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CRACK INITIATION CRITERIA FOR SINGULAR
STRESS CONCENTRATIONS

Part II: Stability of Sharp and Bi-Material Notches

Jan Klusák, Zdeněk Knésl, Luboš Náhĺık*

The usual approach in assessing the stability of general singular stress concentrators
developed and presented in the first part of this contribution is applied to config-
urations corresponding to bi-material notches. Two stability criteria based on the
knowledge of the tangential stress and the strain energy density factor distribution
in the vicinity of the bi-material notch are formulated. The critical stress for crack
initiation and the initial crack propagation direction are calculated as a function of
the geometry and material properties of the bi-material notch.
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1. Introduction

This article attempts to reveal procedures of assessing conditions when a crack initiates
at the tip of a bi-material notch. The existence of bi-material notches is connected with
geometrical or material discontinuities. The general configuration of the bi-material notch
is shown in Fig. 1. The geometry of the notch is given by the angles ω1, ω2 and the ma-
terial properties characterised by the elastic constants E1, ν1, E2, ν2 corresponding to the
materials 1 and 2.

Fig.1: A bi-material notch characterised by the angles ω1, ω2, material properties
of materials 1 and 2, and its polar coordinate system r, θ

Procedures suitable for estimation of crack initiation conditions in the vicinity of bi-
material notches have not been quite known up to now. In the following a bi-material notch
is considered as a special case of a general singular stress concentrator (GSSC). The object of
the second part of this paper is to apply the general approach suggested and formulated in the
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first part [1] of the contribution to the assessment of the stability of bi-material notches. For
that purpose two stability criteria based on the knowledge of the maximal tangential stress
and the strain energy density factor distribution in the vicinity of the bi-material notch are
formulated. The critical stress for crack initiation and the initial crack propagation direction
are then calculated as a function of the geometry and material properties of the bi-material
notch. The presented approach follows the basic idea of linear elastic fracture mechanics, i.e.
the conditions of small-scale yielding are assumed and it has a phenomenological character.
Furthermore, the ideal bi-material configuration is considered, i.e. with a sharp notch tip,
step change of material properties through the interface and ideal adhesion at the interface.

2. Analysis of singular stress distribution

The stress field around a bi-material notch can be determined by means of the combina-
tion of analytical and numerical approaches, e.g. [2, 3, 4]. An analytical solution based on
the real Airy stress function follows from the biharmonic partial differential equation

ΔΔΦm = 0 , i.e.
(

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

) (
∂2Φm

∂r2
+

1
r

∂Φm

∂r
+

1
r2

∂2Φm

∂θ2

)
, (1)

where Δ is the Laplace operator. The bi-material notch consists of two domains, as shown
in Fig. 1, addressed by m = 1, 2 with different material properties. The stress function Φm

can be written in the form of an infinite series :

Φm =
∞∑

k=1

Ak rλk+1 Fkm(θ, λk) (2)

often referred to as the Williams’ eigenfunction expansion. Ak are unknown coefficients,
λk are eigenvalues, Fkm are eigenfunctions, and r, θ are the polar coordinates, see Fig. 1.
Although the expression (2) is an infinite series, only terms singular with respect to the
radial coordinate r are taken into account as the limit analytical solution.

By substituting Φ in (1), we achieve the fourth-order differential equation for the cal-
culation of eigenfunctions Fm in the form (the subscript index k is omitted for the sake of
simplicity) :

F (4)
m + 2 (1 + λ2)F ′′

m + (1 − λ2)2 Fm = 0 , (3)

where the prime denotes the derivative with respect to the angular coordinate θ. The
characteristic equation corresponding to (3) has two complex-conjugate roots. The overall
solution can then be expressed as the sum of two even cosine functions and two odd sine
functions as

Fm(θ, λ) = am sin(λ + 1) θ + bm cos(λ + 1) θ − cm sin(λ − 1) θ − dm cos(λ − 1) θ (4)

where am, bm, cm, dm are unknown constants. The polar stress components can now be
obtained separately for each domain in terms of the eigenfunction Fm. By substituting (4)
in the Williams’ expansion (2) and using the relation for the stress components in the polar
coordinates
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we then obtain the polar stress components in the form

σmrr = Arλ−1 (F ′′
m + (λ + 1)Fm) ,

σmθθ = Arλ−1 (λ (λ + 1)Fm) ,

σmrθ = Arλ−1 (−λF ′
m) .

(6)

Therefore, the stress field has a singular behaviour with respect to the radial distance r for
all allowed eingenvalues in the interval 0 < λ < 1. By applying the Hooke’s law to the
set (6), the corresponding polar components of the displacements are obtained as

umr = A
rλ

2 μm

{
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1 − ν̄m

λ

[
F ′′

m + (λ + 1)2 Fm
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,
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m
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,

where ν̄m = νm for plain strain, ν̄m = νm/(1 + νm) for plain stress, and is Poisson’s ratio of
the material domain m.

The nine unknown parameters, i.e. am, bm, cm, dm for m = 1, 2 and the eigenvalue λ have
to be determined from the set of the boundary conditions corresponding to the particular
problem.

Providing that the notch surfaces are traction-free, the following set of stress components
along the notch faces has to be accomplished :

σ1θθ(r, ω1) = σ1rθ(r, ω1) = σ2θθ(r, − ω2) = σ2rθ(r, − ω2) = 0 (7)

where the first subscript denotes the material to which a particular component corresponds.
Considering that the interface between material 1 and 2 is perfectly bonded (ideal adhesion),
the following set of equations for displacements must then be satisfied along the interface :

u1r(r, θ = 0) = u2r(r, θ = 0) ,

u1θ(r, θ = 0) = u2θ(r, θ = 0) .
(8)

For the same reason, the tractions are continuous across the interface, i.e.:

σ1θθ(r, θ = 0) = σ2θθ(r, θ = 0) ,

σ1rθ(r, θ = 0) = σ2rθ(r, θ = 0) .
(9)

These eight conditions form a homogeneous algebraic system with nine unknown parameters,
namely λ and the eight coefficients creating the vector x. The system B8×8(λ)x = 0, where
B(λ) is the matrix of the system, is underdetermined. The existence of the nontrivial
solution requires

detB(λ) = 0 , (10)

from which the eigenvalues λ can be obtained. Theoretically, the infinite number of the
eigenvalues can be found, but only λ in the interval (0, 1) corresponding to the singular
terms are taken into account. Further, depending on the eigenvalue λ, the coefficients am,
bm, cm, dm for m = 1, 2 are determined. Note that only the proportions of seven coefficients
to the eighth can be obtained in this way. The requested seven coefficients are quantified in
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terms of the eighth usually taken as 1. In the following, the value of the coefficient d2 = 1.
Under these conditions, the solution is determined except for the value A. This constant
cannot be determined from the analytical approach and has to be evaluated numerically
through analysis of the entire model with given boundary conditions.

2.1. Study of the eigenvalues for specific bi-material notches

As mentioned above, the stress components have a singular character for eigenvalues in
the range 0 < λ < 1. As an example the values λk have been determined for two basic
geometrical configurations as shown in Fig. 2 and in dependence on the composite Dundurs’
parameters α, β (11), see [6] for details,

α =
−μ1 (κ2 + 1) + μ2 (κ1 + 1)
μ1 (κ2 + 1) + μ2 (κ1 + 1)

, β =
−μ1 (κ2 − 1) + μ2 (κ1 − 1)
μ1 (κ2 + 1) + μ2 (κ1 + 1)

, (11)

where shear modulus μm = Em/[2(1 + νm)] (Em is Young’s modulus), parameters κm =
= (3− νm)/(1+ νm) for the case of plane stress or κm = 3−4 νm for plain strain (m = 1, 2).
It is −1 ≤ α ≤ 1, −0.5 ≤ β ≤ 0.5 and the special case α = β = 0 corresponds to a homo-
geneous body.

Fig.2: Two basic geometrical configurations of bi-material
notches (materials 1 and 2) studied in this chapter

It follows from the previous analysis that the eigenvalues λ depend on the elastic constants
of the two media and on the wedge angles, but do not depend on the body dimensions or
on the external stresses :

λ = λ(ω1, ω2, μ1, ν1, μ2, ν2) = λ(ω1, ω2, α, β) . (12)

This enables us to discuss the dependence of the eigenvalues λ on the Dundurs’ parameters
α, β inside the Dundurs’ parallelogram for fixed notch geometry, i.e. for fixed angles ω1, ω2.
For this article, the eigenvalues λ have been determined numerically for the following (from
the practical point of view) most important geometries (see Fig. 2) :

a) Perpendicular face : ω1 = 90◦, ω2 = 180◦

b) Free edge : ω1 = 90◦, ω2 = 90◦

The corresponding Dundurs’ parallelograms are shown in figures 3 and 4.

Figures 2a and 3 show that in the case of the perpendicular face the two real eigenvalues
occur in most material combinations. The geometry corresponding to the free edge (Fig. 2b)
leads only to one real eigenvalue λ1 (see Fig. 4).
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Fig.3: Eigenvalues λ1 and λ2 for the perpendicular face (ω1 = 90◦, ω2 = 180◦)

Fig.4: Eigenvalues λ1 for a free edge (ω1 = 90◦, ω2 = 90◦)

2.2. Stress components

In the following, instead of the eigenvalues λ, the stress singularity exponents p = 1 − λ

are employed. In most of the geometrical and material configurations of a bi-material notch
there are two real stress singularity exponents p1 and p2 in the interval (0, 1). Contrary
to a crack in homogeneous material, the exponents differ from 1/2 and, furthermore, each
singular term includes both normal and shear mode of loading. Then the singular stress
components can be written in the polar coordinates :

σmrr =
2∑

k=1

Hk√
2π

r−pk Frrkm ,

σmθθ =
2∑

k=1

Hk√
2π

r−pk Fθθkm ,

σmrθ =
2∑

k=1

Hk√
2π

r−pk Frθkm

(13)

where

Frrkm = (2 − pk) [−amk sin((2 − pk) θ) − bmk cos((2 − pk) θ) +

+ 3 cmk sin(−pk θ) + 3 dmk cos(−pk θ)] ,

Fθθkm = (p2
k − 3 pk + 2) [amk sin((2 − pk) θ) + bmk cos((2 − pk) θ) +

+ cmk sin(−pk θ) + dmk cos(−pk θ)] ,



414 Klusák J. et al.: Crack Initiation Criteria for Singular Stress Concentrations, Part II: . . .

Frθkm = (2 − pk) [−amk cos((2 − pk) θ) + bmk sin((2 − pk) θ) +

+ cmk cos(−pk θ) − dmk sin(−pk θ)] .

The subscript m differentiates materials 1 and 2 where the stresses are determined. The value
Hk is the generalized stress intensity factor (GSIF), which has to be ascertained from the
numerical solution of the studied geometry with given materials and boundary conditions,
see chapter 2.3.

By substituting the same materials in the above formulas we get the relations for the
stress components for a sharp notch in a homogeneous material. In this case the stress
singularity exponents depend only on the notch opening angle and one or two exponents
belong to the specific loading mode I or II.

2.3. Stress intensity factors

For the complete determination of the stress components, the stress intensity factors H1

and H2 have to be determined. One of the suitable ways used here is a direct method [3, 4, 5].
The method compares the results of some appropriate magnitude from a numerical solution
with its analytical representation. The tangential stress σθθ is used here as the appropriate
magnitude for comparison. If the stress distribution is described by a combination of H1

and H2, it is necessary to solve the system of two equations. To achieve this, the values of
σθθ following from the finite element method are determined for two different angles θ1, θ2.
Then knowing the analytical relations e.g. for σθθ (13) we solve the system of equations for
H1 and H2 :

[
r−p1 Fθθ1m(θ = θ1) r−p2 Fθθ2m(θ = θ1)
r−p1 Fθθ1m(θ = θ2) r−p2 Fθθ2m(θ = θ2)

] [
H1

H2

]
=

[
σmθθ(r, θ1)
σmθθ(r, θ2)

]
. (14)

The valid values of GSIFs H1 and H2 are then determined by an extrapolation of the
solutions (14) into r = 0. For details see the numerical example in chapter 4.

3. Criteria for crack initiation

The general principle of stability assessment of a general singular stress concentrator
(GSSC) has been introduced in the first part of this article series [1]. The classic fracture
mechanics approach of comparison of the stress intensity factor KI with its critical value
KI crit (represented by fracture toughness KIC or by the fatigue threshold value KI th) is
generalized to the following relation :

Hk(σappl) < Hk crit(Mm) . (15)

The value Hk(σappl) follows from the numerical solution. Its critical value Hk crit depends
on the critical material characteristic KIC or KI th and has to be deduced with help of
a controlling variable L, see [1]. Note that values H1 and H2 are mutually dependent and
their critical values H1C and H2C as well, see chapter 3.2.2.

In the following paragraphs the conditions for crack initiation are presented in five steps :
choice of a suitable controlling variable, determination of the direction of crack initiation,
estimation of the generalized stress intensity factors, determination of the critical value of
the GSIFs and determination of critical applied stress.
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3.1. Choice and introduction of a suitable controlling variable

The controlling variable L needs to have a clear and identical physical meaning in the
case of assessing both a crack in a homogeneous material and a bi-material notch [1]. The
particularities of the bi-material notches are :

– The inherently combined mode of loading that follows from the stress distribu-
tion (13),

– The existence of two singularities in most of the geometrical and material configura-
tions.

In order to demonstrate the procedures of stability condition suggestions, two controlling
variables L are considered : (1) the mean value of the stress component σθθ and (2) the mean
value of the strain energy density factor Σ.

3.2. Criterion of the mean value of tangential stress

This criterion is based on monitoring tangential stress around the notch tip. The mean
value of σθθ component over a certain distance d

σ̄θθ(θ) =
1
d

d∫
0

σθθ(r, θ) dr (16)

determined in dependence on the polar angle θ is considered as the controlling variable L.

By analogy with cracks in the homogeneous case it is supposed that the crack at the
bi-material notch tip is initiated in the direction θ0 where σ̄θθ(θ) has its maximum. Further,
it is assumed that the crack is initiated when σ̄θθ(θ0) reaches its critical value σ̄θθ C(θ0)
that is ascertained for a crack in homogeneous media. The distance d has to be chosen in
dependence on the mechanism of a rupture, e.g. as a dimension of a plastic zone or as a size
of material grain.

3.2.1. Crack initiation direction

The potential direction of crack initiation is determined from the maximum of the mean
value of tangential stress in both materials. The following two conditions have to be satisfied :(

∂σ̄mθθ

∂θ

)
θ0

= 0 ,

(
∂2σ̄mθθ

∂θ2

)
θ0

< 0 . (17)

Using (13) and (16) the average tangential stress for a bi-material wedge can be expressed
as :

σ̄θθm =
H1√
2π

d−p1

1 − p1
Fθθ1m +

H2√
2π

d−p2

1 − p2
Fθθ2m (18)

and for its first derivation it follows :
d−p1

1 − p1

∂Fθθ1m

∂θ
+

H2

H1

d−p2

1 − p2

∂Fθθ2m

∂θ
= 0 (19)

where :
∂Fθθkm

∂θ
= (p2

k − 3 pk + 2) {(2 − pk) [amk cos((2 − pk) θ) − bmk sin((2 − pk) θ)] −
− pk [cmk cos(pk θ) + dmk sin(pk θ)]}

for k = 1, 2.
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It is obvious that by inserting the ratio of the values H2/H1 (obtained from the nume-
rical solution) into the relation (19), we obtain a simple equation for the value of θ0. The
maximum of σmθθ can exist in both material 1 in the interval (0, ω1) and material 2 in
the interval (−ω2, 0). If there are more than one direction of possible crack initiation, it is
necessary to consider all of them.

3.2.2. Stability criterion suggestion

Here we present the suggestion of the stability criterion based on the average stress
calculated across a distance d from the wedge tip. The value of the average stress σ̄θθ

corresponding to the bi-material wedge is calculated for the direction of θ0 and it is compared
with the critical stress σ̄θθ C corresponding to the crack [7].

For a crack in homogeneous material under mode I of loading we obtain (the direction
of assumed crack propagation θ0 = 0) :

σ̄θθ C =
2 KIC√

2π d
. (20)

To find the relation between Hk(σappl) and Hk crit(Mm), let us consider the fact that the
ratio of the values H1 and H2 is constant for a given bi-material configuration and boundary
conditions and does not depend on the value of the applied stress σappl and it holds

Γ21 =
H2

H1
=

H2C

H1C
, [mp2−p1 ] .

This assumption is justified because when changing the value of the applied stress, only
the absolute values of GSIFs change, but their ratio is constant even for the critical values
H2C/H1C. The ratio has no physical meaning, it just represents the contribution of par-
ticular singular terms to the stress distribution. Inserting the ratio Γ21 and the critical
value H1C into the relation (18) we get the critical value of the average tangential stress for
a bi-material wedge. Following the assumption of the same mechanism of a rupture in both
cases (crack and notch) we can compare it with the relations for a crack (20) and obtain an
expression for H1C value :

H1C =
2 KIC

d
1
2−p1

1 − p1
Fθθ1m(θ0) + Γ21

d
1
2−p2

1 − p2
Fθθ2m(θ0)

. (21)

It is evident that the critical value H1C depends on the value of fracture toughness KIC

that is a material characteristic. The critical values are compared for the directions θ0

of assumed crack initiation that is in case of bi-material notch ascertained from maximal
tangential stress criterion. Because of that fact, the normal loading mode is predominant.
Thus the comparison with crack propagation characterized by fracture toughness KIC is
justified. The integrating distance d has to be chosen according to the mechanism of the
rupture, e.g. for a cleavage fracture it can be set between 2–5× grain size of the material.

Then the stability criterion can be suggested in the following form :

H1(σappl) < H1C(KIC) . (22)
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The crack is not initiated in the tip of a bi-material notch if the value H1 of GSIF is lower
than its critical value H1C. The value H1 is determined from a numerical solution of a given
bi-material configuration with given boundary conditions, geometry, and material properties
of the bi-material wedge. The critical value H1C is given by the relation (21).

3.3. Strain energy density factor criterion

Similarly, the stability conditions can be derived via the mean value of the strain energy
density factor.

For a crack in homogeneous material, S(r, θ), the strain energy density factor (SEDF),
is defined as [8] :

S(θ) = r
dW

dV
= r

ε∫
0

σ dε , (23)

where dW/dV is the corresponding strain energy density.

Analogically, a generalized strain energy density factor (GSEDF) for a bi-material notch,
Σ(r, θ), can be set up as :

Σ(r, θ) = r
dW

dV
= r

ε∫
0

σ dε , (24)

where the corresponding stress components are given by (13).

Considering the cases of plane strain or plane stress, it becomes :

Σm = r
2 σmθθ σmrr (km − 1) + (σ2

mθθ + σ2
mrr) (km + 1) + 4 σ2

mrθ

8 μm
. (25)

Here km = (1 − νm)/(1 + νm) holds for plane stress and km = (1 − 2 νm) for plane strain,
μm is the shear modulus and νm is the Poisson’s ratio of material m = 1, 2. Substituting
the relations (13) in (25) we can obtain the expression for the distribution of the generalized
strain energy density factor in the vicinity of the bi-material notch tip :

Σm =
1

8 μm

H2
1

2π
(r1−2p1 U1m + r1−2p2 Γ2

21 U2m + r1−p1−p2 2 Γ21 U12m) (26)

where

U1m = (F 2
rr1m + F 2

θθ1m)(km + 1) + 4 F 2
rθ1m + 2 Fθθ1m Frr1m (km − 1) ,

U2m = (F 2
rr2m + F 2

θθ2m)(km + 1) + 4 F 2
rθ2m + 2 Fθθ2m Frr2m (km − 1) ,

U12m = (Frr1m Frr2m + Fθθ1m Fθθ2m)(km + 1) + 4 Frθ1m Frθ2m +

+ (Fθθ1m Frr2m + Fθθ2m Frr1m) (km − 1) .

While in the case of a crack in homogeneous media Sih’s SEDF does not depend on the
radial coordinate r, see e.g. [8, 9], in the case of a homogeneous or bi-material notch or in
the case of a crack with its tip at a bi-material interface [5] the value of GSEDF depends on
the polar coordinate r, i.e. Σ = Σ(r, θ).
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In the following part, the mean value of generalized SEDF over a certain distance d from
the notch tip will be considered as a suitable controlling variable, i.e. L = Σ̄(d, θ). For
material m it is

Σ̄m =
1
d

d∫
0

Σm dr =

=
H2

1

16 μm π

(
d1−2p1

2 − 2p1
U1m +

d1−2p2

2 − 2p2
Γ2

21 U2m +
d1−p1−p2

2 − p1 − p2
2 Γ21 U12m

)
.

(27)

The integration distance d enters the calculations as a structural parameter or a parameter
related to the mechanism of rupture. Note that in the case of a crack in homogeneous
material where S does not depend on r, the mean value of the strain energy density factor
S̄(θ) = S(θ).

3.3.1. Crack initiation direction

Following the basic assumption of the SEDF theory [8, 9, 10], the crack propagation
direction θ0 is identical with the direction of the local minimum of the strain energy density
S(θ0). By analogy it is assumed here that in the case of a bi-material notch the potential
direction of crack initiation is identical with the direction of the minimum of the mean value
of the generalized strain energy density factor Σ̄.

To find its minimum in material m = 1, 2, two conditions have to be determined :

∂Σ̄m

∂θ
= 0 ,

∂2Σ̄m

∂θ2
< 0 . (28)

Differentiating the relation (27), the first derivation from (28) can be expressed in the form :

d2−2p1

2 − 2p1

∂U1m

∂θ
+

d2−2p2

2 − 2p2
Γ2

21

∂U2m

∂θ
+

d2−p1−p2

2 − p1 − p2
2 Γ21

∂U12m

∂θ
= 0 . (29)

It is evident that the direction of potential crack initiation again does not depend on the
absolute value of the GSIFs, but depends only on their ratio Γ21. The ratio Γ21 can be taken
from the direct methods based on tangential stress, as shown in chapter 2.3. From the two
possible solutions (29) one implies the minimum of the mean value of SEDF and it satisfies
the condition of positive second derivative (28).

3.3.2. Stability criterion suggestion

Like in the previous criterion (22) the crack will not be initiated from the bi-material
notch tip if under given conditions the value H1 is less than its critical value H1C (generalized
fracture toughness in the case of brittle fracture or generalized threshold value H1th in the
case of fatigue loading), i.e.

H1(σappl) < H1th(KI th) .

Proceeding from the suggestion of the same mechanism of rupture and consequently the
same value of average generalized SEDF corresponding to critical conditions in the case of
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a crack and a bi-material notch Σ̄m C = Sm C, and the generalized critical values of GSIF
are given as follows :

H1th,m = 2 KI th,m

√√√√√ km

d1−2p1

2 − 2p1
U1m +

d1−2p2

2 − 2p2
Γ2

21 U2m +
d1−p1−p2

2 − p1 − p2
2 Γ21 U12m

(30)

where KI th,m is the threshold value for material m.

3.4. Stability curve for a bi-material notch and the critical applied stress

The calculated value of the critical or threshold generalized stress intensity factor holds
only for a particular value of the ratio H2/H1, i.e. for concrete boundary loading condi-
tions. If the direction of the external loading is modified, the ratio of GSIF‘s changes, too.
Generally, the graph H1 vs. Γ21 (Fig. 5) can be drawn where the values H1C,m or H1th,m

corresponding to eq. (21) or (30) and calculated for a varying ratio Γ21 form a stability curve.
Note that one stability curve corresponds to each combination of the stress singularity ex-
ponents p1 and p2, i.e. to the special material combination and geometry of the bi-material
notch.

Fig.5: The stability curve for a combined loading mode of a bi-material wedge

The stability curve drawn in H1 vs. Γ21 plot divides the area of the graph into a part
where a crack is initiated and a part where the calculated values of H1(Γ21) below the curve
guarantee the stability of the bi-material notch, see Fig. 5. Note that point on the vertical
axe corresponding to H2 = 0 hold for stress distribution with one singularity. The stability
curve is created by points with coordinates [H1C,m, Γ21] or [H1th,m, Γ21] corresponding to
the critical or threshold values of GSIF calculated for particular ratio Γ21.

When assessing a concrete bi-material notch, several potential crack initiation angles can
occur. Although the values of H1C,m or H1th,m are calculated in all possible directions θ0,m

in both materials, we take only the least value and we name it H1crit in order to interpret
the suggested stability condition in terms of the critical applied stress.

The critical applied stress can be formulated as :

σcrit = σappl
H1crit

H1(σappl)
. (31)

Where σappl in the relation (31) is the stress applied in the numerical solution for the value
H1. The crack will not be initiated in the bi-material wedge tip if the applied stress is lower
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than the critical stress :
σappl < σcrit . (32)

4. Numerical example

For a numerical example a rectangular notch (fig. 6) is assessed. Geometry is given
by the angles ω1 = 90◦, ω2 = 180◦. Two material configurations are taken into account.
The bi-material notch with the following characteristics E1 = 1×105 MPa, E2 = 2×105 MPa,
ν1 = ν2 = 0.3, KI th = 8MPam1/2 and the homogeneous notch with E1 = E2 = 2×105 MPa,
ν1 = ν2 = 0.3, KI th = 8 MPam1/2. The stress singularity exponents follow from the
geometry and material characteristics. In the bi-material case they are p1 = 0.4142 and
p2 = 0.0406 while for the homogeneous body they are p1 = 0.4555 and p2 = 0.0915. The
conditions of plane strain are considered.

Fig.6: Rectangular bi-material wedge used in the numerical
example, a detail of a FEM mesh

The finite element system ANSYS is used for the calculations. The generalized stress
intensity factors H1 and H2 are gained from the direct method (14) by extrapolation into
r = 0, see the estimation of H1 in Fig. 7, the extrapolation in the case of H2 is carried out
in a similar way. Table 1 shows the values H1, H2, crack initiation angles θ0, and critical
values of GSIF H1crit = {H1C, H1th} ascertained from the two suggested stability criteria :
(i) criterion of the mean value of tangential stress, (ii) criterion of the mean value of the
strain energy density factor (chapter 3.3). The length parameter d appearing in the criteria
was chosen d = 0.4mm. Finally, the critical applied stresses corresponding to initiation
loading are stated in the table 1 as well. All the results are computed for both material
configurations – bi-material and homogeneous notches.

Fig.7: Extrapolation of H1 value into the notch (r = 0)
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Bi-material notch Homogeneous body
Criterion of: mean σθθ mean SEDF mean σθθ mean SEDF

H1 [MPa mp1 ] 5.817 5.464
H2 [MPa mp1 ] −2.013 −9.506
θ0 [◦] −75.0 −69.3 −69.8 −65.4

H1th [MPa mp1 ] 10.710 10.793 7.930 8.508
σcrit [MPa] 184.10 185.53 145.13 155.69

Tab.1: Results of numerical analysis of the notch in
the bi-material and homogeneous body

Fig.8: Crack initiation directions θ0 and maximal applied stresses σcrit corresponding
to the case of a bi-material or homogeneous notch

As the Table 1 shows, both methods produce similar results for all of the studied mag-
nitudes. In the case of the bi-material configuration the crack initiation angle θ0 ≈ 72◦ is
greater than in the case of the homogeneous notch, θ0 ≈ 68◦. The difference in the results is
similar as in case of a crack in a homogeneous media. Note that in case of GSEDF criterion
the Poisson’s ratio is covered into calculations and also the cases of plane strain and plain
stress can be differentiated.

For the studied bi-material configuration E1 = E2/2 the value of the critical applied
stress requires greater external loading for crack initiation than in the case of the notch in
homogeneous material E = E2, see Fig. 8.

5. Conclusions

On the basis of knowledge of the stress distribution around the bi-material notch two
criteria of stability based on the mean value of tangential stress and the mean value of the
strain energy density factor were suggested. The first one is generalisation of the maximum
tangential stress criteria [12] and can be used in the case of damage caused by brittle fracture.
The second one generalizes criterion of SEDF [8, 9] and is advantageous in the case of cyclic
loading. Relations for critical or threshold values of generalized stress intensity factors were
derived by means of the two controlling magnitudes and were used for the calculation of the
critical applied stresses. The suggested procedures are illustrated in numerical examples.
The model of a bi-material notch presented in the article can generally be used for assessing
stability conditions of general singular material and geometrical discontinuities.
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