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INVERSE METHOD FOR CUTTING FORCES
PARAMETERS EVALUATION

Edouard Riviere Lorphevre, Enrico Filippi, Pierre Dehombreux*

Simulation of the milling process is a widespread method to improve productivity in
the machining process and several phenomena can be studied and controlled by this
mean. All these methods need input parameters that characterize the interaction
between the tool and the workpiece in order to evaluate the cutting forces. Many
models exist, but the input parameters are often difficult to find out from intrinsic
properties of the materials (Young’s modulus, yield strength, hardness, ...). The aim
of this article is to set out a simple and efficient method to compute cutting coefficient
for two different cutting forces models from a single efforts measurement. The method
is validated using both simulated and measured cutting forces. The adequacy is good
and allows simulating the whole cutting process.
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1. Background

Chatter vibration during machining is a well know issue which limits productivity. The
regenerative effect has been widely studied and several simulation methods have been de-
veloped, ranging from analytic approach (leading to the classical ‘stability lobes’ diagram)
to dynamic simulation.

The common point between all these methods is the fact that they all need information
about the cutting force amplitude. The models based on the study of the microscopic phe-
nomen [9] lead to a set of equations which are difficult to manipulate for simple computation.

The common approach is thus to model cutting force in machining by mean of rela-
tionship to technological ‘macroscopic’ parameters such as depth of cut or feed (see for
example [6], [4],[8]). These empirical laws depend upon several parameters which are often
difficult to correlate to physical properties of the material such as Young’s modulus, yield
strength or hardness. Identification of those parameters from experimental analysis is thus
a compulsory step to simulate machining process.

2. Cutting force measurement

Most common sensors to measure cutting forces during machining are based on piezoelec-
tric ceramics linked together to measure up to four components (forces along three directions
and torque). Two main types have been developed in milling: rotating and stationary dy-
namometers.

Rotating dynamometers (Fig. 1) are composed of two parts: the sensor itself which acts as
a toolholder interface between the tool and the spindle and a static part linked to the machine
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Fig.1: Rotating dynamometer

dealing with the acquisition of data. The reference frame for cutting forces measurement
is attached to the cutter and thus rotates with respect to the spindle speed. This type of
sensor is able to measure cutting forces in one to three directions (parallel to the spindle
axis and two orthogonal directions in the normal plane) and torque along spindle axis. This
type is not universal because the interface between the machine and the sensor (ISO cone,
HSK interface, ... ) and the fastening of the stator part of the sensor must be dedicated
to a particular machine tool. The mass and the overhang added at the tip of the spindle
disturb the dynamic behaviour of the machine and may add spurious frequency content.

Fig.2: Dynamometric plate

Stationary dynamometers (Fig.2) are made of piezoelectric rings supporting a plate
where the workpiece is clamped. Cutting forces are measured in a reference frame linked to
the clamping plate.

For both devices the bandwidth is limited to few kilohertz so the tooth passing period
must be small enough to ensure correct measurement. These devices are thus not suitable
for high speed cutting measurement.
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3. Cutting forces computation
3.1. Introduction

Mathematical relationships allowing cutting force computation are often valid for simple
geometrical configuration (tool modelled as a wedge, cutting speed of constant orientation)
which cannot be directly applied a real tool. Therefore the model of the tool has to be
divided in slices along its axis and the relationships are applied locally with a good approx-
imation. On a local point of view, efforts are studied along three directions (see Figure 3):
tangential to the cutter rotation (suffix t), radial (along
normal direction of the cutter, suffix r) and axial (third di-
rection for an orthogonal frame). Those elementary efforts
are then projected in the appropriate reference frame and

Z

numerically integrated along each cutting edge to get the
global efforts.

I Modelling of cutting force from macroscopic data is
a commonly used technique. This class of method is often
iy j called ‘mechanistic approach’. Many mechanistic forces
dF, 7\d F models are listed in the literature. Simplest of them con-
- A4E

sider forces to be proportional to chip thickness. Some
authors model the efforts as a non-linear function of chip
thickness; other authors proposed models that take friction
and damping of the cutting process into account [4].

Fig.3: Geometry of the cutter

For this paper, we would consider two different models which are widely used in machining
simulation. The first one is the linear model assuming that forces are directly proportional
to the section of undeformed chip. This model allows linear approximation of machining
process in order to get the stability lobes in turning [7] or in milling [2]. In this model, three
parameters must be determined to compute cutting forces. These coefficients are often called
‘specific pressure’.

dF; = Ky h(¢,2)db ,
dF, = K, h(¢,2)db , (1)
dF, = K, h(¢,2)db .

The second model has been proposed by Armarego [5] and considers that the efforts are
produced by two main mechanisms: shearing of the chip (effort proportional to undeformed
chip section h db and parameter K ) and friction of the chip along cutting edge (proportional
to elementary length of cutting edge ds and coefficient K ,). Six cutting coeflicients must
be identified for this model. This model is one of the most common in dynamic simulation
of the cutting process.

dF; = Kieds(z) + Kic h(¢,2) db
dF, = Kyeds(z) + Kic h(g, z)db | (2)

dF, = Kaeds(2) + Kac h(d, 2) db .

4. Specific pressure identification

Parameters from the cutting forces model are often difficult to deduct from intrinsic
properties of the materials. It is thus necessary to develop algorithms to retrieve those
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parameters from experimental studies. Araujo and Silveira [3] developed a method based
on reversal of relationships from equation 2. At each time step, matrix relationship can be
determined linking efforts and specific pressure. For Armarego’s model, the system itself
cannot be solved because there are more unknowns (6) than equations (3). The authors
propose to combine two consecutive time steps to get a solvable system. The final coefficients
are the mean value of all the results during computation.

This method has two main disadvantages:
— for some time steps, the linear system is ill-conditioned, this lead to loss of precision
in the computation of the cutting parameters;
— this method was developed to model cylindrical end mills only.

We have developed a new method to improve the precision and to enlarge the field of
application in order to take into account the geometry of the general end mill. This method
performs a least square fitting between measured and computed signal to get the optimal
cutting coeflicients.

The model is based on discretisation of time into time steps dt and of the tool into
discs of thickness da. At each time step, the local geometry is considered for each disk
and each tooth. If the tooth is in cut, local chip thickness can be computed using classical
relationship:

hehip = ¢ sing sink , (3)

where sy is the feed per tooth, ¢ is the angle defining the angular position of the current
point on cutting edge and & is the orientation of the local normal vector (see figure 3). The
local cutting edge length dS and the projected depth of cut db can be computed for any
cutter geometry (more details are available in reference [6]). The system of equations 1 can
be summarized in the following matrix relationship for the linear effort model:

A K
——
dFy hdb 0 0 K
dF. =1 0 hdb 0 K. % (4)
dF, 0 0 hddb K,

In this first approach only three unknowns have to be determined (K, K, and K,).

For the second model (equation 2), the matrix A is a 3x6 matrix and the vector K
contains six unknowns:

Ktc

hdb 0 0 dS 0 0 [zg
AzOhdbOOdSO,K:KM. (5)

0 0 hdb 0 0 dS te

Kre

Kae

The elementary efforts are then projected in the reference frame of the measurement device.
The classical transformation matrix performs the projection.

B
dFx —cos¢p —singsink —sing cosk dF}
dFy » = | sing —cos¢sink —cos¢ cosk dF; ; . (6)

dF, 0 — COSK —sink dF;,
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While using static a dynamometer, the angle ¢ takes three parameters into account :
— rotation of the tool (2dt with Q the spindle speed);
— shift of each cutting edge around the tool (2r/N for a tool with N edges uniformly
distributed);
— shift of the cutting edge due to helix angle (2 z tani/D for a cylindrical mill, see [6]
for other geometries).

While using a rotating dynamometer, the reference frameis fixed with respect to the tool so
the rotation of hasn’t to be taken into account.

These relationships are then added for each tooth and each disc to perform numerical
integration along the cutting edges:

C
Fy nd Nt dFX(Z,j) nd Nt
Fyo=> > QdFR(i,j) p=|>.) BA|K. (7)
F, i=1j=1 | dF,(i,j) i=1j=1

Matrix C (dimension 3x3 or 3x6) links cutting coefficients to cutting forces.

At each time step a matrix C* can be build (k is the index of the current time step). All

these matrix are then assembled to get the global system:
F D

—_——~

Fy

F} C!

F}

F2lY = K. (8)

F? c?

y
F?

The specific pressure can be computed by filling the vector F with the measured forces and
by applying least square optimization method to solve the overdetermined system:

K = (0"D) (D" F)

K is the matrix containing specific pressure, D the assembly of all C*¥ matrix and F' the
measured cutting forces.

4.1. Practical consideration

In order to ensure accurate results, the initial position of the first cutting edge must
be determined precisely. This is often difficult practically, especially while using a static
dynamometer. The solution is to determine this shift using an optimization method that
minimizes the RMS value of variation between simulated and computed signal as a function
of the unknown shift. RMS value of error is defined by the following relationship:

Npoints . . 2

Z: [(Fgomputed - Féleasured) A9:|

RMScrror = =0 .
eend - ebegin
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Fig.4: RMS versus initial shift

The best shift is computed as the shift giving the minimum value to that criterion. The
minimum is sharper when the measured signal is less noisy (Fig. 4).

5. Validation on a simulated example
5.1. Testcase description

The first test is performed on simulated signals in order to check the accuracy of the
method. The testcase is extracted from reference [1]. It computes cutting forces for
half immersion downmilling (spindle speed 263RPM, 5.08 mm axial depth of cut, feed
0.05 mm/tooth) of a titanium alloy with a cylindrical end mill (diameter 18.1 mm, four
teeth, 30° helix angle).

Two different sets of parameters are considered: the original signal and the same signal
disturbed by a random white noise (the evolutions of both signals are shown in Figure 5).
The white noise is obtain by multiplying random signal (mean value of zero, standard
deviation of 1) by 10 % of the maximum amplitude of the simulated force. In both cases, we
get coefficients close to the data of the simulation and a simulated signal with small RMS
error. Cutting coefficient and results from extraction are summarized in Table 1.

Coefficient Data| Extraction from simulation
without noise | with 10 % noise

Kie [N/mm?] | 1478 | 1479 1508

Kye [N/mm?] | 247 |246 241

Kac [N/mm?] | 577 |577 579

Kie [N/mm] |24 |24 23

Kre [N/mm] |43 |43 43

Kae [N/mm] |0 —8x107° 7x1072

Tab.1: Cutting coefficient

While using perfect simulated signal as input, the difference between computed and
original coefficient is only due to rounding errors; the algorithm also give good results for
the disturbed signal.

The RMS value of the gap between input signal and recomputed signal follows the the-
oretical trend with a minimum at the actual value of the shift (see Figure 6).
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Fig.5: Cutting forces with 10% white noise and recomputed signal
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Fig.6: Evolution of RMS value of error; minimum
value is at the theoretical value of 0°

6. Experimental results
6.1. Data acquisition

Several tests using a high speed steel cylindrical end mill (diameter 8 mm, 2 flutes, helix
angle 30°). Slots and shoulders were machined into St52-3 steel block. Data were acquired
using rotating dynamometer Kistler 9123B. The measuring chain is composed of the rotating
part of the sensor (acting as a toolholder), the stator (collecting the signals), charge amplifier
(conditioning the signal) and the data acquisition card (saving the amplified signal on a PC).
The sample rate is 20 kHz.

The acquired signal is noisy, we assumed that this noise is due to the dynamic behaviour
of the tool/sensor/spindle assembly that is no rigid within the measured bandwidth. We
decided to test our method on two series of data: the raw signal and the signal filtered using
Butterworth 6th order filter with cutting frequency of 300 Hz.
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6.2. Analysis of a specific measure

In this section, we develop the results of the analysis a particular measure. This is a slot
cutting with an axial depth of cut of 1 mm. The spindle speed is 875 RPM, the feed is
0.046 mm /tooth (these values correspond to testcase 15, see annex Table 4).

We compared the results given by our method to the results given by the method proposed
by Araujo and Silveira. Both methods are tested on samples of about 20.000 measured points
(the samples cover at least five complete rotation of the cutter); the tool is divided into ten

slices along its axis. The cutting coefficient and corresponding RMS error are given in
Table 2.

Method Inverse method | Araujo and al
Coefficient Armarego | Linear | Armarego
K [N/mm?] | 3850 5974 | 4160

Ky [N/mm?] |2529 3669 | 2174

Kac [N/mm?] |363 1484|1246

Kio [N/mm] |66 0 163

Kre [N/mm] 36 0 30

Kae [N/mm] |46 0 11

RMS error (N) |37 44 167

Tab.2: Cutting coefficient retrieved using measured signal (sample 15)

= Original signal
- - - Filtered signal

Mean RMS error (N)
8
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Fig.7: Evolution of the error RMS value for ideal shift evaluation (sample 15)

The RMS value of the error between measured and simulated signal is more than four
times smaller while using our method. We can see from Figure 7 that the optimisation for
ideal shift is good.

Figures 8 to 11 show the comparison between measured and simulated signal for the four
different cases (filtered or original signa, linear or Armarego’s model).

6.3. Overall results

Our method of cutting coefficient evaluation was tested on both models (six and three
coefficients) for both series of measurements (original and filtered signal). The RMS error
value of the error for each cutting tests are drawn in Figure 12.
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Fig.8: Experimental measurement and fitting using
Armarego’s model (F1, sample 15)
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Fig.9: Experimental measurement and fitting using linear model (F1, sample 15)
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Fig.10: Filtered signal and fitting using Armarego’s model (F1, sample 15)
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Fig.11: Filtered signal and fitting using linear model (F1, sample 15)
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Fig.12: Evolution of RMS value of error

We can see that for each case, fitting using the six coefficients method is more precise than
fitting with three coefficients. This is an obvious result because the optimization process
has more degree of freedom; the error is also smaller while considering filtered signal.

6.4. Mean value

For all the experiments, signal was simulated using the overall mean values of the coef-
ficients found for each case (see Table 3).

Armarego Linear
direction | K.e [MPa] | K. [N/mm] | K [MPa]
t 3605 79 6427
r 2748 30 3748
a 214 46 1769

Tab.3: Mean value of the cutting coefficients for both models
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The error between filtered signal and simulated signal is of the same order of magnitude
than the error with individual fit (see Figure 13). The method is thus able to find reliable
cutting coefficient for a given couple tool/workpiece material with reasonable error.
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Fig.13: Evolution of RMS value of error while using mean coefficients

6.5. Simulation of the machining process

Retrieving parameters for cutting force simulation is often a preliminary step for the
dynamic simulation of the whole process. The cutting coefficients extracted with this method
can be used as an input for the simulation of the cutting process. We have simulated an
exhaustive example with a software developed at the ‘Faculte Polytechnique de Mons’ which
performs dynamic simulation of the milling process (see [10] to get more details about the
simulator).

Testcase 3 (machining of a shoulder, 2mm radial depth of cut upmilling) was simulated
taking dynamic of the system into account. The modelling parameters are divided into
several sets:

— geometrical parameters (tool geometry);

— technological parameters (feed, spindle speed, depth of cut, ...);

— material properties (cutting coefficients);

— dynamic properties (modal mass, eigenfrequency, damping);

— simulation parameters (time step, number of discs to discretize the tool, ...).

The geometrical and technological parameters describe the simulation case. The material
cutting coeflicients are computed using the method described heretofore. The dynamic
system is modelled as a single degree of freedom system. Natural frequency is identified
using FFT of the disturbed signal; damping ratio is computed using logarithmic decrement
method; modal mass is the mass of the sensor.

Figure 14 compares the measured signal and the simulated signal. We can obviously see
on this interrupted cutting example that the sensor measured the cutting forces and the
inertia forces. The adequacy between the simulation and the measure is good. Our method
to deduce cutting parameters can be a good starting point to get parameters for dynamic
simulation of the milling process. Those simulations can be useful to predict stability of the
process or quality of the final part.
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Fig.14: Simulated and measured effort, direction 1

Test | ADOC | RDOC | Feed per tooth |Spindle speed
1/0.75mm | 2mm | 0.04 mm/tooth 875 RPM
2(0.75mm| 8mm/| 0.04 mm/tooth 875 RPM
310.75mm | 8mm |0.036 mm/tooth 962 RPM
410.75mm | 8mm |0.044 mm/tooth 875 RPM
5/0.75mm | 8mm| 0.04mm/tooth 962 RPM
6/0.75mm | 8mm/| 0.04mm/tooth 875 RPM
710.75mm | 8mm |0.046 mm/tooth 875 RPM
8 lmm| 2mm| 0.04 mm/tooth 875 RPM
9 lmm| 8mm/| 0.04 mm/tooth 875 RPM

10 1mm| 8mm |0.036 mm/tooth 962 RPM
11 1mm | 8mm |0.044 mm/tooth 875 RPM
12 lmm| 8mm| 0.04mm/tooth 962 RPM
13 lmm| 8mm| 0.04mm/tooth 875 RPM
14 1mm | 5mm |0.046 mm/tooth 875 RPM
15 1mm| 8mm |0.046 mm/tooth 875 RPM
16 | 1.25mm | 8mm | 0.04 mm/tooth 875 RPM
17 |1.25mm | 8mm | 0.036 mm/tooth 962 RPM
18 |1.25mm | 8mm | 0.044 mm/tooth 875 RPM
19/1.25mm | 8mm | 0.04 mm/tooth 962 RPM
20|1.25mm | 8mm| 0.04mm/tooth 875 RPM
21|1.25mm | 8mm |0.046 mm/tooth 875 RPM

Tab.4: Data for the cutting tests (ADOC: axial depth
of cut, RDOC: radial depth of cut)

7. Conclusions

In this paper we developed an improved method to identify the cutting parameters from
cutting tests. This method is able to retrieve cutting coefficients from the measurement of
cutting forces in milling. It has been validated on simulated signals and on signals disturbed
with white noise.

Several tests using the same pair tool/workpiece material were performed in order to
validate the method with real measurements. The result of each identification gives a RMS
error between measured an recomputed signal about one third smaller than the result given
by a method available in the literature.
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The mean coefficients retrieved from all the identification were used to compute the
cutting forces. The mean RMS errors between these simulations and the measurements are
of the same order of magnitude than the mean RMS errors for each individual identification.

The cutting coefficients given by this method can be a good starting point for dynamic
simulation of the whole machining process (dimensional tolerances, tool wear or chatter
vibrations).
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