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CALCULATION OF NATURAL VIBRATION OF LINEAR
UNDAMPED ROTATIONALLY PERIODIC STRUCTURES

Pavel Polach*

The article presents the method of the calculation of natural frequencies and mode
shapes of the linear undamped rotationally periodic systems. The method is applied
in the calculation of the natural vibration characteristics of the steam turbine bladed
disks.
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1. Motivation

The approach towards the calculation of the natural vibration characteristics (i.e. natural
frequencies and mode shapes) of steam turbine bladed disks using the rotational periodicity
of the structure was solved in [1]. The verification of the method on the tested examples [2]
and the calculation of the natural vibration characteristics of steam turbine bladed disk
with blades of the 220Z-1085 type connected with the continuous binding [3], [4], in which it
was possible to compare the results of the calculations with the experimental measurement
evaluation [5], have been published in scientific conferences so far. The motivation for writing
papers [6], [7] and this article was the topical application of the method in calculating the
natural vibration characteristics of the steam turbine bladed disk with the blades of the
ZN340-2 type with the continuous binding by shrouding and tie-boss [8], real possibility of
further application of the method when developing the steam turbine bladed disks of a new
design (in connection with the supposed development of power engineering in the Czech
Republic), reminding the professional public of the possibility of a broader utilization of
the problematics that had not been developed in the Czech Republic for several years and
discussion concerning the prospects of further possible development of the methods that use
the rotational periodicity of the systems for the calculation of dynamic properties of bladed
disks of rotating machines.

2. Periodic structures

Description of various methods that use specific properties of the structure for the cal-
culation of its investigated characteristics or behaviour under the given conditions can be
found in the appropriate literature relatively often. The periodicity of the system is used to
solve various problems. The origin of the papers dates back mainly to the years after 1970,
when thanks to the development of computer technology it was possible to use effectively
the derived procedures. Due to a large amount of publications dealing with using periodicity
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of the system for the calculation of its dynamic properties and due to the fact that most
of them present the solution of a narrow range of problems of other fields than dynamic
properties of rotationally periodic systems, only an informative survey of the problematics
is given (its description in more detail is presented e.g. in [1], [9] and [10]).

In the theoretical works some authors deal with processes in infinite or semi-infinite
open (linear) systems. Both infinite and semi-infinite open periodic systems are composed
of the infinite amount of subsystems; at the infinite system it is possible to assess neither its
beginning nor its end, at the semi-infinite system it is possible to assess its beginning. Finite
systems can be generally divided into open ones (boundary conditions must be considered)
and cyclic (closed) ones. Some works deal with the influence of slight mutual deviations
of the subsystems on the change in the whole system behaviour (so called nearly-periodic
systems are concerned).

There are two basic approaches to solving the dynamic behaviour of periodic systems :
a vibration one and a wave one (e.g. [9], [11]). The wave approach is applied in the investi-
gation of the wave propagation through the periodic system but it can be used for obtaining
information concerning the periodic system vibration. Similarly in the vibration approach, in
which the output of the investigation should be the periodic system vibration, the quantities
connected with the wave propagation can be determined using the investigation results.

From the point of view of generality, type of solved physical models, and boundary
conditions the publications by Vladimı́r Pětrovský are unique and very important for the
investigation of the natural vibration characteristics of the periodic undamped systems.
They deal with cyclic systems [12], finite open systems [13] and symmetric periodic sys-
tems [14]. In [12], [13] and [14] numerical applications of the approaches are not presented
on concrete examples. The works by Pětrovský are just known to the limited number of the
specialists involved in the problems of periodic systems because they were published only as
the internal reports of ÚTSSK Plzeň or ŠKODA VÝZKUM s.r.o.

Some publications deal exclusively with problems of rotationally periodic systems. E.g.
Kempner and Efremova determine, using the transfer matrix method, natural frequencies of
the steam turbine blades with the continuous binding [15] (a blade with the appropriate part
of shrouding is considered to be a subsystem). Fricker and Potter investigate the response
of rotationally periodic structures on transient forces and prescribed motions. The response
is obtained by the solution of the equation of motion of a single substructure for a number
of different spatial Fourier harmonic of force [16]. Problems of the natural vibration in [17]
are solved in a similar way. The author considers a case in which the boundary conditions
of cyclosymmetry are not fulfilled and solves the reduction of the number of degrees of
freedom by means of so called spectral condensation (the method derived by the author is
concerned [17]). In [18] DiMaggio, Duron and Davis deal with the experimental identification
of the mode shapes of the turbopump bladed disk. A helicopter propeller is a rotationally
periodic structure as well – its natural frequencies and mode shapes are investigated by
Dubigeon and Michon [19]. As to the Czech authors involved in the problems of rotationally
periodic structures Ivan Krásný must be mentioned. In [20] he uses the method for the
static solution of rotationally periodic structures subjected to general loads, and calculates
the natural vibration characteristics of undamped systems. The analyses of computational
time demands and solution errors are also included in this paper. In [21] he solves the
reduction of degrees of freedom of a subsystem discretized using FEM, the influence of the
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reduction of degrees of freedom on the computing time of natural frequencies and on the
accuracy of results. In [22] (together with Mančal) he gives in words the succession of
operations when calculating the natural frequencies of the steam turbine bladed disks and
the compressor impellers. The contribution by Burda [23], which follows from [20], also
deals with the problems of the natural vibration of bladed disks.

3. Steam turbine bladed disks and the framework description of a computational
model

As mentioned in the article introduction the main reason for the derivation of the calcu-
lation method for the natural vibration characteristics of rotationally periodic systems was
especially its usability at designing the structural solution of the steam turbine bladed disks.

When designing turbines the producer must take into account many sometimes even
opposite points of view. The customer is interested, besides the price, efficiency and lifetime,
especially in the reliability. In order to reduce the probability of the occurrence of unexpected
failures the producer must consider many data when designing the turbine and its parts,
which, after the evaluation, give information about the suitability of the turbine design for
the given operational condition. From the point of view of dynamics, the knowledge of the
natural vibration characteristics of the turbine individual structural parts is important for
the assessment of the design suitability. On the basis of those characteristics it is possible
to assess according to various criteria and experience if, due to acting forces, the danger of
resonant vibration excitation does not threaten.

In the computational model for the determination of the natural vibration characteristics
based on the rotational periodicity of the bladed disk it is considered that the bladed disk
can be divided into the certain number of identical parts – subsystems. It is advisable to
choose the subsystem to be formed by a disk sector with one blade (i.e. the smallest possible
identical part). The subsystem discretization will be performed in such a way that the
subsystem may be coupled in an equal number of points in the same degrees of freedom
to their left-side and right-side adjacent subsystems. After the mathematical formulation
of the problem it is possible to derive relations for the calculation of natural frequencies
and mode shapes of the whole system (i.e. the bladed disk) [1] using the theory of the
solution of the matrix difference equations [24]. Compared with the solution of the system
as a whole the main advantage of the mentioned method (using the rotational periodicity)
consists in the fact that the order of stiffness and mass matrices does not increase (the need
of their assembling follows from the process of solution) but it is at most double than in
case of considering a single subsystem. Thus the solution is less demanding for the computer
operating memory and computing time. Performing a lower number of numerical operations
and thus reducing the probability of a computing error is the result of a lower number of
solved equations.

When applying the natural vibration characteristics calculating method to the steam
turbine bladed disks, the subsystem stiffness and mass matrices (the whole system is con-
sidered linear and undamped) are assembled using the finite element method (using the
COSMOS/M software). The problem formulation leads to the solution of the generalized
eigenvalue problem and the natural vibration characteristics are calculated using the sub-
space iteration method. A special in-house software was created to visualize the mode
shapes. The applicability of the method was verified when determining the natural vibra-
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tion characteristics of the steam turbine bladed disk with the blades of the 220Z-1085 type
connected by the continuous binding [1], [3].

4. Relations for the calculation of the natural vibration characteristics of the
linear undamped rotationally periodic system

Detailed derivation of the mathematical relations for the calculation of the natural vibra-
tion characteristics of the linear undamped rotationally periodic system is performed in [1].
In contradiction to [1] the possibility of the elimination of the subsystem internal degrees of
freedom is not presented in this article.

Let the finite periodic system be composed of the definite number M of identical parts –
subsystems. The subsystem discretization will be performed in such a way, that it may be
coupled in identical number N of points in identical degrees of freedom to their left-side and
right-side adjacent subsystems (see Fig. 1). There are no requirements imposed on internal
points of the subsystem.

Mathematically, this approach to the problem formulation leads to assembling and solving
the matrix difference equations.

By introducing the condition that the whole system is linear and the motion of the
k-th subsystem is investigated during its harmonic vibration it is possible to formulate the
displacement vector uk(t) of the k-th subsystem in the form

uk(t) = Uk ei ω t (1)

where Uk is the vector of displacement amplitudes of the k-th subsystem, ω is the angular
frequency, t is the time, i is the imaginary unit. The vector of generalized forces qk(t) acting
on the k-th subsystem can be formulated in the form

qk(t) = Qk ei ω t (2)

where Qk is the vector of amplitudes of generalized forces qk(t) acting on the k-th subsystem.

Fig.1: The k-th subsystem and its couplings with the adjacent subsystems
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Thus it is supposed that the vector of generalized forces qk(t) is proportional to the
instantaneous state of the subsystem and it changes proportionally to its displacements.
The relation between the amplitude of the subsystem displacements and the amplitude of
generalized forces acting on it is described in the matrix equation

D(ω)Uk = Qk (3)

where D(ω) is the frequency dependent dynamic stiffness matrix identical for all subsystems
(k = 1, 2, . . . , M).

The vector of displacements amplitudes Uk of the k-th subsystem can be partitioned
into subvectors corresponding to the degrees of freedom lUk, in which the k-th subsystem
is coupled with the subsystem k − 1, to the degrees of freedom pUk, in which it is coupled
with the subsystem k+1 and to the internal degrees of freedom iUk (see Fig. 1). The vector
of the amplitudes of generalized forces Qk can be partitioned in the same way (see Fig. 1).

In the points of coupling the k-th subsystem with the adjacent subsystems the compati-
bility conditions hold

pUk−1 = lUk ,

pUk = lUk+1

(4)

and the conditions of equilibrium of the generalized coupling forces hold

pQk−1 = −lQk ,

pQk = −lQk+1 .
(5)

The dynamic stiffness matrix D(ω) of the subsystem can be written using the subma-
trices corresponding to the individual groups of degrees of freedom. When introducing the
condition that the generalized forces act on the subsystem only in the points common with
the adjacent subsystems and that they do not act on the subsystem internal points, the
matrix equation (3) can be written in the form⎡

⎣ llD liD lpD
ilD iiD ipD
plD piD ppD

⎤
⎦
⎡
⎣ lUk

iUk
pUk

⎤
⎦ =

⎡
⎣ lQk

0
pQk

⎤
⎦ . (6)

Note : If the subsystems were coupled to the inertial frame, as it is illustrated in Fig. 1,
by springs of stiffness KA, KB and KC in nodes A, B and C these stiffnesses would be
included in the submatrices liD, piD or iiD of the dynamic stiffness matrix D(ω).

The equation obtained by multiplying the first row of the matrix equation (6) and tran-
scribed for the subsystem k + 1 is, after introducing the second compatibility condition (4)
and the second condition of generalized coupling forces equilibrium (5), of the form

llD pUk + liD iUk+1 + lpD pUk+1 = −pQk . (7)

Using the first compatibility condition (4) the following relations are obtained from the
second and the third row of the matrix equation (6) :

ilD pUk−1 + iiD iUk + ipD pUk = 0 , (8)
plD pUk−1 + piD iUk + ppD pUk = pQk . (9)



86 Polach P.: Calculation of Natural Vibration of Linear Undamped Rotationally Periodic Structures

Equations (7), (8) and (9) are the initial difference equations for the calculation of the
subvectors of displacements amplitudes pUk and iUk and the subvector of the amplitudes
of generalized coupling forces pQk.

The more suitable procedure of the two possible ones (mentioned in [1]), which can be
used for the composition of relations for the calculation of natural frequencies and mode
shapes of the periodic system, leads to the solution of the system of homogeneous linear dif-
ference equations of the second type (the variable in these equations is k; k = 1, 2, . . . , M)
Using this procedure the subvector of the amplitudes of generalized coupling forces pQk is
eliminated from the difference equations (7), (8) and (9) and only the subvectors of displace-
ments amplitudes pUk and iUk are determined.

The subvector of the amplitudes of generalized coupling forces pQk is eliminated by the
summation of the equations (7) and (9) :

plD pUk−1 + (llD + ppD) pUk + piD iUk + lpD pUk+1 + liD iUk+1 = 0 . (10)

Matrix equations (8) and (10) can be expressed using one matrix equation

E piUk−1 + F piUk + G piUk+1 = 0 (11)

where

E =
[

plD 0
ilD 0

]
, F =

[
llD + ppD piD

ipD iiD

]
and G =

[
lpD liD
0 0

]
.

In the process of solution (see Appendix A) the condition that the periodic system is
undamped is introduced and cyclic condition :

piUk+M = piUk , where k = 1, 2, . . . , M (12)

is used.

As the periodic system is considered undamped the dynamic stiffness matrix D(ω) of the
subsystem can be put in the form (see Appendix A) :

D(ω) = K− ω2 M (13)

where K is the stiffness matrix of the subsystem and M is the mass matrix of the subsystem.

After solving the matrix difference equations (see Appendix A; the course of solving
complies with the conditions given in [24]) the vector of displacements amplitudes piUk is
dependent on the optional parameter β for cyclic periodic systems (for the mode shapes of
the rotationally periodic systems the parameter β means the number of nodal diameters).
Two forms of equations are obtained for the calculation of natural frequencies and mode
shapes of the whole periodic system in dependence on the parameter β value : the first form
of equations (see relations from (14) to (19)) holds for β = 0 and in addition in case of
even M β = M/2, the second form of equations (see relations from (20) to (25)) holds for
β = 1, 2, . . . , M − 1 and when M is even with the condition β �= M/2.

For β = 0 (i.e. α = 0) and in addition in case of even M β = M/2 (i.e. α = π), the
solution of the characteristic equation (A4) (see Appendix A) will be one real root and for
piUk relation (A23) (see Appendix A) will yield :

pi
βUk = C cos(βα k) βa (14)

where βα = 2π β/M , β = 0 and in addition in case of even M β = M/2.
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When β = 1, 2, . . . , M − 1 and when M is even with the condition β �= M/2 the solution
of the characteristic equations (A4) (see Appendix A) for the rotationally periodic systems
will be two complex conjugate roots and for piUk relation (A23) (see Appendix A) gives

pi
βUk = C1 [cos(βα k) βa + sin(βα k) βb] + C2 [cos(βα k) (−βb) + sin(βα k) βa] (15)

where βα = 2π β/M , β = 1, 2, . . . , M − 1; when M is even with the condition β �= M/2.

Characteristic vectors βa and βb are determined (for specifically chosen β) by substitut-
ing relations (14) or (15) into equation (11). Cyclic condition is fulfilled for the arbitrary
value of the constant C in equation (14) or the constants C1 and C2 in equation (15).

Now let be considered the case in which characteristic equation (A4) (see Appendix A)
has a real root. After substituting relation (14) into equation (11) it is obtained :

EC cos[βα (k − 1)] βa + FC cos(βα k) βa + GC cos[βα (k + 1)] βa = 0 (16)

where β = 0 and in addition in case of even M β = M/2.

Expressions cos[βα (k − 1)] and cos[βα (k + 1)] will be substituted by the expressions
obtained according to the angle difference identities in equation (16) – see Appendix B.

Modifying equation (16) it is obtained (assumption C �= 0) :

[F + (E + G) cos βα] βa = 0 (17)

where β = 0 and in addition in case of even M β = M/2.

Following designation is performed :

βH = βH1 = [F + (E + G) cos βα] =

=
[

llD + ppD piD
ipD iiD

]
+
([

plD 0
ilD 0

]
+
[

lpD liD
0 0

])
cos βα .

(18)

The characteristic vector βa can be determined from equation (17) and natural frequen-
cies of the whole periodic system can be determined from the condition of a nontrivial
solution :

det βH = det βH1 = 0 . (19)

Mode shapes of the whole periodic system can be calculated by substituting the charac-
teristic vectors βa into equation (14).

If two complex conjugate roots are the solution of the characteristic equation (A4) (see
Appendix A), each particular solution separately is introduced into equation (11) (each one
fulfils independently equation (11)) from relation (15) and two conditions for the calculation
of βa and βb are obtained :

EC1 {cos[βα (k − 1)] βa + sin[βα (k − 1)] βb}+

+ FC1 {cos(βα k) βa + sin(βα k) βb}+

+ GC1 {cos[βα (k + 1)] βa + sin[βα (k + 1)] βb} = 0 ,

EC2 {cos[βα (k − 1)] (−βb) + sin[βα (k − 1)] βa}+

+ FC2 {cos(βα k) (−βb) + sin(βα k) βa}+

+ GC2 {cos[βα (k + 1)] (−βb) + sin[βα (k + 1)] βa} = 0

(20)

where β = 1, 2, . . . , M − 1; when M is even with the condition β �= M/2.
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Equations (20) for the calculation of βa and βb must be fulfilled for each k, that is why
k = M can be selected without the loss of generality. After the modifications it is obtained
(assumption C1 �= 0 and at the same time C2 �= 0) :

[F + (E + G) cos βα] βa + (G−E) sin βα βb = 0 ,

−(G−E) sin βα βa + +[F + (E + G) cos βα] βb = 0
(21)

where β = 1, 2, . . . , M − 1; when M is even with the condition β �= M/2.

Equations (21) can be written into one matrix equation :

βH βv =
[

βH1 βH2

−βH2 βH1

] [
βa
βb

]
= 0 . (22)

Square submatrices βH1 and βH2 are of the n-order (as it has been already stated : n is
dimension of the vector piUk, or the order of the matrices E, F and G).

Matrix βH1 can be calculated in the same way as for the real root of the characteristic
equation (18) :

βH1 = [F + (E + G) cos βα] =

=
[

llD + ppD piD
ipD iiD

]
+
([

plD 0
ilD 0

]
+
[

lpD liD
0 0

])
cos βα ,

(23)

βH2 = (G−E) sin βα =
([

lpD liD
0 0

]
−
[

plD 0
ilD 0

])
sin βα . (24)

The characteristic vectors βa and βb can be determined from the relation (22), natural
frequencies of the whole periodic system can be determined from the condition of a nontrivial
solution :

det βH = det
[

βH1 βH2

−βH2 βH1

]
= 0 . (25)

Mode shapes of the whole periodic system can be calculated by substituting the charac-
teristic vectors βa and βb into equation (15). Constants C1 and C2 when enumerating mode
shapes piUk can be selected arbitrarily. It follows from both the decision procedure itself
and the definition of mode shapes, which must form a linearly independent basis. During
the visualization of the particular mode shapes of the real steam turbine bladed disk [1], [8]
conditions C1 = 1 and C2 = 0 are applied similarly as in [14].

Generally natural vectors βa and βb are different for identical β. It can be shown that
with certain types of the subsystem symmetry it holds βa = c βb (where β = 1, 2, . . . , M−1;
when M is even with the condition β �= M/2) and relations for the calculations of natural
frequencies and natural mode shapes of the rotationally periodic system are simpler [14].

When formulating the initial difference equations for the calculations of the subvectors of
displacements amplitudes pUk and iUk and the subvector of amplitudes of the generalized
coupling forces pQk (relations (7), (8) and (9)) for cyclic systems it is necessary to respect
the influence of the subsystem geometry, of the geometry of the whole periodic system and
of the option of the local coordinate system, in which the coordinates of the subsystem
points are determined, on the specific formulations of the compatibility conditions (4) and
the conditions of equilibrium of the generalized coupling forces (5).
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In the rotationally periodic system the subsystem of a sector shape will be considered
(see Fig. 2). The sector angle is designated 2 γ. The system of coordinates, in which the
coordinates of points, the components of the vector of displacements amplitudes Uk and the
components of the vector of the generalized coupling forces Qk amplitudes are determined,
will be a local right-handed Cartesian coordinate system xyz in the k-th subsystem. The
coordinate system will be located in such a way so that z axis may be the axis of the
symmetry of the points in which the k-th subsystem is coupled with the subsystem k − 1
(adjacent to the left) and with the subsystem k + 1 (adjacent to the right) and x axis may
be the axis of the rotational symmetry of the whole rotationally periodic system. Further,
auxiliary local right-handed Cartesian coordinate systems lx ly lz and pxpy pz (see Fig. 2) will
be introduced in the k-th subsystem.

Fig.2: Scheme of the sector shaped subsystem
in the rotationally periodic system

In the same way as in the k-th subsystem local right-handed Cartesian coordinate systems
xyz, lx ly lz and pxpy pz will also be introduced in the subsystems k − 1 and k + 1. In the
points common to the subsystems k − 1 and k the coordinate systems of pxpy pz of the
k − 1 subsystem and lx ly lz of the k-th subsystem are identical. In the points common to
the subsystems k and k + 1 the coordinate systems of pxpy pz of the k-th subsystem and
lx ly lz of the k + 1 subsystem are identical. Then in the rotationally periodic system the
compatibility conditions (4) are of the form

T(−γ) pUk−1 = T(γ) lUk ,

T(−γ) pUk = T(γ) lUk+1

(26)

and the conditions of equilibrium of the generalized coupling forces (5) :

T(−γ) pQk−1 = −T(γ) lQk ,

T(−γ) pQk = −T(γ) lQk+1 .
(27)

where T(−γ) and T(γ) are the square transformation matrices.

Matrix T(γ) is of the form

T(γ) =

⎡
⎢⎢⎣

t1(γ) 0 · · · 0
0 t2(γ) · · · 0
...

...
. . .

...
0 0 · · · tN (γ)

⎤
⎥⎥⎦ (28)
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where submatrix tj(γ), j = 1, 2, . . . , N , in the most general case of six degrees of freedom
in the point, is of the shape

tj(γ) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 cos γ sin γ 0 0 0
0 sin γ cos γ 0 0 0
0 0 0 1 0 0
0 0 0 0 cos γ sin γ
0 0 0 0 − sin γ cos γ

⎤
⎥⎥⎥⎥⎥⎦ . (29)

Transformation matrix T(−γ) is similar to the matrix T(γ), it contains the angle −γ

instead of the angle γ. Between the matrices T(γ) and T(−γ) there is relation

T(γ)T(−γ) = I . (30)

When determining the subsystem geometry in the shape of a sector in the considered
local right-handed Cartesian coordinate systems xyz the compatibility conditions (4) and
the conditions of equilibrium of the generalized coupling forces (5) are replaced with rela-
tions (26) and (27).

When assembling the equations for the calculation of the natural vibration characteris-
tics of the linear undamped rotationally periodic system according to the described method
the solution of the matrix equation (17) or (22) leads to the generalized eigenvalue prob-
lem [1]. The equation of the following type will be solved (in accordance with equation (13);
β = 0, 1, . . . , M − 1) :

βH βv = (βHK − βω2
βHM) βv = 0 . (31)

The subspace iteration method (e.g. [25]), which enables to determine the selected num-
ber of the lowest natural frequencies q and corresponding natural vectors, is a very efficient
numerical method. This method requires the matrices βHK and βHM to be symmetric and
in addition matrix βHK to be positive definite (at the same time those conditions guarantee
the eigenvalues βω2 of equation (31) to be real positive). The proof that matrices βHK and
βHM comply with the stated conditions is carried out in [1] (β = 0, 1, . . . , M − 1).

After the determination of the values βω2
j (j = 1, 2, . . . , q) the natural frequencies (in [Hz])

of the whole periodic system can be calculated from the relation

βfj =

√
βω2

j

2π
, j = 1, 2, . . . , q . (32)

5. Conclusions

The PERCOK in-house software [8] was created in the Compaq Visual Fortran pro-
gramming language on the basis of the relations for the calculation of the natural vibration
characteristics of the linear undamped rotationally periodic systems with the subsystems of
a sector shape. The PERCOK software uses the subsystem stiffness matrix K and mass
matrix M assembled applying the COSMOS/M FEM software. The PERG in-house soft-
ware [8], in the Compaq Visual Fortran programming language as well, was created to
visualize the natural mode shapes of the rotationally periodic systems. Those computer
softwares were originally [1] created in the Fortran 5.0 language, which is applicable only
under the MS-DOS operating system. That is why the operating memory, which could be
utilized by the softwares, was limited and it was possible to operate only with the matrices
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up to the certain order (the subsystem model could have 510 degrees of freedom at maxi-
mum). By reprogramming to the Compaq Visual Fortran language, which works under the
Windows operating system, the matrices order and thus the subsystem model discretization
are only limited by the computer operating memory capacity. Those in-house softwares
were applied in the calculation of the natural vibration characteristics of the steam turbine
bladed disk with the blades of the ZN340-2 type with the continuous binding by shrouding
and a tie-boss [8] (the subsystem model has 9 537 degrees of freedom).

The respecting of the material damping properties or gyroscopic effects are the possible
ways of further development of the given problematics. First a qualified verification of the
extent of the influence of their consideration on the natural vibration characteristics of the
rotationally periodic systems (specifically the bladed disks) will have to be performed. Due
to the material damping properties or gyroscopic effects considering not only the way of the
solution of the matrix difference equations (7) to (9) is changed but at the same time using
the commercial software [26] is not possible for assembling the damping or gyroscopic ma-
trices. Further possibility is the consideration of ‘disturbing’ the system periodicity because
of the structural deviations of some subsystems (in this case it does not hold any more that
the order of stiffness and mass matrices of the whole system is double at most in comparison
with the order of stiffness and mass matrices of the single subsystem) or the solution of the
forced vibration.
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[26] Kellner J.: Modálńı vlastnosti svazk̊u turb́ınových lopatek (Modal Properties of Packets of
Turbine Blades), Essay to State PhD Examination, Department of Mechanics FAS UWB in
Pilsen 2006, Plzeň (in Czech)
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Appendix A – Solution of matrix difference equations

The matrices E, F and G (see equation (11) in the main article) consist of the submatrices
of the dynamic stiffness matrix D(ω) of the subsystem and zero submatrices. As the dynamic
stiffness matrix D(ω) for all the subsystems is identical the matrices E, F and G are not
dependent on k. The matrix equation (11) thus constitutes the system of homogeneous linear
difference equations of the second type of the second order with constant coefficients [24].
That is why (according to the theory of difference equations [24]) the particular solutions of
the matrix difference equation (11) are of the form

piUk = v λk (A1)

where vector v is of the same dimension as vector of displacements amplitudes piUk and is
independent of k; λ (�= 0) is the unknown constant for the moment (λk is the k-th power
of λ).

Substitution of the assumed form of the solution (A1) into the equation (11) gives the
equation

(Eλk−1 + Fλk + Gλk+1)v = 0 . (A2)

As the nontrivial solution λ �= 0 is searched for, equation (A2) can be divided by the
number λk−1 :

(E + Fλ + Gλ2)V = 0 . (A3)

Since solution for v �= 0 is searched for, following condition for the calculation of constant
λ is valid :

det(E + Fλ + Gλ2) = 0 . (A4)

This equation is the algebraic (characteristic) equation of the 2n-th degree (n is dimension
of the vector piUk, or order of the matrices E, F and G), which has 2 n non zero roots jλ,
where j = 1, 2, . . . , 2 n. Roots of this equation can be both real and complex numbers.

It is assumed that m (m ≤ 2 n) roots λ of the characteristic equation (A4) are complex.
Complex root Lλ can be expressed in the goniometric form

Lλ = Lr (cos Lα + i sin Lα) . (A5)

Due to further process of solution an assumption that the matrices E, F and G have
only real elements is introduced.

The matrices E, F and G contain the elements of the dynamic stiffness matrix D(ω) of
the subsystem. In order that the matrices E, F and G may have only real elements the
dynamic stiffness matrix D(ω) of the subsystem must also have only real elements. The
dynamic stiffness matrix D(ω) of the subsystem must not contain the damping matrix B
of the subsystem, i.e. further an undamped periodic system will be considered (if a damped
periodic system were considered the term i ω B containing the imaginary unit i would be
added in the equation (A6)) :

D(ω) = K− ω2 M (A6)

where K is the stiffness matrix of the subsystem and M is the mass matrix of the subsystem.
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In case that the matrices E, F and G contain only real elements even equation (A4) has
only real coefficients and it holds : if equation (A4) has complex root Lλ, it also has complex
conjugate root [24]

L+1λ = Lr (cos Lα− i sin Lα) (A7)

and a number of complex roots of the characteristic equation (A4) m must be an even
number.

If the characteristic vector
Lv = La + i (−Lb) (A8)

corresponds to the characteristic value Lλ then the complex conjugate characteristic vector

L+1v = La + i Lb (A9)

corresponds to the characteristic value L+1λ.

By substituting relations (A5), (A7), (A8) and (A9) into equation (A1) the particular
solution of equation (11) for the characteristic values Lλ and L+1λ is obtained :

pi
LUk = Lrk [cos(Lα k) + i sin(Lα k)][La + i (−Lb)] , (A10)

pi
L+1Uk = Lrk [cos(Lα k)− i sin(Lα k)](La + i Lb) . (A11)

On the basis of the theorems on the multiplication of the particular solution by the
constant and on the sum of the particular solution of homogeneous linear difference equations
of the second type [24] it is possible to prove that the functions

1
2

(
pi
LUk + pi

L+1Uk

)
= Lrk

[
cos(Lα k) La + i sin(Lα k) Lb

]
, (A12)

1
2 i

(
pi
LUk − pi

L+1Uk

)
= Lrk

[
cos(Lα k) (−Lb) + i sin(Lα k) La

]
, (A13)

also are the solution of equation (11).

Relation (A12) corresponds to the real parts of the complex particular solutions pi
LUk and

pi
L+1Uk, relation (A13) corresponds to the imaginary parts of the complex particular solution
pi
LUk and pi

L+1Uk. A linear independency of the homogeneous linear difference equations of
the second type is the requirement for their particular solution, from the point of view of
their substituting into the general solution. The condition of the linear independency is also
fulfilled by relations (A12) and (A13). Relations (A12) and (A13) instead of relations (A10)
and (A11) can be taken for the particular solutions of equation (11) when not complex but
real functions are the solution.

After the formal redesignation (instead of (pi
jUk + pi

j+1Uk)/2 it will be written pi
jUk and

instead of (pi
jUk + pi

j+1Uk)/(2 i) it will be written pi
j+1Uk) altogether m/2 pairs of particular

solutions of equation (11) will be obtained :

pi
jUk = jr

k
[
cos(jα k) ja + i sin(jα k) jb

]
,

pi
j+1Uk = Lrk

[
cos(jα k) (−jb) + i sin(jα k) ja

]
where j = 1, 3, 5, . . . , m− 1 .

(A14)

In agreement with the already mentioned assumption the characteristic equation (A4)
has 2 n−m real roots jλ, where j = m + 1, m + 2, . . . , 2 n. The real roots of equation (A4)
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can be obtained from the expression in the goniometric form (A5). It is obvious that for
the real roots it must be jα = l π, l = 0, 1, 2, . . . ; j = m + 1, m + 2, . . . , 2 n. The root
expressed in the form (A5) corresponds with the characteristic vector in the form (A8). For
real roots jλ (j = m+1, m+2, . . . , 2 n) the imaginary part of this characteristic vector (−jb)
(j = m + 1, m + 2, . . . , 2 n) has no meaning. Then the particular solution of equation (11)
can be written for real roots in the form (according to relation (A10)) :

pi
jUk = jr

k cos(jα k) ja where j = m + 1, m + 2, . . . , 2 n . (A15)

It is possible that some complex root of the characteristic equation (A4) is s-fold. It is
assumed that this root is complex root 1λ = 1r (cos 1α + i sin 1α). Particular solution of
equation (11) pi

1,2,...,sUk for s-fold root 1λ will be of the form

pi
1,2,...,sUk = jλ

k
1p (A16)

where 1p = 1c0 +k 1c1 + · · ·+ks−1
1cs−1 is the vector polynomial of s−1 degree in variable

k corresponding with the s-fold characteristic value 1λ. The vector polynomial 1p can be
put down in the form

1p = 1pRe + i (−1pIm) (A17)

where 1pRe = 1a0 + k 1a1 + · · ·+ ks−1
1as−1 and 1pIm = 1b0 + k 1b1 + · · ·+ ks−1

1bs−1.

If the complex root 1λ is s-fold root of the characteristic equation (A4) then complex
conjugate root 2λ = 1r(cos 1α − i sin 1α) must also be s-fold. Vector polynomial 2p corre-
sponding with the characteristic value 2λ is also of s− 1 degree in variable k and is complex
conjugate to vector polynomial 1p :

2p = 1pRe − i (−1pIm) = 1pRe + i 1pIm . (A18)

When substituting relation (A17) into equation (A16) and relation (A18) into the similar
equation for root 2λ then particular solutions of equation (11) for s-fold complex conjugate
characteristic values 1λ and 2λ are obtained :

pi
1,2,...,sUk = 1r

k [cos(1α k) + i sin(1α k)] [1pRe + i (−1pIm)] , (A19)
pi

s+1,s+2,...,2sUk = 1r
k [cos(1α k)− i sin(1α k)] (1pRe + i 1pIm) . (A20)

Similarly as relations (A10) and (A11) for the simple complex conjugate roots, equa-
tions (A19) and (A20) can be written into the relations corresponding with the real parts of
complex particular solutions pi

1,2,...,sUk and pi
s+1,s+2,...,2sUk and the imaginary parts of the

complex particular solutions pi
1,2,...,sUk and pi

s+1,s+2,...,2sUk, which further will be considered
to be the particular solutions of equations (A4) :

pi
1,3,...,2s−1Uk = 1r

k [cos(1α k) 1pRe + sin(1α k) 1pIm] ,

pi
2,4,...,2sUk = 1r

k [cos(1α k) (−1pIm) + sin(1α k) 1pRe] .
(A21)

Further it will be considered that real root m+1λ of characteristic equation (A4) is
t-fold. When comparing and modifying relation (A19) for the real roots it is obvious that
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m+1α = l π, l = 0, 1, 2, . . . and vector polynomial m+1pIm has no meaning for real roots.
Polynomial m+1p = m+1a0 + k m+1a1 + · · ·+ kt−1

m+1at−1 is the vector polynomial of t− 1
degree in variable k corresponding with t-fold characteristic value m+1λ. The particular
solution of equation (11) pi

m+1,m+2,...,m+tUk for multiple real root m+1λ will be of the form

pi
m+1,m+2,...,m+tUk = m+1r

k cos(m+1α k) m+1p . (A22)

The general solution of equation (11) is obtained as linear combination of all the particu-
lar solutions given by relations (A14), (A15), (A21) and (A22). For the reason of the simpler
notation it will be considered that in equation (11) only complex conjugate roots 1λ and 2λ

and real root m+1λ are multiple (s-fold and t-fold) :

piUk = 1r
k
{
cos(1α k) (C1 1a0 + C3 k 1a1 + · · ·+ C2s−1 ks−1

1as−1) +

+ sin(1α k) (C1 1b0 + C3 k 1b1 + · · ·+ C2s−1 ks−1
1bs−1) +

+ cos(1α k) [C2 (−1b0) + C4 k (−1b1) + · · ·+ C2s ks−1 (−1bs−1)] +

+ sin(1α k) (C2 1a0 + C4 k 1a1 + · · ·+ C2s ks−1
1as−1)

}
+

+
m/2∑

j=s+1

2j−1r
k C2j−1 [cos(2j−1α k) 2j−1a + sin(2j−1α k) 2j−1b] +

+
m/2∑

j=s+1

2j−1r
k C2j [cos(2j−1α k) (−2j−1b) + sin(2j−1α k) 2j−1a] +

+ m+1r
k cos(m+1α k)

(
Cm+1 m+1a0 + Cm+2 k m+1a1 +

+ · · ·+ Cm+t kt−1
m+1at−1

)
+

+
2n∑

j=m+t+1

jr
k cos(jα k)Cj ja .

(A23)

The general solution must fulfil the cyclic condition, which must be fulfilled for each of
the total number of M subsystems :

piUk+M = piUk where k = 1, 2, . . . , M . (A24)

By substituting relation (A23) for the k-th subsystem and relation (A23) rewritten for
the k + M -th subsystem into the cyclic condition (A24) and by their mutual comparing it
can be found out :

1. the searched solution does not contain multiple roots (constants C3, C4, . . . , C2s−1, C2s,
Cm+2, . . . , Cm+t are zero),

2. jr = 1, independently of j (j = 1, 3, 5, . . . , m− 1, m + 1, m + 2, . . . , 2 n),

3. cos[jα (k + M)] = cos(jα k), where j = 1, 3, 5, . . . , m − 1, m + 1, m + 2, . . . , 2 n and
sin[jα (k + M)] = sin(jα k), where j = 1, 3, 5, . . . , m− 1.

In order that both conditions in point 3 may be valid at the same time there must be
(independently of j) : jα = 2π β/M , where β = 0, 1, . . . , M − 1. The value of angle jα is
dependent on the optional parameter β (for the mode shapes of the rotationally periodic
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systems the parameter β means the number of nodal diameters). For the solution fulfilling
the cyclic condition it is not necessary to write index j either at angle jα or at the module
of the complex number jr :

r = jr = 1 and βα = jα =
2π β

M
, where β = 0, 1, . . . , M − 1 . (A25)

Two forms of equations are obtained for the calculation of natural frequencies and mode
shapes of the whole periodic system in dependence on the parameter β value: the first form
of equations (see relations from (14) to (19) in the main article) holds for β = 0 and in
addition in case of even M β = M/2, the second form of equations (see relations from (20)
to (25) in the main article) holds for β = 0, 1, . . . , M − 1 and when M is even with the
condition β �= M/2.

Appendix B – Angle difference identities

Expression cos[βα (k − 1)] will be substituted by the expression obtained according to
the well known angle difference identities in equation (16) (βα = 2 π β/M , where β = 0 and
in addition in case of even M β = M/2) :

cos[βα (k − 1)] = cos(βα k) cos βα + sin(βα k) sin βα = cos(βα k) cos βα (B1)

and cos[βα (k + 1)] by the expression obtained according to the well known angle sum
identities :

cos[βα (k + 1)] = cos(βα k) cos βα− sin(βα k) sin βα = cos(βα k) cos βα . (B2)
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