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FUZZY PROBABILITY METHODS IN APPLICATIONS
TO RELIABILITY ANALYSIS OF EUROCODE RULES

FOR STEEL STRUCTURE DESIGN

Zdeněk Kala*

The topic of the paper is the probabilistic analysis of the ultimate limit state of
a steel strut loaded by permanent and long-time single variation action. The failure
probability misalignment according to the EN 1990 concept of a structure designed
according to the EUROCODE 3 is analyzed here. In the stochastic model, mate-
rial and geometrical characteristics of a hot-rolled steel cross-section are considered
according to the experimental research results. The initial curvature shape and size
variability of the beam axis is modelled, in detail, by applying the random fields. The
functional dependence between the failure probability and the correlation length of
a random field is analyzed here. The probabilistic analysis is completed by the fuzzy
analysis of the influence of uncertainties on the failure probability. The fuzzification
process of coefficients of model uncertainties and the deffuzification process of the
fuzzy number of the output failure probability are described. The failure probability
fuzzy analysis was evaluated according to the general extension principle, the failure
probability having been solved by the Monte Carlo method.
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1. Introduction

Since the European Union has come into existence, a step-by-step moving away the
trade obstacles and harmonization of technology specifications have taken place. Within the
framework of this programme, it was proceeded to an establishment of a set of harmonized
technological rules for the design of building structures – EUROCODES, which should serve,
at the beginning, as an alternative to national rules valid in individual EU countries, and
substitute them in the event.

At present, the general rules for designing the steel structures are given in the Standard
EN 1993-1-1:2005, which was recently accepted, for application in the Czech Republic, in
form of literal translation as the ČSN EN 1993-1-1:2006 [24]. The Standard [24] is designated
to be applied together with the Eurocode EN 1990 [23], EN 1991 and EN 1992 to EN 1999,
as far as steel structures or steel members are concerned. In these standards, the numeri-
cal values of partial safety factors and of other reliability parameters are recommended as
basic values ensuring an acceptable reliability level on assumption that the corresponding
manufacturing level and quality control have been kept. In this context, the elaboration of
probabilistic studies is topic at present with the aim to quantify the manufacturing qual-
ity effect on reliability from the point of view of transparency and verification of processes
step-by-step introduced into practice.
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The topic of the present paper is to analyze the load-carrying capacity limit state and
to verify the partial safety factors by the probabilistic calculation based on histograms of
statistical material and geometrical imperfections in IPE hot-rolled steel members [13]. In
the paper, there is given a probabilistic reliability assessment of an IPE220 steel member
under compression on which the stability phenomena manifest themselves clearly in the
general load-carrying capacity decrease.

The initial curvature of the steel member axis is one of the major imperfections affecting
the load-carrying capacity decrease. Taking into consideration that the published results
of the size and shape measurements of this imperfection are not detailed enough and do
not reflect the randomness of this phenomenon satisfactorily, in our study, the initial axis
curvature measurement realizations were simulated randomly, applying the random fields.
Other random material and geometrical imperfections were considered according to the re-
sults published in [13]. One of the most important objectives of today’s topical technology
is providing the reliability and economy at the same time. When solving this task, one
cannot make do without statistical and calculation models. The uncertainties related with
the structure design can exist in input data, mathematical models, design, manufacturing,
maintenance, software, etc. In sophisticated calculation models, the results of probabilistic
studies of the load-carrying capacity limit state depend, on model uncertainties in deter-
mining the random load action, and load-carrying capacity [5].

Recommended probabilistic models for Model Uncertainties can be taken according
to [26]. Apart from classical stochastic methods, also alternative approaches of the model
prediction uncertainty representation are recently applied more and more frequently; these
are fuzzitivity (vagueness), non-specificity (low determination), and conflict; these are ex-
amined within the framework of five theories which include the methods for their quan-
tification (classical sets theory, fuzzy sets theory, probability theory, possibility theory, and
Dempster-Shafer theory) [4]. The introduction of these newer representational structures for
uncertainty has been accompanied by a lively discussion and debate of their various merits
and demerits [10, 11, 12]. At the same time, steadily increasing computational power has
made the analysis of uncertainty increasingly practicable, and the increasing use of simu-
lation in support of decision making has created a demand for informative, decision-aiding
characterizations of the uncertainty in analysis outcomes relevant to these decisions [4].

In the paper presented, the fuzzy numbers are applied for taking the model uncertainties
into consideration. The aim of the fuzzy analysis of the failure probability is to quantify
the influence of load-carrying capacity and load action epistemic uncertainties on the failure
probability.

2. Random imperfections

2.1. Random field of initial curvature of the axis

In general, the axis of a real beam is a curve, a fully straight beam is practically never
concerned. Let us imagine that the initial curvature of the axis would be measured at
pre-selected points, e.g, in nodes, see Fig. 1. The node yi deflection in direction of the
axis y is a random quantity, the value of which depends, to a certain extent, on values of
quantities yi−1 and yi+1 in neighbouring points [6]. The size and shape randomness of initial
curvature of the axis is reflected by the variability of yi, and by the corresponding correlation
matrix. If the statistical dependence between random characteristics of neighbouring finite
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elements is described by auto-correlation, the stochastic finite elements and random fields
are concerned.

If the deflections of nodes yi are studied, e.g., by the Monte Carlo method, the correlation
among deflections of nodes yi excludes the unreal initial curvature shapes of beam axis. In
theoretical studies, the correlation degree among deflections yi expresses the auto-correlation
function most frequently. The following commonly used exponential form of an isotropic
autocorrelation function between yi and yj is considered :

ci,j = S exp

[
−

( |ξi,j |
Lcr

)2
]

(1)

where Lcr is the positive parameter called correlation length. S is the standard deviation
of the random field, and ξi,j is the distance between two nodes xi a xj . The correlation
coefficient �i,j of the correlation matrix can be determined as :

�i,j =
ci,j√
ci,i cj,j

. (2)

An example of the random field is presented in Fig. 1 in magnified scale. The initial curvature
shape of beam axis is substituted by a cubic spline passing through the nodes 0 to 10. For
large numbers of measurements, it will be supposed that the mean value myi near zero would
be determined for each random quantity yi; i.e., negative and positive deflections occur in
identical frequency. Further on, it will be supposed for all the random quantities yi that
their probability density function (PDF) is symmetrical, i.e., their skewness equals zero.

The ray of compressive force of the strut passes through the first and the last node
of the random field, see Fig. 2. Buckling of the simple joint member comes out of the
direct of axis x∗. The strut load-carrying capacity depends on initial random deviations of
nodes in direction of axis y∗. As the statistical characteristics of random imperfections of
nodes are other in direction of axis y∗ than those in direction of axis y, the transformation
equations must be written between coordinates in orthogonal coordinate system y vs. x and
y∗ vs. x∗ [6].

The angle α of adjusting of the local coordinate system with axes x∗, y∗ depends on the
random position of the first and the last beam node; it can be determined according to the
relation :

tan(α) =
Δy

Δx
=

y10 − y0

x10 − x0
. (3)

For Δy � Δx and yi � 1 it holds approximately x∗
i ≈ xi, it being expected to be evidently

a frequent case in practice.

Fig.1: Random field in global coordination system
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Fig.2: Random field of strut axis in local coordination system

It can be demonstrated (e.g., by the Monte Carlo method) that the random deflection y∗
i

of the ith node in direction of the axis y∗ has, after evaluation, zero mean value, my∗
i

= 0 [6].
Due to marginal conditions, the standard deviation Sy∗

i
is zero in end nodes, its course along

the beam length being determined by the sine function the maximum amplitude of which
decreases with increasing correlation length. As the angle α is a random quantity as well,
the mutual correlation of quantities y∗

i is lower than that of quantities yi; however, this
decrease is not significant [6].

Taking into consideration the character of beam load action, it is appropriate to introduce
the beam random curvature shape in the local coordinate system with x∗, y∗, see Fig. 2. The
random quantities y∗

i will be required to be mutually correlated according to the relation (1).
Further on, it will be required that standard deviations of quantities y∗

i have sinusoidal course
with maximum amplitude Sy∗

5
in node 5.

Sy∗
i

= Sy∗
5

sin
(

π x∗
i

L

)
. (4)

Larger random deformations will be situated nearer the beam middle; also the beam
division by finite elements is adapted to this, see Fig. 2. The maximum deflection need not
be observed in each case in the beam half; however, its value will be always zero at its ends.

The standard deviation size Sy∗
5

can be determined according to the Tolerance Stan-
dard [25] prescribing the maximum deformation 0.15% of the beam length L for the IPE220
beam. In our numerical study, it will be supposed that initial deflections y∗

i have the lim-
ited Gaussian distribution, and that 95% of all the realizations of y∗

5 lie within the interval
〈−0.0015 L, 0.0015 L〉; it corresponds with Sy∗

5
= 1.8mm.

For the definition of correlation length Lcr of the isotropic autocorrelation function (1),
it is possible to use the published experimental research results [3]. In [3], the measured
values of initial curvature of the axis of hot-rolled H100 cross-section were approximated by
the Fourier series of the type

y∗
i =

3∑
n=1

an sin
(

n π x∗
i

L

)
. (5)

Constants a1 to a3 are published in [3] as mean values based on 15 measured mem-
bers, however, it is a rather small statistical sample. The cubic parabola and (5) together
with (4) represent hardly comparable model; nevertheless another way how to determine
the correlation length Lcr in (1) is not practricable but with application of available ex-
perimental results. The members slenderness having the ratio of mean value of coefficients
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a1 : a2 : a3 = 15 : 5 : 3 is nearside to the IPE beam studied here. The parameter Lcr was
determined by the following heuristic method :
1) Input of correlation length Lcr.
2) Simulation of random field for 10 000 runs of Monte Carlo method.
3) Aproximation of y∗

i by Fourier series (5).
4) Calculation of arithmetic means m|a1|, m|a2|, m|a3| based on 10 000 absolute values of

a1, a2 and a3.
5) Error assessment calculation

Δ =
∣∣∣∣m|a1|
m|a2|

− 15
5

∣∣∣∣ +
∣∣∣∣m|a2|
m|a3|

− 5
3

∣∣∣∣ +
∣∣∣∣m|a1|
m|a3|

− 15
3

∣∣∣∣ .

Optimum Lcr was determined by means of the interval halving method based on the
condition of reachung the minimum error Δ. The result of heuristic study is the correlation
length Lcr ≈ 1.2m. As the heuristic method was applied for calculation and as the results [3]
were deduced from a small number of samples, the results of stochastic calculations requiring
the specification of Lcr will be influenced by the epistemic uncertainty of Lcr.

2.2. Random quantities

The other imperfections were considered to be random quantities. Statistical character-
istics of yield strength were considered according to the experimental research results [13].
The yield strength histogram was evaluated, based on 562 samples taken from one third of
the flange of the IPE160 to IPE220 profiles. Mechanical characteristics of samples under
tension in hot-rolling direction were tested. Statistical geometrical characteristics of IPE220
cross-section area dimension were considered, as well, according to the experimental research
results [13]. The mean value 210GPa and standard deviation 12.6GPa were considered for
Young’s modulus E according to two independent experimental research works [3, 20]. The
overview of input random quantities is given in Tab. 1.

Symbol Value Density function Mean value Standard deviation

h Cross-section height Histogram 220.22 mm 0.975 mm

b Flange width Histogram 111.49 mm 1.093 mm

t1 Web thickness Histogram 6.225 mm 0.247 mm

t2 Flange thickness Histogram 9.136 mm 0.421 mm

y∗i Initial imperfections Gauss 0m See Eg. (4)

E Modulus of elasticity Gauss 210 GPa 12.6 GPa

fy Yield strength Histogram 297.3 MPa 16.8 MPa

G Permanent load Gauss Gk 0.1 Gk

Q Variable load Gumbel-max 0.6 Qk 0.21 Qk

Tab.1: Input statistical characteristics

On the last two lines of Tab. 1, there are given statistical characteristics of load action
for the purpose of probabilistic analysis. For permanent load, it can be assumed that the
characteristic value Gk is, at the same time, the mean value of Gaussian distribution with
variation coefficient 0.1 . The Gumbel-max distribution with mean value 0.6 Qk and standard
deviation 0.21 Qk was assumed for single variable load action (50 years)
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3. Steel structure reliability

3.1. Reliability conditions by EUROCODES

A simplified problem of compression member loaded by permanent action G combined
with single variable action Q will be considered for the elaboration of a parametric study.
The standard design reliability condition according to [23, 24] can be written in the form :

γG Gk + γQ Qk ≤ RAχ
fyk

γM
(6)

where RAχ = χ A is the product of buckling coefficient χ and cross-section area A, γM is
the material partial safety factor, and values Gk, Qk, fyk are characteristic values of load
action and yield strength. The design reliability is ensured by partial safety factors γ. The
design reliability condition (6) can be written more shortly as the inequality Fd ≤ Rd of
design load action Fd and design load-carrying capacity Rd.

It is supposed in a numerical reliability study that the design load action is equal to the
design load-carrying capacity, Fd = Rd, i.e., that the structure has been designed with max-
imum load-carrying capacity (economic design). Characteristic values Gk, Qk are expressed
by the ratio δ of random load action Qk to the total load action Gk + Qk :

δ =
Qk

Gk + Qk
. (7)

Actually, it was proceeded so that in the first stage, the value of parameter δ was selected
according to (7). Characteristic values Gk and Qk are calculated according to the relation :

1.35 Gk + 1.5 Qk = 468.6 kN . (8)

Equation (8) is derived from (6) for partial safety factors γG = 1.35; γQ = 1.5 [23] and
γM = 1.0 [24]. The value Rd = 468.6kN on the equation’s right side is the design load-
carrying capacity of the IPE220 strut with nondimensional slenderness λ̄ = 1.0 calculated
according to [24] :

Rd =
χb Afyk

γM
=

0.597 · 2.34×10−3 · 235×106

1.0
= 468.6 kN (9)

where χb is buckling coefficient for the buckling strength curve b, A is the nominal cross-
section area, and fyk is the characteristic value of yield strength. The random characteristics
of load action G and Q are thus calculated from characteristic values according to Tab. 1.

The failure probability of a strut designed according to [23] is defined by non-fulfilling
the reliability condition (10), in which R is the random load-carrying capacity, and G, Q

are random load action effects.
G + Q < R . (10)

3.2. Nonlinear computational FEM model

Member geometries may be modelled by means of the beam element with initial curvature
in the form of a parabola of the 3rd degree [7]. The member was meshed into 10 beam
elements, see Fig. 2. The steel member was solved by the nonlinear Euler incremental
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method and combined with the Newton-Raphson method [7]. Geometrical and material
nonlinearities were considered. The first criterion for the load-carrying capacity is a loading
at which plastification of the flange is initiated. The second criterion for the load-carrying
capacity is represented by a loading corresponding to a decrease of the determinant to
zero. The second criterion is applied to the calculation of random load-carrying capacity
only exceptionally if the imperfection is identical with the second, the third or any further
higher eigen mode shape of stability loss of ideal strut. This theoretical phenomenon occurs
at high yield strength values with small geometrical member imperfections. Due to real
imperfections, the load-carrying capacity is always lower than the Euler critical force. For
the strut having the random initial curvature of the beam axis in Fig. 2, the dependence of
load action versus deformation is always increasing monotonously, i.e., snap-through and/or
snap-back effect does not occur (the methods of arc-length type are not to be applied).
In each run of the simulation method, the load-carrying capacity was determined to an
accuracy of 0.1% [7].

3.3. Model uncertainties

The theoretical value of failure probability which serves for comparison and decision
making is calculated according to (10). When calculating it, there exist other uncertainties
which are not distinguished by the stochastic calculation model.

The first epistemic uncertainty is in determining the correlation length. A further un-
certainty is met in boundary conditions which do not correspond with an ideal joint, and
therefore they effect on the load-carrying capacity increase. On the contrary, the effect of
residual stress and excentricity of load action decreases the load-carrying capacity. Consid-
erable uncertainty exists in determining the load action random variability, the statistical
information about which is completely missing at the stage of structure design. Valuable
information and thus the conclusions following from the probabilistic solution can be de-
preciated to a large extent due to the vague (fuzzy) uncertainty of input quantities and
calculation models. The error inserted into solution by applying this or that calculation
model can be taken into consideration by coefficients of model uncertainties ΘF, ΘR accord-
ing to recommendations [26].

ΘF (G + Q) < ΘR R . (11)

In an internet document [26], it is recommended for the study carried out here to consider
the coefficients ΘF and ΘR to be random quantities with lognormal distribution, with mean
value 1.0 and standard deviation 0.05.

Another possibility is to consider the coefficients of model uncertainties as fuzzy numbers.
Basic terms and definitions relating to the fuzzy-randomness were introduced in [17, 22]. The
fuzzy-randomness occurs when the observation under exactly defined boundary conditions
cannot be carried out [14]. Let us suppose that, when calculating the random load-carrying
capacity, there exists the uncertainty ±3 %, whatever may be its cause.

The aim of the fuzzy analysis is not the searching for the uncertainty causes of calculation
models but the theoretical quantification of their influence on failure probability. For this
purpose, the coefficients of model uncertainties ΘF and ΘR were considered to be linear
symmetric fuzzy numbers, see Fig. 3.

The membership function expresses the degree of membership of a value observed on the
horizontal axis into a set. The value 1.0 on the vertical axis means that coefficients of model
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Fig.3: Fuzzy numbers of model uncertainties

uncertainties 1.0 belong completely to the set; on the contrary, the value 0.0 means that
the values of coefficients of model uncertainties 0.97 and 1.03 do not belong to the set at
all. The triangular form of membership functions of the fuzzy numbers in Fig. 3 guarantees
maximum transparency of the fuzzy analysis results of the effect of model uncertainties on
failure probability.

4. Analysis of steel structure reliability

4.1. Analysis of failure probability

To determine the failure probability Pf, so many runs of Monte Carlo method were applied
that the non-fulfilling the condition (10) took place for 200 runs minimum; this guarantees
a balanced error of probability assessment – 7 %. The dependence of failure probability on
the correlation length (1) was analyzed first of all. The failure probability was calculated for
Lcr ∈ {0.01, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 2.0, 2.4, 5, 10, 20, 30,∞}. The initial curvature
having the sine function shape corresponds to the correlation length ∞. The courses of
functions in Fig. 4 are drawn after the failure probability aproximation by applying Hermite
polynoms by the least squares method.

Fig.4: Failure probability vs. correlation length

It is evident from Fig. 4 that for all the values of parameters δ ∈ {0.0, 0.5, 0.8, 0.99}
the value of failure probability for Lcr = 1.2m is lower than that for Lcr = ∞; however,
the differences are not significant. The highest failure probability values were obtained for
correlation lengths within the interval Lcr ∈ (6, 9)m approximately, see Fig. 4.

The misalignment analysis of failure probability due to change of parameter δ for
Lcr = 1.2m is presented in Fig. 5. The results according to (10) are drawn by the full
line, the results with consideration of the functions of random model uncertainties accord-
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Fig.5: Misalignment of the failure probability for Lcr = 1.2m

Fig.6: Fuzzy analysis of misalignment of the failure probability

ing to (11), by the dotted one. It is clear from Fig. 5 that the maximum effect on increase
in failure probability is that of function of model uncertainties for δ = 0.

4.2. Fuzzy analysis of failure probability

If the model uncertainties are assumed to be fuzzy numbers, the output is formed by fuzzy
numbers of failure probability. The fuzzy analysis of failure probability Pf was evaluated
according to the general extension principle (12) for 10 α-cuts [2, 16].

μPf(ΘF, ΘR) =
∨
Pf

(μΘF ∧ μΘR) . (12)

The fuzzy probabilistic analysis was evaluated for δ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0}, but for lucidity’s sake, there are drawn only membership functions for δ ∈ {0.0, 0.2,

0.4, 0.6, 0.8, 1.0}. The correlation length Lcr = 1.2m was assumed.

The fuzzy probabilistic analysis completes the probabilistic study by much new informa-
tion, see Fig. 6. The failure probability analysis (drawn in horizontal projection) is quantified
by values of membership functions of failure probability (on the vertical axis). The sharp
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peak (kernel) of membership functions is identical with purely stochastic solution drawn by
full line in Fig. 5. Dashed lines on horizontal projection represent the support calculated for
model uncertainties of load action and load-carrying capacity ±3 %.

The course of membership functions in Fig. 6 is nonlinear, and they are markedly asym-
metric. When considering that the membership functions of input fuzzy numbers ΘF, ΘR

are linear and symmetric, so the form of membership functions quantifies the nonlinear ef-
fect of model uncertainties to be the failure probability. The dash and dot line represents
the defuzzified probability value (the so-called crisp output) by COG method (centre of
gravity) [2]. It can be observed that the defuzzified value (crisp output) is, due to the above
causes, higher than the kernel.

5. Conclusion

The stochastic calculation model taking into consideration the uncertainty of the initial
curvature shape of a steel beam axis by the finite element method using random fields was
described in the introduction of the present paper. The correlation among initial deflections
of nodes was defined by the Gauss auto-correlation function. The correlation length Lcr was
recommended, based on results of virtual simulations of experiments [3] to be Lcr

∼= 0.5 L.
For the studied problem of an IPE220 strut, it has been shown that, for Lcr < 0.5 L, the
failure probability decreases rapidly, see Fig. 4. The functions of failure probability in Fig. 4
are convex , their maximum being around for Lcr ≈ 3 L.

The probability analysis of a steel strut design according to [24] has shown the misalign-
ment of failure probability in dependence on the parameter δ. When applying the stochastic
functions of model uncertainties, the failure probabilities obtained were higher. The maxi-
mum effect of model uncertainties was observed for δ = 0; however, it is, in practice, a very
little probable case of a structure loaded only by permanent load action. Reliable values
of failure probability were obtained for ‘reasonable’ ratios of permanent and variable load
actions.

The fuzzy analysis results appropriately complete the probabilistic solution by valuable
information, not offered by the purely stochastic analysis. The output membership functions
in Fig. 6 map the nonlinear effect of model uncertainties on failure probability. Dashed lines
present the support of the failure probability fuzzy numbers, taking into consideration the
uncertainty of random load action and of load-carrying capacity, 3 %. It is evident that the
change of failure probability caused by increase of random load action and by decrease of
random load-carrying capacity by 3 % is far higher that the change due to decrease of random
load action and increase of random load-carrying capacity by 3 %. The deviations of failure
probabilities due to model uncertainties, 3 %, in Fig. 6 are comparable to the deviations due
to misalignment of failure probability in Fig. 5.

The stochastic analysis and the fuzzy one of the effect of model uncertainties on failure
probability is very valuable from the technology point of view because it is one of effective
methods quantifying the uncertainty in design of steel structures [21]. Generally it can be
recommended to eliminate the effect of model uncertainties by more accurate modelling,
e.g., by nonlinear FEM solution within the frames of the ANSYS programme, applying
shell finite elements SHELL181. The residual stress variability which has been neglected
in the presented study could be taken into account by an accurate calculation model. It is
necessary to add that the fuzzy stochastic analysis with the application of nonlinear solution
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and SHELL elements would require unrealistic time-demanding processes at present. In this
sense the methods Response Surface promise well, which makes it possible to analyse the
reliability, applying even very demanding calculation models [1, 18].

Symbols
α . . . . . . . . angle
Δ . . . . . . . . deviation
χb . . . . . . . buckling coeficient
γ . . . . . . . . partial safety factor
λ, λ̄ . . . . . . slenderness, nondimensional slenderness
�i,j . . . . . . correlation coeficient
Θ . . . . . . . . fuzzy number of model uncertainty
ξi,j . . . . . . distance between nodes xi a xj

a . . . . . . . . . amplitude of the Fourier series
b . . . . . . . . . flange width
ci,j . . . . . . . co-variation coefficient
E . . . . . . . . modulus of elasticity
fy, fyk . . . random yield strength, characteristic yield strength
F, Fd . . . . load action, design load action
G, Gk . . . . random permanent load action, characteristic permanent load action
h . . . . . . . . cross-section height
i, j, n . . . . index
L, Lcr . . . . member length, correlation length
m . . . . . . . . mean value
Pf . . . . . . . . failure probability
Q, Qk . . . . variable load, characteristic variable load
R, Rd . . . . resistance, design resistance
S . . . . . . . . standard deviation
t1, t2 . . . . . web thickness, flange thickness
x . . . . . . . . distance
yi . . . . . . . . initial deflections of the ith node in global coordinate system

y∗i . . . . . . . initial deflections of the ith node in local coordinate system
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