comparison a bi-material sample loaded by tensile stress was chosen (see Fig.6). In
this case the crack is loaded by the normal mode and there is only one stress singularity. The
calculations were performed for different ratios of Young’s modulus (E;/E») in a wide range
from 0.2 to 5. Poisson’s ratios were the same in all cases 1, = v5 = 0.3. For the parametric
study the following constants were used: d = 0.0lmm (in eq. (18)), oo = 600MPa (in
eq. (25)), 7 = 0.001 mm (in eq. (31)) and K, = 5MPam'/2. For the computation the finite
element system Ansys [29] was used. The threshold stress oy, was estimated by means of
the equation (26). The normalized results are shown in Fig.8. For the normalization the
value of the fatigue threshold stress determined for the configuration according Fig.6 and
for homogeneous material M2 was used.

From Fig.7 it is evident that all criteria provide similar results of the threshold stress
and are in a good agreement. The results presented show the dependence of the threshold
stress on the ratio Ez/E; of Young’s modulus and indicate a relatively strong decrease in
the threshold stress in the cases when Young’s modulus of the material M1, E;, is larger
than Young’s modulus of the material M2, F5. For the opposite ratio of Young’s moduli
(E2 > E1) the critical stress increases.
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Fig.7: The comparison of the calculated threshold stresses (normalized
by threshold stress of homogeneous material M2) from the criteria
based on : the generalized strain energy density factor (GSEDF),
the value of the average stress ahead of a crack tip (av. stress) and
the area of the plastic zone in front of a crack tip (pl. zone size)

Fig.8: The model of a bimaterial body with applied loading used for FE
calculations of changes of the crack propagation direction after the
crack passed the interface; v = 0 [deg] means propagation direction
in homogeneous material; T'= 15 mm, t = 1 mm, L = 60 mm

¢ [deg] 90 80 70 60 50
E1/E; =2 0 —6 —11 —16 —19
E1/Ey =05 0 4 8 10 11

Tab.1: The resulting deviation ¢ [deg] of the crack propagation direction
after the crack passed the bimaterial interface in comparison with
propagation in homogeneous material (E1/FEo = 1); the value ¢
represents the angle between the crack and the interface (Fig. 8)

4.2. Crack propagation direction

A bimaterial body loaded by tensile stress was chosen as a numerical example of esti-
mation of the crack propagation direction after the crack passed through the interface, see
Fig.8. The applied stress oapp1 = 100MPa and 11 = vo = 0.3, By = 2x10° MPa, two
different values of By (E; = 1x10° and E; = 4x10° MPa), the threshold value of the stress
intensity factor of the material M2 Ky, = 6.42MPam'/? and the yield stress of the material
M2 o9 = 800 MPa were used for numerical calculations.
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Numerical calculations were performed for five different angles ¢ between the crack and
the interface. For estimation of the crack propagation direction the equation (36) was used.
The corresponding results are summarized in Table 1. See [17] for details.

From Table 1 it is evident that for Ey/Es > 1 the crack inclines to the direction normal
to the bimaterial interface within its next propagation. For ratio Ej/Es < 1 the crack
deviates from direction normal to bimaterial interface. More details and a discussion have
been published in [17].

5. Discussion

The stability criteria presented for a crack with its tip at the interface are based on three
different physical principles:
— on the magnitude of the average stress ahead of the crack tip
— on the plastic zone size ahead of the crack tip
—on the energy approach introduced by Sih based on the generalized strain energy
density factor

Each of the described criteria has a different fundamental principle and is useable for
different crack propagation mechanism. The results calculated by means of all criteria are in
a good agreement in a wide range of Young’s modulus ratio, see Fig. 8. It can be concluded
that for the current materials for which the ratio E;/Es is from the interval 0.2 < E;/Fs < 5
all approaches give comparable results. All criteria are linked together by the conditions
of LEFM.

The advantage of the presented criteria is the fact that no new material characteristics
are needed and no new measurements on bimaterial bodies are necessary for estimation
of the critical values for crack propagation. For estimation of the critical stress of crack
propagation through the bimaterial interface it is enough to know the critical value of the
fracture toughness (Kic) of the material M2 only.

The proper values of the parameters r (in eq. (31)) or d (in eq. (18)) have to be chosen, but
their influence on the resulting critical stress is not strong. These parameters allow to include
the real material structure and the mechanisms of crack propagation to the estimation of
the critical stress.

6. Conclusions

Three criteria dealing with the propagation of a crack through the interface between two
materials are introduced in the paper. Attention is paid to the case of a crack touching the
interface. These procedures make it possible to quantify the effect of the interface on the
critical value at which a fatigue crack propagates from the first material into the second one.
The procedures are based on the extension of linear elastic fracture mechanics to general
singular stress concentrators.

It follows from the results presented that the corresponding critical value can be strongly
influenced by the existence of an interface between two materials.

Basically, if a crack propagates from a stiffer material into a softer one (i.e. E1/FE2 > 1),
the value of the critical stress oeit (in case of brittle materials M1 and M2) or the threshold
stress oy decreases. In the opposite case (for Ey/Es < 1) the critical stress for crack
propagation ot (or the threshold stress o) increases.
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From a practical point of view, the suggested procedures are general and can be used
in considerations on the crack stability in composite materials, protective layers, etc. The
results obtained contribute to a better understanding of damage caused by cracks in the
above mentioned structures.
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