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CRACK INITIATION CRITERIA FOR SINGULAR
STRESS CONCENTRATIONS

Part I: A Universal Assessment of Singular
Stress Concentrations

Zdeněk Knésl, Jan Klusák, Luboš Náhĺık*

In the contribution the limits of the validity of standard crack linear elastic fracture
mechanics are extended to problems connected with failure of structures caused by
general non-crack-like singular stress concentrators. In the present part of the con-
tribution a universal approach to assessment of general singular stress concentrators
in terms of linear elastic fracture mechanics is formulated. The approach suggested
in this part of the paper facilitates the answer to the question whether or not a crack
forms in the vicinity of the stress concentrator and what the parameters controlling
crack initiation are. The presented approach follows the basic idea of linear elastic
fracture mechanics, i.e. the validity of small scale yielding conditions is assumed, and
has a phenomenological character.
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1. Introduction

Modern material technologies require the use of components with complicated geometry
and are made up of combinations of different materials subjected to monotonic and cyclic
loading conditions in service. The ability to predict fracture of such components is of funda-
mental importance for assessment of the reliability of engineering structures. The presence
of geometrically complicated parts composed of different materials in engineering structures
is generally connected with existence of singular stress concentration and represents a weak
point for many applications. Owing to a high stress level fracture usually starts at these
places. Typically, these kinds of singular stress fields are generated in the vicinity of geo-
metrical and material discontinuities such as free edges in bi-material laminate, bi-material
wedges, cracks with their tips at an interface between two different materials and so on,
see Fig. 1.

The vicinity of regions with different elastic moduli as well as the presence of an interface
between different materials have a pronounced influence on the behaviour of a crack and
modelling crack initiation and propagation in such configurations continues to be a problem
of significant interest. Numerous studies have been focused on the cases where a stress
concentration corresponds to cracks. However, in many cases the stress distribution is
singular, but the type of the singularity differs from those of a crack and the approach of
standard fracture mechanics cannot be directly applied. Typically, much less attention has
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Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno, Czech Republic



400 Knésl Z. et al.: Crack Initiation Criteria for Singular Stress Concentrations, Part I: . . .

been paid to such configurations. While the expressions of the singular stress distribution
which refer to plane problems corresponding to configurations leading to singular stress
distribution have been in most cases well-known for many years, the stability criteria showing
conditions for crack initiation in the region near singular stress concentrations are still not
known fully.

The aim of the contribution is to extend the limits of the validity of standard crack
linear elastic fracture mechanics to problems connected with failure of structures caused
by non-crack-like singular stress concentrators. The contribution is divided into four parts.
In the first one a universal approach to assessment of general singular stress concentrators
in terms of linear elastic fracture mechanics is formulated. Tentative criteria of stability
suggested in this part are then used to answer the question whether or not a crack forms in
the vicinity of the stress concentrator and what the parameters controlling crack initiation
are. The presented approach follows the basic idea of linear elastic fracture mechanics,
i.e. the validity of small scale yielding conditions is assumed, and has a phenomenological
character.

The second part of the contribution is devoted to applications of the suggested approach
to problems connected with fracture mechanics of bi-material wedges. The third part ana-
lyses the behaviour of cracks terminating at an interface between different elastic materials.
The last part of the contribution is devoted to failure of coated structures.

Fig.1: Typical examples of configurations leading to general singular stress distri-
bution: a) V-notch in homogeneous material, b) V-notch with the tip at
an interface between two different materials, c) General bi-material notch,
d) Crack terminating at an interface, e) Crack terminating at an inclusion
surface, f) Free edge singularity, g) Interfacial crack between two materials

2. General singular stress concentrator

In the following the plane elasticity is considered. Fracture mechanics of a general singular
stress concentrator (GSSC) is based on an asymptotic analysis of the stress and strain fields.
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Fig.2: Bi-material notch with the used coordinate systems; the origin of the polar
and Cartesian coordinate systems O corresponds to the notch tip

The stress distribution in the vicinity of a general singular stress concentrator differs from
the stress field of a crack in a homogeneous material. Considering singular terms only, the
stress distribution in the vicinity of a GSSC can generally be expressed in the form (r, θ are
polar coordinates with the origin at the tip of a concentrator, see Fig. 2)

σij =
n∑

k=1

Hk√
2π

r−pk Fijk(θ, geom, M, . . . ) (1)

where n is a number of corresponding singular terms. Hk (k = 1, 2, . . . , n) are the generalized
stress intensity factors (GSIF). The indices (i, j) represent the polar coordinates (r, θ). The
functions Fijk follow from a limiting analytical solution of the problem. The stress singularity
exponents pk may be determined on the basis of the corresponding boundary conditions.
They depend on the configuration and the structure of a stress concentrator and the used
materials M and are considered within the interval (0, 1). The value of pk may generally be
complex, then (0 < Re(pk) < 1). In that case the corresponding generalized stress intensity
factor Hk would have complex values as well and the relations for stress distribution would
have a different form. A typical example of such a configuration is a crack lying at an
interface between two different elastic materials, Fig. 1g, see e.g. [1]. In the following only
cases with real values of the stress singularity exponent (and therefore also those of the
GSIF) are considered.

A comprehensive theoretical treatment of the corresponding boundary value problem
exists in the literature and general formulas that describe the displacement and the stress
distribution in the vicinity of GSSC have been known for different configurations for a long
time, see e.g. [2–5]. Let us, therefore, assume that for the studied cases the functions
Fijk and the values pk (eq. 1) are known as a result of a limiting analytical solution. The
general stress intensity factors Hk depend on the boundary conditions (including the external
loading), material combination and geometry of the body. Their values have to be estimated
numerically. Note that in most cases the number of singular terms in eq. (1) is n = 1 or
n = 2.

3. Linear elastic fracture mechanics of general singular stress concentrators

For a crack in homogeneous materials the eq. (1) has a form (modes I and II are consid-
ered)

σij =
KI√
2π

r−1/2 fij(θ) +
KII√
2π

r−1/2 gij(θ) (2)

where KI, KII are stress intensity factors and fij(θ), gij are a known function of the polar
coordinate θ, see e.g. [6]. Mind that fij(θ), gij(θ) are (depending on ij) either odd or even
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functions of θ and the first term corresponds to the normal mode and the second one to the
shear mode of loading. The values of the stress singularity exponents are in both cases the
same and equal to 1/2.

The energy G = GI + GII (crack driving force) released during a co-linear unit crack
extension can then be determined by calculating the work done by the surface forces acting
across the length da when the crack is closed from length (a + da) to length a,

GI = lim
da→0

1
da

da∫
0

σyy(x, θ = 0)uy(x − da) dx ,

GII = lim
da→0

1
da

da∫
0

σxy(x, θ = 0)ux(x − da) dy .

(3)

Upon the substitution for σyy, σxy from eq. (2) and the corresponding expressions for
displacements uy, ux, we get the relation between the crack driving force G and the stress
intensity factor K in the form G = K2

I /E∗ + K2
II/E∗, where E∗ = E for plane stress and

E∗ = E/(1 − ν2) for plane strain. E and ν are the Young modulus and Poisson’s ratio.
Note that the crack propagates in a self-similar way, see Fig. 3a and the value of the stress
singularity exponent is constant during crack increment da.

Contrary to this, in the case of a general singular stress concentrator, the crack initiation
at the tip of GSSC represents a non-self-similar procedure, where the stress singularity
exponent changes as a step function during crack initiation, see Fig. 3b. The energy released
during unit crack initiation in the vicinity of the generalized singular stress concentrator, as
defined by formula (3), leads to G = 0 if the value of the stress intensity exponent pk < 1/2
and to G → ∞ if pk > 1/2. Moreover, the values of the singularity exponents pk are
different from 1/2 and each term in (1) represents an inherently combined loading mode
(function Fijk contains both odd and even terms). Note that the dimension of generalized
stress intensity factors is [Hk] = MPampk and depends on pk.

All these facts lead to the conclusion that it is not possible to describe the behaviour of
a general singular stress concentrator by applying the standard (classic) approaches of crack
fracture mechanics. On the other hand in both cases (cracks in homogeneous materials and
GSSC) the corresponding stress field has a singular character with respect to the distance r

from the tip (of crack or GSSC) and thus the mechanism describing their stability can be
the same.

3.1. Conditions of stability

One of the principles underlying standard linear elastic fracture mechanics says that an
unstable fracture occurs if the stress intensity factor (SIF) reaches the critical value KIC,
also called fracture toughness. Thus, a crack will propagate (under pure mode I) whenever
the SIF KI (which characterizes the strength of the singularity for a given problem) reaches
the material constant KIC, see e.g. [6].

Similarly, fatigue crack growth does not occur if the value of the corresponding range of
the stress intensity factor ΔK is smaller than the value of the fatigue crack growth threshold
ΔKth, which is again a material constant, see e.g. [6].
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Fig.3: Examples of self-similar (a) and non-self-similar (b) extension of defects

Generally, in both cases, the above conditions of crack stability express the circumstances
under which the crack will not propagate and can be written in the form

KI(σappl) < KI crit(M) . (4)

KI crit is a critical material parameter depending on the mechanism of the crack propaga-
tion (e.g. fracture toughness KIC for brittle fracture, threshold value Kth for fatigue crack
propagation and so on). Knowing the value of KI crit(M), the critical value of the applied
stress, σcrit, can be estimated and the crack will not propagate if σappl < σcrit.

In the same way, conditions of stability for a general singular stress concentrator express
the circumstances under which no crack is initiated in the vicinity of the GSSC tip. Again,
no crack can be supposed to be initiated if the applied stress σappl < σcrit, where σcrit

now depends on the boundary conditions, the type of loading (fatigue, creep, . . . ), the
configuration of GSSC and the material M through which a crack will propagate. In order
to find the value σcrit, we assume that the mechanism of the propagation of a crack through
material M from the tip of a GSSC is the same as the mechanism of crack propagation
in a homogeneous material M and is controlled by the corresponding critical parameter
KI crit(M), i.e.

σcrit = σcrit[KI crit(M)] . (5)

Equivalently to (4), for the given geometrical configuration and the material combination
corresponding to the GSSC, the critical stress σcrit can be expressed by means of the critical
value of GSIF Hk crit(M) and the conditions of stability can be expressed in the form

Hk(σappl) < Hk crit(M) (6)

where Hk crit(M) are generalized values of critical material parameters KI crit. For a given
configuration of GSSC and the corresponding boundary conditions the values of the genera-
lized stress intensity factor Hk can be estimated numerically as a function applied stress
σappl, i.e. Hk = Hk(σappl). The critical value of the applied stress then follows from inequa-
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lity (6). Then the stability condition for the GSSC has the form σappl < σcrit. To apply the
above procedure, two problems have to be solved. The first one is the numerical estimation
of the Hk value. This is mostly based on an application of direct or integral methods, see
e.g. [7–11] for details.

The second problem is to find the relation between KI crit(M) and Hk crit(M). Follow-
ing the assumption that the mechanism of the propagation of a crack from the GSSC in
the material M is the same as in the case of the crack propagation in a homogeneous ma-
terial M we can conclude that the stability of the GSSC and the crack are controlled by
the same variable L, which has a clear physical meaning and is well-defined in both cases
(e.g. energy density, crack opening, mean stress value and so on). In the case of a homo-
geneous body M , there is L = L(. . .KI crit(M) . . . ) and in the case of the GSSC there is
analogously L = L(. . . Hk crit(M) . . . ). Let us further assume that in the case of instability
KI = KI crit(M) and Hk = Hk crit(M) the variables L reach their critical values L = LC

which are in both cases identical, i.e.,

LC(. . . KI crit(M) . . . ) = LC(. . . Hk crit(M) . . . ) . (7)

Based on the equation (7), the relation between Hk crit(M) and KI crit(M) can be found and
the critical applied stress σcrit calculated. Contrary to formulation of the crack stability in
homogeneous body, the additional length parameter r = d has to be introduced in eqs. (6, 7).
The distance d numerically corresponds to r coordinate for which the eqs. (6, 7) are applied.
The value d has to be chosen depending on damage mechanism corresponding to studied
GSSC.

3.2. Crack propagation direction

To assess the problem of structure failure caused by the existence of a general singular
stress concentrator, the direction of a potential crack initiated at the tip of GSSC has to
be determined first. Then a criterion for crack initiation and propagation in the selected
direction can be applied.

Generally, the stress distribution described by eq. (1) represents an inherently combined
mode of normal and shear loading. Functions Fijk contain both odd and even terms and the
values of general stress intensity factors Hk are not independent. In most practical cases the
stress field consists of two singular terms with different real values of the stress singularity
exponent. Each of the singularity terms covers both the normal and the shear types of
loading. In such mixed mode loading conditions the generalized strain energy density factor
(GSEDF), Σ(r, θ), can be used to describe the direction of the potential crack propagation,

Σ(r, θ) = r
dW

dV
= r

ε∫
0

σij dεij . (8)

Here σij and εij represent stress and strain tensors components. Following the basic as-
sumption of the strain energy density theory [7, 12–17], the potential direction of crack
propagation θ0 will be identical with the direction of the local minimum of the strain of
GSEDF Σ(r, θ).

Σ(r, θ0) = min(Σ(r, θ)) . (9)
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The value of the crack propagation angle θ0 is then given by(
∂Σ
∂θ

)
θ0

= 0 ,

(
∂2Σ
∂θ2

)
θ0

> 0 . (10)

It can be shown [15–17] that the direction of the crack initiation is independent of the
absolute value of GSIFs and depends only on their ratio Γ21 = H2/H1. The ratio results
from the numerical solution of the body with a GSSC, and corresponds to given loading
conditions. Mind that contrary to the crack, the strain energy density factor for GSSC
depends on the r coordinate, Σ = Σ(r). Generally, the value of angle θ0 depends on the
distance r = d where the conditions (10) are applied.

In the same way the potential direction of crack initiation can be determined from a maxi-
mum of tangential stress (MTS criterion), see e.g. [7, 15].

4. Estimation of the generalized stress intensity factors

The severity of the singularities does not depend only on the exponents of singularity
pk, but also on the value of the generalized stress intensity factors Hk (k = 1, 2, . . . ).
While the values of the stress intensity exponents pk follow from asymptotic analysis of the
corresponding boundary problem, the values Hk have to be estimated from the numerical
solution of the stress distribution in the whole studied body.

Basically, there are two methods for evaluation of the generalized stress intensity factor.
The direct method is based on comparison of a numerical and asymptotic analytical solution
(see eq. 1) in the vicinity of the general singular stress concentrator tip. The approach is
well documented for cracks in homogeneous bodies (see e.g. [9]) and makes it possible to
apply standard finite element systems for the estimation.

From the computational point of view, the stresses close to the GSSC tip are unreasonable
due to numerical errors and the small region around the tip should be excluded from the
estimation process. On the other hand, the stresses at points faraway from the tip are
not useful. The reason for this fact is that eq. (1) takes only singular terms into account,
while the numerically obtained values of stresses include also higher order regular terms.
The absence of these terms undermines the accuracy of the procedure. As a result the
dependence H1 = H1(r) is obtained and it is supposed that the correct value of H1 can be
obtained by extrapolation of the linear part of the dependence H1 = H1(r) to value r = 0,
see [7, 8] for details.

The integral approach to determination of the GSIF value proceeds from the reciprocal
work contour integral method (RWCIM) resulting from the validity of the Betti reciprocal
theorem. As a result, the final formula for determination of GSIF Hk reads

Hk =
∫
Γ0

(σijk u∗
ik − σ∗

ijk uik)nj ds (11)

where σ∗
ijk and u∗

ik are stress and displacement components pertaining to an analytical
solution to the complementary problem that must satisfy the identical boundary conditions
as the actual problem. Index k denotes the number of the singular term in eq. (1) and Γ0

is a closed contour surrounding a GSSC tip. The integration should be, in a general case,
carried out numerically, see [8] for details.

Examples of practical applications are presented in parts II, III and IV of the paper.
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5. Discussion

Composite structures involving interfaces, joints, free edges and cracks generally develop
a singular elastic stress field near the intersection of lines of material and geometrical dis-
continuity. These localized regions of severe stress are possible sites of failure initiation and
growth. Generally, the singular stress distribution around the configurations is described by
eq. (1). The paper specifies the theoretical considerations concerning linear elastic fracture
mechanics of general singular stress concentrators. With this aim the criteria of stability for
GSSC are formulated. The suggested approach provides a tool for estimation of the critical
stress for crack initiation at the tip of GSSC depending on stress singularity exponent pk and
the corresponding boundary conditions. Following the basic assumption of the procedure
the mechanism of the propagation of a crack from the GSSC in the material is the same as in
the case of the crack propagation in a homogeneous material and the stability of the GSSC
and the crack are controlled by the same variable L which has a clear physical meaning
and is well-defined in both cases (e.g. energy density, crack opening, mean stress value and
so on) and their critical values are identical, see paragraph 3. Owing to the fact that the
stress singularity exponent pk 	= 1/2, the problem is confronted with difficulty which does
not arise in the case of a standard crack, where pk = 1/2. Namely, the additional length
parameter d, introduced directly or indirectly through the plastic zone size dimensions, has
to be specified, see 3.1, 3.2. In general, both the potential crack propagation direction value
θ0 and the calculated values of the critical stress σcrit depend on the proper choice of the
parameter d. The dependences are weak for the values pk → 1/2. In both cases the value of
the parameter d depends on the mechanism of crack initiation and has to be chosen depend-
ing on the corresponding rupture mechanism and the microstructure of the material. For
example for cleavage fracture it can be correlated with the grain size of the corresponding
material, see [18]. The sensitivity of the results given by the choice of the parameter d is
discussed in parts II and III of the paper.

As has already been stated, the problem of GSSC corresponds to the inherently combined
mode of normal and shear loading. This is connected with the number k of singularities
in eq. (1). There are only a few examples corresponding to the single value of the stress
singularity exponent p (k = 1) in eq. (1). A typical example is a crack terminating perpen-
dicularly to a planar interface with normal loading conditions, see Fig. 1c. Most technical
problems are connected with singular stress concentrators with two singularities, see [15]. In
the following we suppose that the values of the stress singularity exponent are real. A typical
example of the singular stress concentrator with a complex exponent represents a crack at
an interface, see Fig. 1f. in this case the interpretation of the asymptotic stress field leads to
somewhat disturbing conclusions connected with its oscillatory character and the problem
is frequently discussed in the literature, see [1].

6. Conclusions

Composite structures involving interfaces, joints, free edges and cracks generally develop
a singular elastic stress field near the intersection of lines of material and geometrical dis-
continuity. These localized regions of severe stress are possible sites of failure initiation
and growth. In the contribution the limits of the validity of standard crack linear elastic
fracture mechanics are extended to problems connected with failure of structures caused
by non-crack-like singular stress concentrators. The general approach to the assessment of
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the fracture mechanics behaviour of general singular stress concentrators is suggested which
makes it possible to answer the question whether or not a crack forms in the vicinity of
the stress concentrator and what the parameters controlling crack initiation are. The pro-
cedure bridges the existing gap between the fracture assessment of cracks and the general
non-crack-like type of a singular stress concentrator. The formulated procedure makes it
possible to estimate the critical stress for crack initiation in the region near the general
singular stress concentrator and for the determination of the subsequent crack propagation
direction. The presented approach follows the basic idea of linear elastic fracture mechanics,
i.e. the validity of small scale yielding conditions is assumed, and has a phenomenological
character. The applications of the suggested approach will be presented for different types
of singular stress concentrators under different loading conditions in parts II, III and IV of
the paper.
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