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INTERACTION OF A FLEXIBLY SUPPORTED
AIRFOIL AND A CHANNEL FLOW

Miloslav Feistauer*, Jaromı́r Horáček**, Martin Růžička*, Petr Sváček***

The subject of the paper is the numerical simulation of the interaction of two-di-
mensional incompressible viscous flow and a vibrating airfoil inserted in a channel
(e.g. wind tunnel). A solid airfoil with two degrees of freedom can rotate around the
elastic axis and oscillate in the vertical direction. The numerical simulation consists
of the finite element solution of the Navier-Stokes equations coupled with the system
of ordinary differential equations describing the airfoil motion. The time dependent
computational domain and a moving grid are taken into account with the aid of the
Arbitrary Lagrangian-Eulerian (ALE) formulation of the Navier-Stokes equations.

High Reynolds numbers up to 106 require the application of a suitable stabilization of
the finite element discretization. Numerical results are compared with an experiment.

Key words : aeroelasticity, finite element metod, Arbitrary Lagrangian-Eulerian for-
mulation, stabilization for high Reynolds numbers

1. Introduction

The interaction of fluids and structures plays an important role in many fields of science
and technology. The research in aeroelasticity or hydroelasticity focuses on the interaction
between flowing fluids and vibrating structures (see, e.g. [4] and [15]). The aeroelastic
stability of aerospace vehicles and the aeroelastic responses represented by dynamic load
prediction and vibration levels in wings, tails and other aerodynamic surfaces have a great
impact on the design as well as in the cost and operational safety.

In [19] we analyzed numerically the interaction of a moving fluid with an isolated air-
foil. In many cases it is necessary to compare computational results with wind tunnel
experiments. It appears that the bounded height of the wind tunnel measurement section
influences the flow field past the airfoil as well as the structural behaviour of the airfoil.
Therefore, we are concerned here with the numerical analysis of flow induced vibrations of
the airfoil inserted into a channel representing the measurement section of a wind tunnel.
We consider a two-dimensional viscous incompressible channel flow past a moving airfoil,
which is considered as a solid body with two degrees of freedom, allowing its vertical and
torsional oscillations taking into account the changes of the flow region around the airfoil
during the vibration.
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The numerical simulation consists of the finite element solution of the Navier-Stokes
equations coupled with the system of ordinary differential equations describing the airfoil
motion. The time dependent computational domain and a moving grid are taken into
account with the aid of the Arbitrary Lagrangian-Eulerian (ALE) formulation of the Navier-
Stokes equations.

By Re = UL/ν we denote the Reynolds number, where U is a reference velocity (in our
case the inlet velocity), L is the length of the airfoil and ν is the kinematic viscosity. The
Reynolds numbers in relevant applications are quite large, namely between 105 and 106.
(For such regimes the flow is usually turbulent, but here we simulate the flow with the aid
of the classical Navier-Stokes equations without any turbulence model.) For the solution of
such flows it is necessary to use very accurate and robust finite element schemes. In oder
to avoid spurious oscillations, the SUPG (streamline upwind Petrov-Galerkin) and div-div
stabilization methods are applied. The solution of the ordinary differential equations is
carried out by the Runge-Kutta method. Special attention is paid to the construction of
the ALE mapping of a reference domain on the computational domain at individual time
instants. The resulting nonlinear discrete algebraic system is solved by the Oseen iterative
process. As a result we obtained a sufficiently accurate and robust method for the numerical
simulation of flow induced vibrations of an airfoil inserted in a wind tunnel. The method
was tested on a problem for which experimental results are available. The comparison of
computational and experimental results shows a good agreement.

2. Formulation of a flow problem in a moving domain

We assume that (0, T ) with T > 0 is a time interval and by Ωt we denote a computational
domain occupied by the fluid at time t. It represents a channel (e.g. wind tunnel) with an
inserted vibrating airfoil. By u = u(x, t) and p = p(x, t), x ∈ Ωt, t ∈ (0, T ), we denote the
velocity and the kinematic pressure (i.e., the dynamic pressure divided by the density of the
fluid), respectively, and ν will denote the kinematic viscosity.

In order to simulate flow in a moving domain, we employ Arbitrary Eulerian-Lagran-
gian (ALE) method ([16]). This technique is based on a one-to-one smooth mapping At

of a reference domain Ωref onto the computational domain Ωt at time t. (Usually we set
Ωref = Ω0.) Thus, each X ∈ Ωref is associated with x = x(X, t) = At(X) ∈ Ωt.

Based on this mapping we can compute the domain velocity w̃ at all points X of the
reference configuration Ωref for each time level :

w̃(X, t) =
∂

∂t
x(X, t) , (1)

which can be transformed to the space coordinates x by the relation

w(x, t) = w̃(A−1
t (x), t) . (2)

With the aid of the ALE mapping we compute the so-called ALE derivative DA/Dt, which is
anologous to the material derivative in the Lagrangian approach. For a function f = f(x, t),
x ∈ Ωt, t ∈ (0, T ), we define the function f̃(X, t) = f(At(X), t), X ∈ Ωref, t ∈ (0, T ), and
set

DA

Dt
f(x, t) =

∂f̃

∂t
(X, t) , X = A−1

t (x) . (3)
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We find that
DA

Dt
f =

∂f

∂t
+ (w · ∇) f . (4)

Now we reformulate the Navier-Stokes equations in the ALE form

DA

Dt
u + [(u − w) · ∇]u + ∇p − ν �u = 0 in Ωt , (5)

∇ · u = 0 in Ωt . (6)

This system is equipped with the initial condition

u(x, 0) = u0 , x ∈ Ω0 , (7)

and boundary conditions. We assume that ∂Ωt = ΓD ∪ΓO ∪ΓWt, where ΓD,ΓO and ΓWt are
mutually disjoint. On ΓD, representing the inlet and impermeable fixed walls of the channel,
we prescribe the Dirichlet boundary condition

u|ΓD = uD . (8)

On the walls, uD = 0. We denote by ΓWt the boundary of the airfoil at time t. On ΓWt we
assume that the fluid velocity u equals the velocity ũΓ of the profile :

u|ΓWt = ũΓ = w|ΓWt . (9)

The part ΓO of the boundary represents the outlet, where we prescribe the ‘do-nothing’
boundary condition

−(p − pref)n + ν
∂u
∂n

= 0 on ΓO . (10)

Here n is the unit outer normal to ∂Ωt and pref is a prescribed reference outlet pressure.

Fig.1: Airfoil in a channel

3. Description of the airfoil motion

We assume that the airfoil is a dynamic system with two degrees of freedom. This means
that we consider the airfoil as a solid body, which can oscillate in the vertical direction
and in the angular direction around the so-called elastic axis denoted by EO, see Figure 2.
The displacement h is oriented positively with the coordinate x2. The rotation angle α is
oriented positively in the clockwise direction.
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The linearized equations describing the motion of the airfoil were derived, e.g. in [4] from
the Lagrange equations and can be written in the matrix form

K̂ d(t) + B̂ ḋ(t) + M̂ d̈(t) = f̂(t) , (11)

where the stiffness matrix K̂, the viscous structural damping B̂ and the mass matrix M̂
have the form

K̂ =
(

khh khα

kαh kαα

)
, B̂ =

(
Dhh Dhα

Dαh Dαα

)
, M̂ =

(
m Sα

Sα Iα

)
.

The vector of the force f̂ and the vector d of generalized coordinates are given by

f̂(t) =
(
−L(t)
M(t)

)
, d(t) =

(
h(t)
α(t)

)
.

The symbol L denotes the component of the force acting on the airfoil in the vertical direc-
tion x2, M is the torsional moment of the force with respect to the elastic axis, Dhh, Dhα,
Dαh, Dαα are the coefficients of the viscous structural damping. Further, Sα, Iα, m and khh,
kαα, khα, kαh denote the static moment around the elastic axis EO, the moment of inertia
around EO, the mass of the profile and the stiffness coefficients of the profile, respectively.

The functions L and M acting on the profile with a depth � are given by the relations

L = −�

∫
ΓWt

2∑
j=1

T2j nj ds , (12)

M = �

∫
ΓWt

2∑
i,j=1

Tij nj(−1)i
(
x1+δ1i − xEO

1+δ1i

)
ds , (13)

where n = (n1, n2) is the unit outer normal to ∂Ωt on ΓWt
and δij is the Kronecker symbol,

i.e. δij = 1 for i = j and δij = 0 for i �= j, x1, x2 are the coordinates of points on ΓWt
and

xEO
i , i = 1,2, are the coordinates of the elastic axis EO. Further,

Tij = ρ

[
−p δij + ν

(
∂ui

∂xj
+

∂uj

∂xi

)]
. (14)

Relations (12)–(14) represent the coupling of the flow problem and structural problem.

System (11) is equipped with the initial conditions

α(0) = α0 ,

h(0) = h0 ,

α̇(0) = α1 ,

ḣ(0) = h1 ,
(15)

where α0, α1, h0, h1 are input data of the problem.

Fig.2: Airfoil with two degrees of freedom
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4. Discretization of the flow problem

There is a number of possibilities how to carry out the space-time discretization ([8], [20]).
In order to develop a stable, accurate scheme, which can easily treat complicated boundaries,
we apply the finite element method (FEM). For obtaining a physically acceptable numerical
solution, it is not possible to use a standard Galerkin FEM, but we have to introduce
a suitable stabilization. Here we apply the streamline diffusion method (also called SUPG
method) together with div-div stabilization of the pressure, following [9], [14].

4.1. Time discretization

First let us describe the time discretization of the flow problem. We consider a partition
0 = t0 < t1 < · · · < T , tk = k Δt, with a time step Δt > 0, of the time interval [0, T ]
and approximate the solution u(tn) (defined in Ωtn) at the time instant tn by un. For the
time discretization we use the second-order two-step backward difference formula using the
computed approximate solution un−1 in Ωtn−1 and un in Ωtn for the calculation of un+1

defined in the domain Ωtn+1 . With the given ALE mapping At we have

Atn−1(X) = xn−1 ∈ Ωtn−1 , Atn(X) = xn ∈ Ωtn , Atn+1(X) = xn+1 ∈ Ωtn+1 , (16)

where X ∈ Ωref is a given point from the reference configuration, e.g. a node of the triangu-
lation.

Now we define the approximation of the ALE derivative at time tn+1 and point xn+1 by

DAu
Dt

(xn+1, tn+1) ≈
3 ũn+1(X) − 4 ũn(X) + ũn−1(X)

2 Δt
=

=
3un+1(xn+1) − 4un(xn) + un−1(xn−1)

2 Δt
.

(17)

and obtain the problem for the unknown functions un+1 : Ωtn+1 → R2 and pn+1 : Ωtn+1 → R :

3un+1(xn+1) − 4un(xn) + un−1(xn−1)
2 Δt

+

+
((

un+1(xn+1) − wn+1(xn+1)
)
· ∇
)

un+1(xn+1) −

− ν Δun+1(xn+1) + ∇pn+1(xn+1) = 0 ,

div un+1(xn+1) = 0 ,

(18)

where wn+1 ≈ w(tn+1). This problem is equipped with the boundary conditions (8)–(10)
on ∂Ωtn+1 . Taking into account that Atn+1(A−1

ti
(xi)) ∈ Ωtn+1 , we can transform equations

(18) completely to the domain Ωtn+1 :

3un+1 − 4 ûn + ûn−1

2Δt
+
(
(un+1 − wn+1) · ∇

)
un+1 −

− ν Δun+1 + ∇pn+1 = 0 in Ωtn+1 ,

div un+1 = 0 in Ωtn+1 ,

(19)

where ûi = ui ◦ Ati ◦ A−1
tn+1

. This system is again equipped with the boundary conditions
(8)–(10).
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4.2. Space discretization

In what follows, we shall carry out the space discretization of the problem to find ap-
proximations of functions u = un+1 and p = pn+1 defined in the domain Ωtn+1, satisfying
system (19) and boundary conditions (8)–(10). To this end, we reformulate this problem
in a weak sense. Let us set Ω = Ωtn+1 and define the velocity spaces W = (H1(Ω))2,
X = {v ∈ W ;v|ΓD∩ΓWt = 0} and the pressure space M = L2(Ω). By L2(Ω) we denote the
space of square integrable functions, i.e. L2(Ω) = {v : Ω → R; ‖v‖2

L2(Ω) =
∫
Ω
|v|2 dx < ∞}

and H1(Ω) denotes the Sobolev space: H1(Ω) = {v ∈ L2(Ω); ∂u
∂xi

∈ L2(Ω), i = 1, 2}. In the
space H1(Ω) we define the seminorm | · |H1(Ω) by |v|2H1(Ω) =

∫
Ω |∇v|2 dx Then it is possible

to show that the solution U = (u, p) of problem (19) satisfies

a(U, U, V ) = f(V ) for all V = (v, q) ∈ (X, M) , (20)

where

a(U∗, U, V ) =
3

2Δt
(u,v) + ν (∇u,∇v) +

((
(u∗ − wn+1) · ∇

)
u,v

)
−

− (p,∇ · v) + (∇ · u, q) ,

f(V ) =
1

2 Δt

(
4 ûn − ûn−1,v

)
−
∫
ΓO

pref v · n dS ,

U = (u, p) , V = (v, q) , U∗ = (u∗, p) .

(21)

Here (·, ·) denotes the scalar product in L2(Ω) or in [L2(Ω)]2: (α, β) =
∫
Ω α ·β dx. Moreover,

we require that u satisfies the Dirichlet boundary conditions (8), (9). The couple (u, p)
represents the solution on the time level tn+1, i.e. un+1 := u and pn+1 := p.

In order to apply the Galerkin FEM, we shall restrict the weak formulation from the
spaces W , X , M to approximate spaces WΔ, XΔ, MΔ, Δ ∈ (0, Δ0), Δ0 > 0, XΔ =
= {vΔ ∈ WΔ; vΔ|ΓD∩ΓWt = 0}. Hence, we want to find UΔ = (uΔ, pΔ) ∈ WΔ × MΔ (i.e.,
u ∈ WΔ, p ∈ MΔ) such that uΔ satisfies approximately conditions (8), (9) and

a(UΔ, UΔ, VΔ) = f(VΔ) for all VΔ = (vΔ, qΔ) ∈ XΔ × MΔ . (22)

The couple (XΔ, MΔ) of the finite element spaces should satisfy the Babuška-Brezzi

(BB) condition (cf., e.g. [1], [21]), which guarantees the stability of the scheme: there exists
a constant c > 0 such that

sup
w∈XΔ

(p,∇ ·w)
|w|H1(Ω)

≥ c‖p‖L2(Ω) for all p ∈ MΔ , Δ ∈ (0, Δ0) . (23)

We proceed in the following way. We shall approximate the computational domain at
time tn+1 by a polygonal domain. Because of simplicity we shall denote it again by Ω. By TΔ

we denote a triangulation of Ω with standard properties from the FEM, formed by a finite
number of closed triangles (see, e.g. [2]). The pressure space M is then approximated by
the space of piecewise polynomial functions of degree ≤ k (= a positive integer):

p ≈ pΔ ∈ MΔ = {q ∈ M ∩ C(Ω); q|K ∈ P k(K) for all K ∈ TΔ} . (24)
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Here the symbol P k(K) denotes the space of all polynomials on an element K of degree
≤ k. The velocity spaces W and X are approximated by the spaces of piecewise polynomial
functions of degree ≤ k + 1 :

u ≈ uΔ ∈ WΔ = {v ∈ W ∩ [C(Ω)]2;v|K ∈ [P k+1(K)]2 for all K ∈ TΔ} ,

XΔ = WΔ ∩ X .
(25)

The pair of the spaces defined by (24) and (25) is called the Taylor/Hood element. This
couple (XΔ, MΔ) satisfies the BB condition (see, e.g. [1]).

In practical computations we use the Taylor/Hood P 2/P 1 elements. This means that
the velocity components are piecewise quadratic functions and the pressure is a piecewise
linear function.

4.3. Stabilization of the FEM

The standard Galerkin discretization (22) may produce approximate solutions suffer-
ing from spurious oscillations for high Reynolds numbers. In order to avoid this draw-
back, we apply the stabilization via streamline-diffusion/Petrov-Galerkin technique (see,
e.g. [20], [14], [9]). We define the stabilization terms

LΔ(U∗, U, V ) =
∑

K∈TΔ

δK

(
3

2Δt
u− ν �u + (w · ∇)u + ∇p, (w · ∇)v

)
K

,

FΔ(V ) =
∑

K∈TΔ

δK

(
1

2Δt

(
4 ûn − ûn−1

)
, (w · ∇)v

)
K

,

U = (u, p) , V = (v, q) , U∗ = (u∗, p) ,

(26)

where the function w stands for the transport velocity w = u∗ − wn+1, (·, ·)K denotes
the scalar product in L2(K) or [L2(K)]2 and δK ≥ 0 are suitable parameters defined later.
Moreover, we introduce the pressure ‘div-div’ stabilization terms

PΔ(U, V ) =
∑

K∈TΔ

τK(∇ · u,∇ · v)K , U = (u, p) , V = (v, q) , (27)

with suitable parameters τK ≥ 0 (see relations (32)).

The stabilized discrete problem reads : Find UΔ = (uΔ, pΔ) ∈ WΔ × MΔ such that uΔ

satisfies approximately conditions (8), (9) and

a(UΔ, UΔ, VΔ) + LΔ(UΔ, UΔ, VΔ) + PΔ(UΔ, VΔ) = f(VΔ) + FΔ(VΔ)

for all VΔ ∈ XΔ × MΔ .
(28)

The parameter δK is defined on the basis of the transport velocity w as

δK = δ∗
ΔK

2 maxK |w| ξ(Rew) , (29)

where
Rew =

ΔK maxK |w|
2 ν

(30)
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is the local Reynolds number and ΔK is the size of the element K measured in the direction
of w. The factor ξ(·) is a monotonically increasing function of Rew such that for local
advection dominance (Rew > 1) ξ → 1 and for local diffusion dominance (Rew < 1) ξ → 0.
The parameter δ∗ ∈ (0, 1] is an additional free parameter. We set, e.g.

ξ(Rew) = min
(

Rew

6
, 1
)

(31)

and δ∗ = 0.025. The parameters τK are defined by

τK = τ∗ hK max
K

|w| ξ(Rew) , (32)

where τ∗ ∈ (0, 1]. In our numerical simulations we use the value τ∗ = 1. For theoretical
analysis of such a choice we refer to [9], [14]. For other possibilities to stabilize convection-
dominated problems we can refer to [12].

The nonlinear problem (28) is (on each time level) solved with the aid of the Oseen
iterative process. Starting from an initial approximation U

(0)
Δ and assuming that already

iterate U
(k)
Δ has been computed, we define U

(k+1)
Δ ∈ WΔ × MΔ by

a(U (k)
Δ , U

(k+1)
Δ , VΔ) + LΔ(U (k)

Δ , U
(k+1)
Δ , VΔ) + PΔ(U (k+1)

Δ , VΔ) = f(VΔ) + FΔ(VΔ)

for all VΔ ∈ XΔ × MΔ .
(33)

For each time level tn+1 we set

U
(0)
Δ := (2 ûn − ûn−1, p̂n). (34)

As numerical experiments show, only a few iterations (33) have to be computed on each
time level.

Obviously, problem (33) is linear. It is equivalent to the linear algebraic system

S u + 2 Δt (B + C) p = f , BT u = 0 , (35)

where u ∈ RnΔ and p ∈ RmΔ are vectors whose components represent degrees of freedom
defining the velocity uΔ and the pressure pΔ, respectively, S is a nonsingular nΔ×nΔ matrix
and B and C are nΔ ×mΔ matrices and f ∈ RnΔ . The solution of this system was realized
by the direct solver UMFPACK ([5], [6], [7]), which works sufficiently fast for systems with
up to 105 equations. For larger systems it will be necessary to apply more sophisticated
techniques as, e.g. the domain decomposition approach or multilevel solvers ([22], [13]).

4.4. The solution of the structural problem

System (11) is transformed in the following way. First we rewrite this system in the form

m ḧ + Sα α̈ = −L− khh h − khα α − Dhh ḣ − Dhα α̇ ,

Sα ḧ + Iα α̈ = M− kαh h − kαα α − Dαh ḣ − Dαα α̇ .
(36)
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Now we express the second order derivatives ḧ, α̈. We get

ḧ =
1
D

[
−Iα L − Sα M + h (Sα kαh − Iα khh)h + (Sα kαα − Iα khα)α +

+ (Sα Dαh − Iα Dhh) ḣ + (SαDαα − IαDhα) α̇
]

,

α̈ =
1
D

[
Sα L + mM + (Sα khh − m kαh)h + (Sα khα − m kαα)α +

+ (Sα Dhh − m Dαh) ḣ + (Sα Dhα − m Dαα) α̇
]

,

where
D = m Iα − S2

α .

It is necessary to assume that D �= 0. The transformation y1 = h, y2 = ḣ, y3 = α, y4 = α̇

leads to the first order system

Ẏ =

⎛⎜⎝
ẏ1

ẏ2

ẏ3

ẏ4

⎞⎟⎠ = f(t,Y(t)) =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y2

1
D

[−Iα L − Sα M + (Sα kαh − Iα khh) y1 + (Sα kαα − Iα khα) y3 +

+ (Sα Dαh − Iα Dhh) y2 + (Sα Dαα − Iα Dhα) y4]

y4

1
D

[Sα L + mM + (Sα khh − m kαh) y1 + (Sα khα − m kαα) y3 +

+(Sα Dhh − m Dαh) y2 + (Sα Dhα − m Dαα) y4]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

= Q̂Y + R ,

(37)

with the matrix Q̂ and vector R defined by

Q̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

Sα kαh − Iα khh

D

Sα Dαh − Iα Dhh

D

Sα kαα − Iα khα

D

Sα Dαα − Iα Dhα

D

0 0 0 1

Sα khh − m kαh

D

Sα Dhh − m Dαh

D

Sα khα − m kαα

D

Sα Dhα − m Dαα

D

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

R =
1
D

⎛⎜⎝
0

−Iα L − Sα M
0

Sα L + mM

⎞⎟⎠ .

(38)

System (37) is solved by the second order Runge-Kutta method. The approximate solution
Yn+1 at time instant tn+1 is computed with the aid of the formula

Yn+1 = Yn + Δt f
(

tn+ 1
2
,Yn +

1
2

Δt f(tn,Yn)
)

. (39)
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The function f is evaluated at the time instant tn+1/2 in the following way. From the solution
uΔ computed already on time levels tn a tn−1 the values Ln−1, Ln of the vertical force L
and Mn−1, Mn of the moment M are computed. Then, by extrapolation, L and M are
evaluated at time tn+1/2 = tn + Δt/2 :

Ln+ 1
2

= Ln +
1
2

(Ln − Ln−1) ,

Mn+ 1
2

= Mn +
1
2

(Mn −Mn−1) ,

which are used for the computation of the function f(tn+1/2, ·).

Fig.3: Partition of the domain Ω0

5. Realization of the ALE mapping

There exist several possibilities of the construction of the ALE mapping for the flow
around an oscillating airfoil. For example, in [19] we describe the ALE mapping in the case
of an isolated airfoil. The situation is more complex, if the airfoil is inserted into a channel.
Here we describe a simple and efficient construction of the ALE mapping, which was used
in our computations.

We start from the reference domain Ω0 (initial configuration). Provided we know the
functions h(t) and α(t), t ∈ [0, T ], we want to construct the one-to-one ALE mapping At

of Ω̄0 onto Ω̄t. We proceed in the following way. The reference domain Ω0 is divided in
three subdomains by two ellipses with center at the elastic axis of the airfoil. We denote
them Ω0,Φ (interior subdomain containig the airfoil), Ω0,Ψ (the exterior subdomain adjacent
to fixed impermeable walls of the channel, inlet and outlet) and Ω0,Φ+Ψ (the subdomain
between Ω0,Φ and Ω0,Ψ). See Figure 3.

The ALE mapping consists of suitable mappings representing the deformation of the
domains Ω0,Φ+Ψ, Ω0,Φ and Ω0,Ψ. We assume that the domain Ω0,Φ moves as a solid body
together with the airfoil ΓWt, whose position is determined by the displacement h and the
rotation angle α :

x1 = (X1 − XEO
1 ) cosα + (X2 − XEO

2 ) sin α + XEO
1 ,

x2 = −(X1 − XEO
1 ) sin α + (X2 − XEO

2 ) cosα + h + XEO
2 ,

(40)

where XEO
1 , XEO

2 are the reference coordinates of the elastic axis (at time t = 0). We denote
this mapping by Φ. Therefore, we set

x = At(X) = Φ(X) for X ∈ Ω0,Φ . (41)
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Further, we assume that the domain Ω0,Ψ does not depend on time. This means that we set

x = At(X) = Ψ(X) = X for X ∈ Ω0,Ψ . (42)

The domain Ω0,Φ+Ψ is transformed by the formula

At = (1 − θ)Φ + θ Ψ in Ω0,Φ+Ψ , (43)

where θ ∈ [0, 1] depends on X .

Fig.4: Partition of the domain At(Ω0) at time t

By Γ0,Φ we denote the ellipse, which forms the interface between the domains Ω0,Φ and
Ω0,Φ+Ψ. Further, the ellipse between the domains Ω0,Φ+Ψ and Ω0,Ψ will be denoted by Γ0,Ψ.
These ellipses are chosen so that

aΨ

bΨ
=

aΦ

bΦ
, (44)

where aΨ and aΦ are the lengths of the semimajor axis of the ellipses Γ0,Ψ and Γ0,Φ, re-
spectively. By bΨ and bΦ we denote the length of the semiminor axis of Γ0,Ψ and Γ0,Φ,
respectively. In the domain Ω0 we define the function

C(X) =

√
1
a2
Φ

(X1 − XEO
1 )2 +

1
b2
Φ

(X2 − XEO
2 )2 , X ∈ Ω0 . (45)

Under the above notation, we have

C(X) < 1 for X ∈ Ω0,Φ , (46)

C(X) > 1 and C(X) <
aΨ

aΦ
for X ∈ Ω0,Φ+Ψ , (47)

C(X) >
aΨ

aΦ
for X ∈ Ω0,Ψ (48)

and

C(X) = 1 for X ∈ Γ0,Φ , (49)

C(X) =
aΨ

aΦ
for X ∈ Γ0,Ψ . (50)

Now, the function θ appearing in (43) is defined by

θ(X) =
1

aΨ

aΦ
− 1

min
(

max(C(X) − 1, 0),
aΨ

aΦ
− 1
)

. (51)
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It is obvious, that the above definition of the ALE mapping can be applied provided the
deformation defined by the functions h and α is not too large.

The ALE velocity w is approximated at time tn+1 by the function defined as

wn+1(x) =
3 x − 4An(A−1

n+1(x)) + An−1(A−1
n+1(x))

2 Δt
, x ∈ Ωn+1 . (52)

6. Numerical results

The method described above was applied to the numerical solution of the problem, which
was analyzed experimentally in the wind tunnel of the Institute of Thermomechanics of the
Academy of Sciences of the Czech Republic in Prague (see [10]).

The airfoil is symmetric and its boundary is formed by two circular arcs with parameters
given (in milimeters) in Figure 5. The position of the elastic axis EO is at one third of
the chord of the airfoil, measured from the leading edge. The maximum height of the wind
tunnel measurement section is 210mm. The results of the test problem were obtained for
the height equal to 180mm. The following parameters from [10] were used :

khh = 1711.6 N/m , kαα = 4.5 Nm/rad ,

khα = 0.0 N/rad , kαh = 0.0 N

m = 0.0821 kg ,

Sα = −0.00013 kgm , Iα = 0.000095 kgm2 ,

Dhh = 5.0 Ns/m , Dαα = 0.003 Nms/rad ,

Dhα = 0.0 Ns/rad , Dαh = 0.0 Ns/m ,

� = depth of the airfoil = 0.08 m .

(53)

The parameter Sα is negative, which means that the center of gravity of the airfoil is closer
to the leading edge than the elastic axis.

Fig.5: Geometry of the airfoil and wind tunnel
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By the solution of the coupled system (19) and (37), we obtain among other the depen-
dence of the displacement h and the torsion angle α on time. Then the frequency analysis
is carried out with the aid of the Fourier transform

G(fn) =

T∫
0

g(t) e−2π i fn t dt

with g = h or g = α and fn = n Δf ∈ [0, 50], Δf = 0.1Hz, approximated by the rectangle
formula

G(fn) =
N−1∑
k=0

g(tk) e−2π i fn tk Δt .

Here i is the imaginary unit, Δt = T/N and N is the number of time steps in the interval
[0, T ). The results of the frequency analysis are shown in graphs of the quantity

|G(fn)| =
√

Re2 (G(fn)) + Im2(G(fn)) .

The resonance frequences f1 and f2 are defined in our computations as maximum points
of the function |G| corresponding to g = α and g = h, respectively. The frequences f1
and f2 obtained in the experiment described in [11] for the functions α and h are shown in
Figure 6 in dependence on the inlet flow velocity.

Fig.6: Resonance frequencies obtained by experiment

6.1. Solution without the influence of the fluid

First, we do not consider the influence of the fluid on airfoil vibrations. This means that
we solve system (11) with zero right-hand side (which corresponds to L = 0 and M = 0).
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The initial conditions are chosen as α(0) = 2.86◦, h(0) = 6mm and zero initial derivatives.
The solution of this sytem is given by the eigenvalues

s1,3 = −22.397± 142.638 i , s2,4 = −12.846± 217.637 i ,

of the matrix Q̂ from (38), obtained for the parameters (53). The corresponding frequences
f2 = 22.7Hz and f1 = 34.64Hz, are given by the formulae f2 = Im(s1)/(2π), f1 =
= Im(s2)/(2π). The functions h(t) and α(t) computed numerically by the Runge-Kutta
method are shown in Figure 7. The frequency analysis shown in Figure 8 yields the resonance
frequencies 22.95Hz a 34.8Hz. We see that the maximum relative computational error is 1 %.

Fig.7: α(t) (left) and h(t) (right) for the computation
without the influence of the fluid

Fig.8: Frequency spectra for α(t) (left) and h(t) (right)
without the influence of the fluid

6.2. Flow induced airfoil vibrations

Now we shall be concerned with the complete coupled flow induced airfoil vibrations.
The triangulation of the domain Ω0 was obtained by the program ANGENER (see [3]),
which allows the construction of a mesh anisotropically refined in the boundary layer and
wake. The computation started from the isotropic mesh shown in Figure 9. During the
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Fig.9: Isotropic initial triangulation

computational process this triangulation was refined by the program ANGENER separately
for each Reynolds number.

The solution of the flow problem was carried out with the use of the dimensionless
formulation by the stabilized P2/P1 finite element method described in Section 4 with the
stabilization parameters

δ∗ = 0.025 , τ∗ = 1

and the dimensionless time step

Δtdimless = 0.025 .

In what follows, we present the obtained results for several inlet flow velocities.

Fig.10: Anisotropic mesh for the inlet flow velocity 0ms−1

6.2.1. Inlet flow velocity 0 ms–1

For the inlet velocity 0ms−1 the mesh was refined in the vicinity of the airfoil only as
shown in Figure 10. The initial position of the airfoil is given by coordinates α = 2.86◦ and
h = 6mm.

The results are shown in Figures 11 and 12. The resonance frequences for h and α are
22.8Hz and 34.75Hz, respectively. The first resonance belongs to a predominantly vertical
motion of the airfoil, while in the second resonance the rotation of the airfoil prevails.

6.2.2. Inlet flow velocity 17.5ms–1 – Re = 140000

In the numerical analysis we started from the isotropic triangulation from Figure 9,
which was successively adapted by the program ANGENER. The resulting mesh is shown
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Fig.11: α(t) (left) and h(t) (right) for the inlet flow velocity 0ms−1

Fig.12: Frequency spectra for α(t) (left) and h(t) (right) for zero inlet flow velocity

in Figure 13. The computed signals for α and h are plotted in Figure 14, the results of the
frequency analysis are seen in Figure 15. The resonance frequences are 36.0Hz and 24.25Hz.

Fig.13: Anisotropic mesh for the case with the inlet flow velocity 17.5 ms−1,
10151 vertices and 18647 elements

6.2.3. Inlet flow velocity 40 ms–1 – Re = 320000

The anisotropic adapted mesh is shown in Figure 16 The initial position of the airfoil is
given by the values α = 3.43775◦ and h = −3.6mm. The results are shown in Figures 17
and 18. The resonance frequencies are 37.4Hz and 22.0Hz.
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Fig.14: α(t) (left) and h(t) (right) for the inlet flow velocity 17.5 ms−1

Fig.15: Frequency spectra for α(t) (left) and h(t) (right)

for the inlet flow velocity 17.5 ms−1

Fig.16: Anisotropic adapted mesh for the inlet flow velocity 40ms−1

6.2.4. Inlet flow velocity 60 ms–1 – Re = 480000

Figure 19 shows the graphs of the functions α(t) and h(t) for the inlet flow velocity
60ms−1. In Figure 20 we see the frequency spectra for α(t) and h(t).

6.2.5. Inlet flow velocity 80 ms–1 – Re = 640000

Figure 21 shows the graphs of the functions α(t) and h(t) for the inlet flow velocity
80ms−1. In Figure 22 we see the frequency spectra for α(t) and h(t).
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Fig.17: α(t) (left) and h(t) (right) for the inlet flow velocity 40 ms−1

Fig.18: Frequency spectrum for α(t) (left) and h(t) (right)

for the inlet flow velocity 40 ms−1

Fig.19: α(t) (left) and h(t) (right) for the inlet flow velocity 60 ms−1

6.2.6. Comparison of results with experiment

Figure 23 shows the comparison of resonance frequencies obtained by experiment and
evaluated from the numerical simulation of the airfoil vibration in time domain. We see that
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Fig.20: Frequency spectra for α(t) (left) and h(t) (right)

for the inlet flow velocity 60 ms−1

Fig.21: α(t) (left) and h(t) (right) for the inlet flow velocity 80 ms−1

Fig.22: Frequency spectra for α(t) (left) and h(t) (right)

for the inlet flow velocity 80 ms−1

the agreement is very good. By increasing the inlet flow velocity the resonance frequences are
getting close together, which is a typical behaviour for pre-flutter regimes of airfoil vibration,
when the coupling between the rotation and translation of the airfoil becomes stronger ([4]).
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Fig.23: Comparison of resonance frequencies obtained
by experiment and numerical simulation

7. Conclusion

In this paper the numerical method for the simulation of the interaction of viscous in-
compressible channel flow and a vibrating airfoil is developed. The method contains several
important ingredients :

– ALE method for the treatment of the time dependent computational domain,
– time discretization using the second-order backward difference formula,
– space discretization by the stabilized finite elements, satisfying the Babuška–Brezzi

condition,
– suitable construction of the ALE mapping.

The method was applied to the numerical simulation of flow induced vibrations of a dou-
ble circle airfoil inserted in a wind tunnel. The computational results were compared with
wind tunnel experiments. The agreement of the computational and experimental results is
very satisfactory.

The next step in the research will be the investigation of turbulence models included in
the described technique. We have in mind standard one equation or two equation models
popular in technical practice (e.g., the Spalart-Allmaras model [18] or the widely used k− ε

model treated, e.g. in [17], Section 10). From the point of view of practical applications it
will be suitable to increase the speed of the computational process by the use of the domain
decomposition method and a parallelization of the algorithm.
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