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CONTRIBUTION TO THE METHODS OF ANALYSIS
OF COMPOSITE STEEL-CONCRETE BEAMS,

REGARDING RHEOLOGY

Doncho Partov, Vesselin Kantchev*

The paper presents analysis of the stress changes due to creep in statically determi-
nate composite steel-concrete beam. Each beam consists of steel element I – section
acting compositely with concrete plate, attached to the upper surface of the beam.
The mathematical model involves the equation of equilibrium, compatibility and con-
stitutive relationship, i.e. an elastic law for the steel part and an integral-type creep
law of Boltzmann-Volterra for the concrete part. For determining the redistribution
of stresses in beam section between concrete plate and steel beam with respect to
time ‘t’, system of two independent Volterra integral equations of the second kind
have been derived, on the basis of the theory of the viscoelastic body of Arutyunian-
Trost-Bažant. Numerical method, which makes use of quadrature formulae for solving
these equations, is proposed. The computer programs are realized in environment of
a high-performance language for technical computing MATLAB. Some relevant ex-
amples with the model proposed are investigated and discussed. The creep functions
is suggested by the ‘CEB-FIP’ models code 1970. The elastic modulus of concrete
Ec(t) is assumed to be either constant or depend on time ‘t’. Our results are com-
pared with the corresponding results of Effective modulus method (EMM), Rate of
creep method (RCM), Improved Dischinger method (IDM) and Trost method (TM).

Key words : composite steel-concrete beams, creep, rheology, elastic modulus, vis-
coelastic body, Volterra integral equation, quadrature formulae

1. Introduction

The problem of investigating the statically determinate composite plate beam in the time
t has for 60 years drawn the attention of engineers who were dealing with the problems of
their design. This problem has, however, received a certain currency in the past few years,
due to the new facts gathered about the rheological qualities of concrete.

It is known that while in the steel beam, under the effect of the serviceability loads,
we see only elastic deformations, in the concrete plate during the time significant plastic
deformation takes place as a consequence of creep and shrinkage of concrete.

As a result of these deformations and because of the stiff connection between the two
elements of the composite plate beam, in every cross-section subjected to the effect of con-
stantly operating outside bending moment Mo in the time t arises a new additional group
of forces and moments Nc,r(t), Mc,r(t), Ns,r(t), Ms,r(t) (Fig. 1). The influence of this group
of forces and moments over the general stress conditions of the statically determinate com-
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posite plate beam is expressed by the decrease of the stresses in the concrete plate and in
the increase of stresses in the steel beam.

The papers dealing with the solution of the problem of finding the unknown normal
forces Nc,r(t), Ns,r(t) and the bending moments Mc,r(t), Ms,r(t) are numerous and diverse.
Their chronological analysis shows from the first aspect the aspirations of various authors
to penetrate further into the actual behavior of the structures, which will eventually lead to
the creation of more accurate calculation methods; and from the second aspect it shows the
aspirations to replace the complicated methods by simple ones for practical usage.

The first works, which give the answer to this problem are based on the Law of
Dischinger [21, 22], who had first formulated a time-dependent stress-strain differential re-
lationship for concrete, using the following equation :

dεct

dt
=

σct

Ec0

dϕt

dt
+

1
Ebt

dσct

dt
,

where ϕt is called creep function.

These books and papers connected with the names of Frohlich [25], Esslinger [23], Klop-
pel [33], Sonntag [53], Kunert [35], Muller [38], Dimitrov [20], Mrazik [37] and Bujňák [11]
represent one independent group for which it is characteristic that for the unknown quan-
tities Nc,r(t) and Mc,r(t) a system of simultaneous differential equations have been derived
and solved. All these methods have been collected and analyzed by Sattler [47] and by the
first author of this paper [40].

In parallel with the developed analytical methods, Blaszkowiak [8], Bradford [9], Fritz [24]
and Wippel [60] have developed approximate methods, which use Dischinger’s idea for ap-
plying in the calculation the ideal (ficticious) modulus of elasticity [21, 22] :

Eci =
Ec0

1 + ϕn
,

where ϕn is the ultimate value of creep.

Another method of the estimate design calculation as described in [49] has been based
on the creep fibred method by Busemann [12].

With Wippel’s methods [60] the first stage of the development of the analytical methods
is based entirely on the works of Dischinger [21, 22], has been completed.

Further development of rheology as a fundamental science and its application to con-
crete [2, 4, 44, 46, 57] as well as a great number of investigations in the field of creep of
concrete have led to new formulations of the time-dependent behavior of concrete [5, 13, 43].

These new formulations that give the relationship between ϕc(t) and εc(t) are formulated
by integral equations, which present the basis of the theory of linear viscoelastic bodies.

However, in order to avoid the mathematical problems in solving of the integral equa-
tions of Volterra for treating the problem connected with the creep of concrete structures,
Trost [55] and Zerna [58], have revised the integral relationship into new algebraic stress-
strain relationship :

εct =
σc0

Ec0
[1 + ϕt] +

σct − σc0

Ec0
[1 + � ϕt] ,

where � is the relaxation coefficient. From the same considerations another revision of inte-
gral relationship into new algebraic stress-strain relationship have been made by Kruger [34]
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and Wolff [61] :

Ec0 εcϕ,t = σc0
ϕt0 − ϕt1

2
+ σct

[
1 +

ϕt(t−1)

2

]
+

t−1∑
i=1

σc,i
ϕt,i−1 − ϕt,i+1

2
.

On the basis of that algebraic stress-strain relationship, new methods have been devel-
oped connected with the names Wappenhans [58], Wolff [61], Trost [56], Heim [31], Ama-
dio [1], Dezi [15, 16, 17, 18, 19, 54] and Gilbert [27, 28], for solving the problem raised by
Fröhlich [25].

In parallel with the methods developed by Furtak [26], Kindman [32], Lapos [36],
Pachla [39], Partov [41], on the basis of the theory of linear viscoelastic bodies, Sattler [48],
Haenzel [29], and Profanter [42] have recently developed new methods, which are based on
the ‘modified theory’ of Dischinger, called also the theory of Rüsch-Jungwirt [45]. This
theory is described by the following equations :

dεct

dt
=

σct

Ecv

dϕf,v

dt
+

1
Ebt

dσct

dt
, where Ecv =

Ec(t0)
1.4

, ϕf,v =
εf,0[Kf(t) − Kf(t0)]

1.4
.

Different approach to the solving of the formulated problems is applying the FEM by
Hering [30] and Cumbo [14].

Since the theory of Rüsch-Jungwirt [45] has been subjected to serious criticism in the
works of Alexandrovski-Arutyunyan [3] and [6, 7] the authors of the present paper make an
attempt for a new step toward deriving more precise solution of the problem. An effort is
made to give an answer to the dispute between Bažant and Rusch-Jungwirt [5].

2. Preliminary assumption

The theory implies the following assumptions to be true :
a) Bernoulli’s concerning plane strain of cross-sections.
b) Concrete is not cracked σc ≤ (0.4 ÷ 0.5)Rc.
c) Hooke’s law applies to steel as well as to concrete under short-time loads.
d) In the range of service ability loads concrete behaves in a way allowing to be treated as

a linear viscoelastic body. The stress-strain behavior of concrete can be described with
sufficient accuracy by the integral equations (1) by Bolztmann-Volterra [2, 4, 52]

εc(t) =
σc(t0)
Ec(t0)

[1 + ϕ(t − t0)] +

t∫
t0

dσc(τ)
dτ

1
Ec(τ)

[1 + ϕ(t − t0)] dτ , (1)

where ϕ(t−τ) = ϕN K(τ) f(t−τ) is the so called the creep function and ϕN the ultimate
value of creep coefficient, K(τ) depends on the age increase of concrete. It is called
the function of aging, and it characterizes the process of the aging. The increase of τ

makes K(τ) monotonously decrease. The function f(t−τ) – (where t is the time interval
during which the structure is under observation, τ is the running coordinate of time)
– characterizes the process of creeping.

e) The modulus of concrete elasticity is invariant in time t [10, 51] i.e. Ec(τ) = Ec(t0) =
= Econst and depending on time t

Ec(τ) = Ec(t0)
√

τ

4 + 0.86 τ
. (2)
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f) According to a proposal by Sonntag [53], the influence of the development of the bending
moment Mc,r(t) in the concrete member, upon the redistribution of the normal force of
concrete Nc,r(t) can be neglected.

g) For the service load analysis no slip occurs between the steel and concrete.

3. Deriving of the mechano-mathematical model for constant elasticity module
of concrete

Let us denote both the normal forces and the bending moments in the cross-section of
the plate and the girder after the loading in the time t = 0 with Nc,0, Mc,0, Ns,0, Ms,0 and
with Nc,r(t), Mc,r(t), Ns,r(t), Ms,r(t) a new group of normal forces and bending moments,
arising due to creep.

For a composite bridge girder with

Jc =
Ac(n Ic)n

As Is
≤ 0.2

according to the suggestion of Sonntag [44] we can write the equilibrium conditions in time
t as follows

N(t) = 0 , Nc,r(t) = Ns,r(t) , (3)∑
M(t) = 0 , Mc,r(t) + Nc,r(t) r = Ms,r(t) , (4)

Due to the fact that the problem is a twice internally statically indeterminate system,
the equilibrium equations (3), (4) are not sufficient to solve it.

It is necessary to produce two additional equations in the sense of compatibility of de-
formations of both steel girder and concrete slab in time t (Fig. 1).

Fig.1: Mechano-mathematical model for deformations in cross-section in
composite steel-concrete beam, regarding creep of the concrete

These conditions are as follows.
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3.1. Strain compatibility on the contact surfaces between the concrete and steel
members of composite girder

Nc,0

Ec(t0)Ac
[1 + ϕ(t − t0)] − 1

Ec(t0)Ac

t∫
t0

dNc,r(τ)
dτ

[1 + ϕ(t − τ)] dτ +

+
Ns,0

Es As
− 1

Es As

t∫
t0

dNs,r(τ)
dτ

dτ =
Ms,0

Es Is
r + r

1
Es Is

t∫
t0

dMs,r(τ)
dτ

dτ .

(5)

Using
Nc,0

Ec(t0)Ac
+

Ns,0

Es As
=

Ms,0

Es Is
r

and integrating the equation (5) by parts we get

Nc,0

Ec Ac
[ϕ(t − t0)] −

[
Nc,r(τ)
Ec Ac

[1 + ϕ(t − τ)]
]∣∣∣∣t

t0

+

+
1

Ec Ac

t∫
t0

Nc,r(τ)
d
dτ

[1 + ϕ(t − τ)] dτ − 1
Es As

Ns,r(t) = r
1

Es Is
Ms,r(t) ,

(5a)

Nc,0

Ec Ac
[ϕ(t − t0)] − Nc,r(t)

Ec Ac
[1 + ϕ(t − t)] +

Nc,r(t0)
Ec Ac

[1 + ϕ(t − t0)] +

+
1

Ec Ac

t∫
t0

Nc,r(τ)
d
dτ

[1 + ϕ(t − τ)] dτ − 1
Es As

Ns,r(t) = r
1

Es Is
Ms,r(t) .

(5b)

Since ϕ(0) = 0 and Nc(t0) = 0 for assessment of normal forces Nc,r(t) linear integral Volterra
equation of the second kind is derived

Nc,r(t) = λN

t∫
t0

Nc,r(τ)
d
dτ

[1 + ϕN K(τ) f(t − τ)] dτ + λN Nc,0 ϕN K(t0) f(t − t0) , (6)

where

λN =
[
1 +

Ec Ac

Es As

(
1 +

As r2

Is

)]−1

. (7)

3.2. Compatibility of curvatures when τ = t

Mc,0

Ec(t0) Ic
[1 + ϕ(t − t0)] − 1

Ec Ic

t∫
t0

dMc,r(τ)
dτ

[1 + ϕ(t − t0)] dτ =

=
Ms,0

Es Is
− 1

Es Is

t∫
t0

dMs,r(τ)
dτ

dτ .

(8)

From
Mc,0

Ec(t0) Ic
=

Ms,0

Es Is
,
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after integrating the equation (8) by parts and using (4) for assessment of bending moment
Mc,r(t) linear integral Volterra equation of the second kind is derived

Mc,r(t) = λM

t∫
t0

Mc,r(τ)
d
dτ

[1 + ϕN K(τ) f(t − τ)] dτ +

+ λM Mc,0 ϕN K(t0) f(t − t0) − λM
Ec Ic

Es Is
Nc,r(t) r ,

(9)

in which

λM =
[
1 +

Ec Ic

Es Is

]−1

. (10)

In each of these equations the functions

Nc,0 ϕN K(t0) f(t − τ) , Mc,0 ϕN K(t0) f(t − τ) ,
d
dτ

[1 + ϕN K(τ) f(t − τ)]

are given.

4. Deriving of the mechano-mathematical model for time depended elasticity
module of concrete

Analogically to case with the constant elasticity module using the same notations as
in part 3, using the equilibrium equations (3), (4) and strain compatibility on the contact
surfaces between the concrete and steel members of composite girder and compatibility of
curvatures we obtain the following linear integral Volterra equation of the second kind (12)
and (15) :

4.1. Strain compatibility on the contact surfaces between the concrete and steel
members of composite girder

Nc,0

Ec(t0)Ac
[1 + ϕ(t − t0)] − 1

Ac

t∫
t0

1
Ec(τ)

dNc,r(τ)
dτ

[1 + ϕ(t − τ)] dτ +

+
Ns,0

Es As
− 1

Es As

t∫
t0

dNs,r(τ)
dτ

dτ =
Ms,0

Es Is
r + r

1
Es Is

t∫
t0

dMs,r(τ)
dτ

dτ .

(11)

Using
Nc,0

Ec(t0)Ac
+

Ns,0

Es As
=

Ms,0

Es Is
r

and integrating the equation (11) by parts we get

Nc,0

Ec,0 Ac
[ϕ(t − t0)] −

[
Nc,r(τ)
Ec Ac

[1 + ϕ(t − τ)]
]∣∣∣∣t

t0

+

+
1
Ac

t∫
t0

Nc,r(τ)
d
dτ

[
1

Ec(τ)
[1 + ϕ(t − τ)]

]
dτ − 1

Es As
Ns,r(t) = r

1
Es Is

Ms,r(t) ,

(11a)
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Nc,0

Ec,0 Ac
[ϕ(t − t0)] − Nc,r(t)

Ec Ac
[1 + ϕ(t − t)] +

Nc,r(t0)
Ec Ac

[1 + ϕ(t − t0)] +

+
1

Ac

t∫
t0

Nc,r(τ)
d
dτ

[
1

Ec(τ)
[1 + ϕ(t − τ)]

]
dτ − 1

Es As
Ns,r(t) = r

1
Es Is

Ms,r(t) .

(11b)

Since ϕ(0) = 0 and Nc(t0) = 0 for assessment of normal forces Nc,r(t) linear integral Volterra
equation of the second kind is derived

Nc,r(t) = λN(t)

t∫
t0

Nc,r(τ)Ec,0
d
dτ

[
1

Ec(τ)
[1 + ϕN K(τ) f(t − τ)]

]
dτ +

+ λN Nc,0 ϕN K(t0) f(t − t0) ,

(12)

where

λN =
[

Ec,0

Ec(t)
+

Ec,0 Ac

Es As
+

Ec,0 Ac r2

Es Is

]−1

. (13)

4.2. Compatibility of curvatures when τ = t

Mc,0

Ec(t0) Ic
[1 + ϕ(t − t0)] − 1

Ic

t∫
t0

dMc,r(τ)
dτ

1
Ec(τ)

[1 + ϕ(t − τ)] dτ =

=
Ms,0

Es Is
− 1

Es Is

t∫
t0

dMs,r(τ)
dτ

dτ .

(14)

From
Mc,0

Ec(t0) Ic
=

Ms,0

Es Is
,

after integrating the equation (14) by parts and using (4) for assessment of bending moment
Mc,r(t) linear integral Volterra equation of the second kind is derived

Mc,r(t) = λM

t∫
t0

Mc,r(τ)Ec,0
d
dτ

[
1 + ϕN K(τ) f(t − τ)

Ec(τ)

]
dτ +

+ λM Mc,0 ϕN K(t0) f(t − t0) − λM
Ec,0 Ic

Es Is
Nc,r(t) r ,

(15)

in which

λM =
[

Ec,0

Ec(t)
+

Ec,0 Ic

Es Is

]−1

. (16)

In each of these equations the functions

Nc,0 ϕN K(t0) f(t − τ) , Mc,0 ϕN K(t0) f(t − τ) ,
d
dτ

[1 + ϕN K(τ) f(t − τ)]

are given.
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5. Numerical method

The integral equations are solved by a numerical method using quadratic formulas. These
methods represent a replacement of the integral equations by approximate linear equations
with triangle matrix related in view of a discrete value of the unknown function.

The replacement is achieved on the basis of approximation of the integral equation op-
erator by quadrature formulas.

The increase of the parameter τ is related to the growth of the descretizating points, so
that the application of certain quadratic formulas of Simpson, Gauss, Markoff, Chebishev is
rather troublesome.

That is why integrals are approximated with quadrature formulas of trapeze [50].

6. Numerical results for constant elasticity module of concrete

A demonstration of the numerical method is implemented in MATLAB code. Several
practical examples in bridge construction have been solved. One of the examples had its
parameters cross-section values and initial section forces are shown in Fig. 2.

Fig.2: Composite beam with cross-section characteristic: Ec = 3.4×104 MPa,
Es = 2.1×106 MPa, Ac = 10000 cm2, As = 840 cm2, n = Es/Ec = 6.176,

Ic = 520833 cm4, Is = 4859650 cm4, rc = 56.128 cm, rs = 108.182 cm,
r = 164.31 cm, Ai = 2453.05 cm2, Ii = 19875408 cm4

On the basis of numerous solved examples the optimal step of three days for solving the
integral equations (6) and (9) is found.

Creep coefficient ϕN and the functions K(τ) and f(t − τ) are taken according to the
recommendations of CEB-FIP(1966–1970). For both functions K(τ) and f(t − τ) the ap-
proximations of Wolff [61] are chosen :

K(τ) =

⎧⎪⎨
⎪⎩

10.28
5 +

√
τ

for τ ≤ 857

0.3 for τ > 857

(17)

and

f(t − τ) = 1 − exp

[
−0.6

(
t − τ

30
+ 0.0025

)0.4

− 0.091

]
. (18)
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The variations of the inner normal forces Nc,r, Ns,r and moments Mc,r, Ms,r in the
example for solving the creep problem are found for t0 = 28, 90, 180, 365 and 730 days till
respectively 6025, 6087, 6177, 6362 and 6727 days are shown on figures 3, 4, 5.

Fig.3: Values of normal forces Nc,r(t) = Ns,r(t) in time t when loading
is applied in time t0 = 28, 90, 180, 365 and 730 days

Fig.4: Values of bending moments Mc,r(t) in time t when loading
is applied in time t0 = 28, 90, 180, 365 and 730 days

Fig.5: Values of bending moments Ms,r(t) = r Nc,r(t) + Mc,r(t) in time t
when loading is applied in time t0 = 28, 90, 180, 365 and 730 days
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The variations of the normal stresses in time t∞ in concrete plate σup
c and in steel girder

σup
s , σdown

s in the example for solving the creep problem are found for t0 = 28, 90, 180,
365 and 730 days till respectively 6025, 6087, 6177, 6362 and 6727 days are shown on
figures 6, 7, 8.

Fig.6: Values of normal stresses in upper fiber of concrete plate σup
c (t) in time t∞

when loading is applied in time t0 = 28, 90, 180, 365 and 730 days

Fig.7: Values of normal stresses in upper fiber of steel girder σup
s (t) in time t∞

when loading is applied in time t0 = 28, 90, 180, 365 and 730 days

Fig.8: Values of normal stresses in down fiber of steel girder σdown
s (t) in time t∞

when loading is applied in time t0 = 28, 90, 180, 365 and 730 days
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7. Numerical results for time depended elasticity module of concrete

The variations of the inner normal forces Nc,r, Ns,r and moments Mc,r, Ms,r in the
example for solving the creep problem are found for t0 = 28, 90, 180, 365 and 730 days till
respectively 6025, 6087, 6177, 6362 and 6727 days are shown on figures 9, 10, 11.

Fig.9: Values of normal forces Nc,r(t) = Ns,r(t) in time t when loading
is applied in time t0 = 28, 90, 180, 365 and 730 days

Fig.10: Values of bending moments Mc,r(t) in time t when loading
is applied in time t0 = 28, 90, 180, 365 and 730 days

Fig.11: Values of bending moments Ms,r(t) = r Nc,r(t)+Mc,r(t) in time t when
loading is applied in time t0 = 28, 90, 180, 365 and 730 days
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Tab.1: Comparison of results for normal forces Nc,r, Ns,r and moments Mc,r, Ms,r

obtained by various methods; results obtained by numerical methods in time
ti = 6025, 6087, 6177, 6362 and 6727 days; results obtained by Wolff’s meth-
ods [61] in time ti = 3584 days; results obtained by Trost’s methods [56],
Haenzel’s methods [29] and Sonntag’s methods [53] in time t∞

The results for normal forces Nc,r, Ns,r and moments Mc,r, Ms,r received by the above
mentioned method with the results of both methods – of Trost [56] and Haenzel’s [29],
based theory of the viscoelastic body and the theory of Rüsch-Jungwirt [45](respectively
modified theory of Dischinger [21, 22]); as well as with the results of Wolff [61] and Sonntag’s
methods [53] (according to Dischinger’s theory) are compared in Table 1.

The results for normal stresses in upper fiber of concrete plate σup
c (t) and steel girder

σup
s (t) and in down fiber of concrete plate σdown

c (t) and steel girder σdown
s (t) in time t∞, when

loading is applied in time t0 = 28, 90, 180, 365 and 730 days, received by the above mentioned
method are compared in Table 2 with the results of both methods – of Trost [56] and
Haenzel’s [29], based theory of the viscoelastic body and the theory of Rüsch-Jungwirt [45]
(respectively modified theory of Dischinger [21, 22]); as well as with the results of Wolff [60]
and Sonntag’s methods [53] (according to Dischinger’s theory).

8. Summary and Conclusion

Bearing in mind the creep effect, and using the integral equations (7), (9) for constant
elasticity module and (12), (15) for time depended elasticity module of concrete, an universal
calculating method has been elaborated for statically determinate bridge composite plate
girder. The proposed method take into account the vanishing of the creep function for t0,
the beginning of the creep process. This method allows the use of a perfect linear theory of
concrete creep i.e. the theory of the viscoelastc body of Maslov-Arutyunyan-Trost-Bažant.

This represents a remarkable step forward in the application of the Volterra integral
equations, because in general the creep process is not correct to describe with differential
equations.
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Tab.2: Comparison of results for normal stresses in upper fiber of concrete plate

σup
c (t) and steel girder σup

s (t) and in down fiber of concrete plate σdown
c (t)

and steel girder σdown
s (t), obtained by various methods; results obtained by

numerical methods in time ti = 6025, 6087, 6177, 6362 and 6727 days; results
obtained by Wolff’s methods [61] in time ti = 3584 days; Results obtained by
Trost’s methods [56], Haenzel’s methods [29] and Sonntag’s methods [53] in

time t∞; all dimensions for stresses are in [daN/cm2]
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The system of integral equations of Volterra is modified by approximating quadrature
formulae. In this manner it reduces to triangle algebraic system.

The proposed approach, used in the in the presence of rigid connections and constant
cross section allows both a correct interpretation of the viscous elastic problem and solution
characterized by a high precision.

Comparing the results calculated by the numerical method [41] and the new improved
method elaborated above, and the methods of Trost and Wolff, we can say, that the numerical
method gives very reasonable results from a practical point of view. So we can draw the
conclusion, that the Trost’s method is quite applicable and up to date. That is why, as
to a new relaxation coefficient, calculated from the integral equation is not proposed, this
method for a long time will be the only one for solving the formulated problem.

Dealing with the methods [29, 42, 48] based on the ‘modified’ Dischinger’s theory, we can
say, on the basis of the difference in the results, calculated according to the methods of
both groups (confirm Bažant’s comment [6]) – that as to the Rusch-Jungwirth’s theory no
improvement has taken place, especially regarding the approximation of the creep function.
The latter should not be recommended for practical use.

From Table 1 it’s clearly seen, that according to the proposed method the forces Nc,r,
Ms,r are lower than the same ones in the other methods. The reason is consequence of
the assumptions of the viscoelastic body theory. According to this theory, which takes
into account the delayed elastic strain, developing in constrained conditions, it leads to the
appearance of recovery of the stresses. They themselves decrease the relaxation of stresses
in concrete of composite beams. That’s why this fact leads to lower Nc,r and respectively
Ms,r. So as result we have less stresses in the steal beam, which lead to the more economic
designing of composite beam.

Consequently, it should be said that the numerical method, based on the theory of
the viscoelastc body, gives more reasonable value of the composite girder behavior, under
sustained service and leads to smaller dimensions of the steel beam, especially for time-
depended module of elasticity of concrete Ec(τ).

Notations
Es . . . . . . . . . . . . . . modulus of elasticity of steel,
Ec . . . . . . . . . . . . . . instantaneous modulus of elasticity of concrete in time t,
εc(t), σc(t) . . . . . . strain and stress in concrete, respectively in time t,
t, τ . . . . . . . . . . . . . time elapsed from casting of concrete, in days,
t0 . . . . . . . . . . . . . . . instant of the first load application,
K(τ ) . . . . . . . . . . . . function of τ ,
f(t − τ ) . . . . . . . . . function of t − τ ,
Mo . . . . . . . . . . . . . bending moment of composite section,
Nc,0, Mc,0 . . . . . . initial section forces of instant and loading of concrete section or steel section,

respectively,
Nc,r, Mc,r . . . . . . . redistribution of section forces, of concrete, of steel section, respectively,
Ac, As, Ic, Is . . . areas, inertia moments of parts of composite cross-section, respectively,
Ai . . . . . . . . . . . . . . transformed area of composite section related to modulus of elasticity of

structural steel,
Ii . . . . . . . . . . . . . . . transformed second moment of area of composite section related to modulus

of elasticity of structural steel,
λ . . . . . . . . . . . . . . . parameter of Volterra’s integral equations,
c, s . . . . . . . . . . . . . (subscripts) for concrete and steel respectively.
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[39] Pachla H., Ryž K.: Analiza reologiczna zginanego przekroju zespolonego w ’Lwetle teorii Aru-
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Berlin, (1955)
[50] Sendov B., Popov V.: Numerical methods, Nauka I Izkustvo, Sofia, 1978
[51] Sharif Al., Taher T.S., Basu K.P.: Time Dependent Losses in Prestressed Continuous Com-

posite Beams, Journal of Structural Eng., (1993), Vol.. 119, No. 11, pp. 3151-3168
[52] Šmerda Z., Křistek V.: Creep and Shrinkage of Concrete Elements and Structures, Elsevier,

Amsterdam-Oxford-New York-Tokyo (1988)
[53] Sonntag H.J.: Beitrag zur Ermittlung der zeitabhangigwn Eigenspannungen von Ver-
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