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POST-BUCKLING BEHAVIOUR
OF IMPERFECT SLENDER WEB

Martin Psotný, Ján Ravinger*

The stability analysis of slender web loaded in compression is presented. The non-
linear FEM equations are derived from the variational principle of minimum of po-
tential energy [1]. To obtain the non-linear equilibrium paths, the Newton-Raphson
iteration algorithm is used. Corresponding levels of the total potential energy are
defined. The peculiarities of the effects of the initial imperfections are investigated.
Special attention is focused on the influence of imperfections on the post-critical buck-
ling mode. The stable and unstable paths of the non-linear solution are separated.
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1. Introduction

The snap-through effect means a sudden modal change in the buckling surface of a slender
web. Even in the case when the snap-through of the slender web does not mean the collapse
of the structure, we consider it to be a negative phenomenon. In the presented paper we
try to explain the behaviour of the snap-through of the slender web loaded in compression.
The geometrically non-linear theory represents a basis for the reliable description of the
post-buckling behaviour of the slender web. The result of the numerical solution represents
a lot of load versus displacement paths. Except the presentation of the different load-dis-
placement paths the level of the total potential energy has been evaluated as well.

The mode of the buckling of the lowest elastic critical load (mode 1) is usually taken as the
mode of the initial geometrical imperfections. In such a case we do not have the snap-through
effects. To create the snap-through effect, the mode of the initial imperfections has to be
taken as the combination of the mode of the lowest elastic critical load (mode 1) and the
mode of the second elastic critical load (mode 2).

2. Theory

We assume a rectangular slender web simply supported along the edges (Fig. 1) with the
thickness t. The displacements of the point of the neutral surface are denoted q = [u, v, w]T

and the related load vector is p = [px, 0, 0]T.

We assume the so called von Kármán theory, when the out of plane (plate) displace-
ments (w) are much bigger as in-plane (web) displacements (u, v). Taking into account the
non-linear terms we have the strains

ε = εLm + εNm − z k , (1)
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where εLm = [u,x, v,y, u,y + v,x]T, εNm = 1/2 [w2
,x, w

2
,y, 2 w,x w,y]T, k = [w,xx, w,yy, 2 w,xy]T,

the indexes denote the partial derivations.

Fig.1: Notations of the quantities of the slender web loaded in compression

The initial displacements will be assumed as the out of plane displacements only and so
we have

ε0 = ε0Nm − z k0 . (2)

The specific problem of using the FEM for the solution of non-linear problem of the
post-buckling behaviour of the slender web is, that we do not compile the system of the
algebraic equations, but even so we use the Newton-Raphson iteration with the combination
of the incremental steps.

The increments of the strains are

Δε =

⎡
⎣ Δu,x

Δv,y

Δu,y + Δv,x

⎤
⎦+

⎡
⎣ w,x Δw,x

w,y Δw,y

w,x Δw,y + w,y Δw,x

⎤
⎦+

1
2

⎡
⎣ Δw2

,x

Δw2
,y

2 Δw,x Δw,y

⎤
⎦−z

⎡
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2 Δw,xy

⎤
⎦ . (3)

The variation is

δΔε =

⎡
⎣ δΔu,x

δΔv,y

δΔu,y + δΔv,x

⎤
⎦ +

⎡
⎣ δΔw,x w,x

δΔw,y w,y

δΔw,x w,y + δΔw,y w,x

⎤
⎦ +

+

⎡
⎣ δΔw,x Δw,x

δΔw,y Δw,y

δΔw,x Δw,y + δΔw,y Δw,x

⎤
⎦ − z

⎡
⎣ δΔw,xx

δΔw,yy

2 δΔw,xy

⎤
⎦ .

(4)

The system of conditional equations we can get form the condition of the minimum of
the increment of the total potential energy

δΔU = 0 . (5)

This system can be written as:

Kinc Δα + Fint − Fext − ΔFext = 0 , (6)
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where

Kint =
[

KincD KincDS

Kinc SD Kinc S

]
, Fint =

[
FintD

Fint S

]
,

Fext =
[
FextD

Fext S

]
, ΔFext =

[
ΔFextD

ΔFext S

]
.

Matrix of shape functions we can express as

q = Bα =
[
BD 0
0 BS

] [
αD

αS

]
, Δq = BΔα .

We have noted

KincD = KincDL + KincDG ,

KincDL =
∫
Γ

BT
Dl Db BDl dΓ (7)

is the linear stiffness matrix of the plate,

KincDG =
∫
Γ

BT
X DincD BX dΓ (8)

is the nonlinear part of the incremental stiffness matrix of the plate,

[
w,x

w,y

]
= BX αD , DincD =

E t

1 − ν2

[
A C
C B

]
,

where

A =
3
2

w2
,x −

1
2

w2
0,x +

1
2

w2
,y −

1
2

v w2
0,y + u,x + v v,y +

t
E t

1−ν2

σxw ,

B =
3
2

w2
,y − 1

2
w2

0,y +
1
2

w2
,x − 1

2
v w2

0,x + v,y + v u,x +
t

E t
1−ν2

σyw ,

C = w,x w,y − 1 − ν

2
w0,x w0,y +

1 − ν

2
(u,y + v,x) +

t
E t

1−ν2

τw .

KincDS =
∫
Γ

BT
X Dinc SD BSl dΓ (9)

is the incremental stiffness matrix of the interaction of the plate-web displacements, where

⎡
⎢⎣

Δu,x

Δu,y

Δv,x

Δv,y

⎤
⎥⎦ = BSl αS , DincDS =

E t

1 − ν2

[
w,x

1−ν
2 w,y

1−ν
2 w,y v w,x

v w,y
1−ν

2 w,x
1−ν

2 w,x w,y

]
.

FintD = FintDL + FintDG + FintDW (10)
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is the vector of the internal forces, where

FintDL =
∫
Γ

BT
Dl FDL dΓ , FDL =

E t3

12 (1 − ν2)

⎡
⎣ w,xx − w0,xx + v w,yy − v w0,yy

w,yy − w0,yy + v w,xx − v w0,xx

(1 − ν) (w,xy + w0,xy)

⎤
⎦ ,

FintDG =
∫
Γ

BT
DlX FGl dΓ , FGl =

E t

1 − ν2

1
2

[
A
B

]
,

A = w3
,x + w,x (2 u,x + 2 v,y − w2

0,x − v w2
0,y + w2

,y) + w,y (1 − ν) (u,y + v,x − w0,x w0,y) ,

B = w3
,y + w,y (2 u,x + 2 v,y − w2

0,x − v w2
0,x + w2

,x) + w,x (1 − ν) (u,y + v,x − w0,x w0,y) ,

FintDW =
∫
Γ

BT
X FDW dΓ , FDW = t

[
w,x σxw + w,y τw

w,y σyw + w,x τw

]
.

Note: We assume the constant distribution of the residual stresses (σxw, σyw, τw) over the
thickness.

FextD =
∫
Γ

BT
D pD dΓ (11)

is the vector of the external load of the plate,

ΔFextD =
∫
Γ

BT
DX ΔpD dΓ (12)

is the increment of the external load of the plate,

Kinc S =
∫
Γ

BT
S Db BS dΓ (13)

is incremental stiffness matrix of the web,

Kinc SD = KT
incDS (14)

is the incremental stiffness matrix of the web-plate displacements,

Fint S = Fint SL + Fint SG + Fint SW (15)

is the vector if the internal forces of the web, where

Fint SL =
∫
Γ

BT
SlX FSL dΓ , FSL =

E t

1 − ν2

⎡
⎢⎢⎣

u,x + v v,y
1−ν
2 (u,y + v,x)

1−ν
2 (u,y + v,x)
v,y + v u,x

⎤
⎥⎥⎦ ,

Fint SG =
∫
Γ

BT
SlX FSG dΓ , FSG =

E t

1 − ν2

1
2

⎡
⎢⎢⎣

w2
,x + v w2

,y − w2
0,x − v w2

0,y

(1 − ν) (w,x w,y − w0,x w0,y)
(1 − ν) (w,x w,y − w0,x w0,y)
w2

,y + v w2
,x − w2

0,y − v w2
0,x

⎤
⎥⎥⎦ ,

Fint SW =
∫
Γ

BT
SlX FSW dΓ , FSW = t

⎡
⎢⎣

σxw

τw

τw

σyw

⎤
⎥⎦ .
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Fext S =
∫
Γ

BT
Sl pS dΓ (16)

is the vector of the external load of the web,

ΔFext S =
∫
Γ

BT
Sl ΔpS dΓ (17)

is the increment of the external load of the web.

In the case of the structure in equilibrium Fint − Fext = 0, we can do the incremental
step Kinc Δα = ΔFext ⇒ Δα = K−1

inc ΔFext and αi+1 = αi + Δα.

The Newton-Raphson iteration can be arranged in the following way :

We suppose that αi does not represent the exact solution and the residua are Fi
int−Fi

ext = ri.

The corrected parameters are αi+1 = αi + Δαi, where Δαi = −K−1
inc ri.

We have used the identity of the incremental stiffness matrix with the Jacobbian of the
system of the non-linear algebraic equation J ≡ Kinc.

To be able to evaluate the different paths of the solution, the pivot term of the Newton-
Raphson iteration has to be changed during the solution.

For the stable path the determinant of the incremental stiffness matrix must be positive
D = detKinc > 0, all the main minors must by positive as well Dk > 0 and the load must
be taken as the pivot term.

3. Illustrative examples

The FEM computer program using a 48 D.O.F. element has been used [2]. The primary
path of the solution starts from the zero load level and from the initial displacement. It
means that the nodal displacement parameters of the initial displacements and the small
value of the load parameter have been taken as the first approximation for the iterative
process. To get another paths of the solution we have used random combinations of the
parameters as the first approximation. After ‘catching’ the one point of the path we were
able to ‘follow’ this path and we were able to distinguish the stable and unstable part of
this path. Even so, this way of the solution does not guarantee getting all paths.

The presented non-linear solutions of the post-buckling behaviour of the slender web
(Fig. 2 and 3) are divided into two parts. On the left side we have load versus nodal dis-
placement parameters relationship, on the right side the relevant level of the total potential
energy is drawn. (Unloaded web represents a zero total potential energy level.) Due to the
mode of the initial imperfection the nodal displacements w29, w69 have been taken as the
reference nodes (see Fig. 1). The thick line represents the stable path and the thin line rep-
resents the unstable path of the solution. More details about the solution of the equilibrium
paths are mentioned in [4].

In this paper we shall try to give an answer to the problem of the ability of collapse of the
slender web loaded in compression in the second mode of buckling. Fig. 2 shows the solution
for the initial displacement α01 = 0.01 and α02 = 0.15 . We can see that the primary path
is in the post-buckling phase in mode 1 (v1 – the thick line). The lowest value of the total
potential energy is related to the path v3 (mode 2). The energy barrier protects the snap
from the path v1 to the path v3. When we increase the mode 2 in the mode of the initial
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Fig.2: The post-buckling behaviour of the slender web with the initial displacement
w0 = 0.01 sin(π x/a) sin(π y/b) + 0.15 sin(2 π x/a) sin(π y/b)

Fig.3: The post-buckling behaviour of the slender web with the initial displacement
w0 = 0.01 sin(π x/a) sin(π y/b) + 0.2 sin(2 π x/a) sin(π y/b)

displacement (α01 = 0.01 and α02 = 0.2) the post-buckling mode of the slender web is the
mode 2 (Fig. 3).

Let we find the connection between the load-deflection path and corresponding level of
the total potential energy. From Fig. 2 and 3 we can see, that relative position of limit
points in p–w diagram mentions on magnitude of energetic barrier. The increase of the
parameter α02 is related to decrease of parameter pL3. This is a value of load at limit
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point of the lowest energy path. If pL3 is the lowest limit point in p–w diagram, energetic
barrier is eliminated and solution will continue in post-buckling phase in the most convenient
way, i.e. in the lowest energy path. The mode of buckling is coincident with the mode of
initial imperfection. The benefit of the described procedure is, that we are able to predict
a post-buckling behaviour of the web from p–U path diagram only.

4. Conclusion

The influence of the value of the amplitude and the mode of the initial geometrical imper-
fections for the post-buckling behaviour of the slender web is presented. As the important
result we can note, that the level of the total potential energy of the primary stable path can
be higher as the total potential energy of the secondary stable path. This is the assumption
for the change in the buckling mode of the slender web. This phenomenon is focused here.

The evaluation of the level of the total potential energy for all paths of the non-linear solu-
tion is a small contribution in the investigation of the post buckling behaviour of the slender
web. Even so we are not able to put a full answer for the mechanism of the snap-trough.
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