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MATHEMATICAL MODEL OF PSEUDOINTERACTIVE
SET: 1D BODY ON NON-LINEAR SUBSOIL
I. THEORETICAL ASPECTS

Jif{ V. Hordk® Horymir Netuka*

Mathematical model of pseudointeractive set of an elastic body (beam, plate) and sub-
soil for a special class of linear and non-linear response functions has been introduced.
Brief review of the fundamental mathematical apparatus used for the analysis of the
resulting non-linear boundary value problem has been given and discussed. Some
of the typical statements concerning solvability of the model problem having form
of linear and non-linear coercive and semi-coercive variational equation or inequality
have been formulated, including sketches and remarks to their proofs. The emphasis
has been focused on the semi-coercive case representing the typical problem of a free
(unattached) body lying on a ‘unilateral’ subsoil defined by non-linear response func-
tion. Extra conditions of solvability have been formulated in the semi-coercive cases.
The decomposition of Sobolev function space of kinematically admissible displace-
ments into a cone of rigid displacement and its negative polar cone of displacements
with non-zero deformation energy has been used to prove the existence of the solu-
tion in semi-coercive cases. The generalization of the form of the response function
representing behavior of subsoil model has been also mentioned.

Key words : unilateral subsoil, non-linear boundary value problems, semi-coercivity,
decomposition of Hilbert space

1. Introduction

In the study we present a brief introduction to the issue of mathematical modeling of
a special class of interactive sets of the type a free elastic body and subsoil, see Fig.1,
for example. In the Part I. Theoretical aspects, we give concise review of the mathematical
foundation concerning methods of solving of the continuous formulation of the problem while
in the Part II. Computational Aspects and Applications, we define discrete model and give
numerical methods used for building of computational model and some illustrative examples
and applications.
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Fig.1: Scheme of beam—subsoil mechanical model
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For the sake of brevity, our study has been restricted only to the basic class of ‘pseu-
docontact’ problems of beams or plates on the ‘unilateral’ subsoil of Winkler’s or piecewise
Winkler’s type, see Fig. 2 for considered class of subsoil models. Thus, instead of using stan-
dard model of the classical contact problem (see [3],[7], for example) between two or more
elastic mutually non-penetrated bodies (beam or plate and different parts of subsoil), we
are defining a quite different approach where the behavior of the subsoil in the mathemat-
ical model has been described via suitable extra response function s = §(q,u, D%®u, 6, ...)
depending on the coefficient ¢ of subsoil stiffness (surrounding material), displacement wu,
its derivatives D®u, k = 0,1,..., temperature 6, and so on, instead of considering an-
other body representing subsoil and its reaction; for the case of circular plate omitted here,
see [14]. To emphasize and illustrate mainly the crucial ideas and approach, we have been
discussing only 1D beam (plate strip) problems in the paper, 2D plate models are omitted
due to technical reasons and simplicity of the presentation.

2. Mathematical and mechanical concepts

In this section we are going to make readers acquainted with some main ideas and
concepts concerning mechanical problems mentioned above, and with methods and tools of
analysis and mathematical model design.

2.1. Response function

One of the key concept of an effective computational model design is installation of an
additional ‘auxiliary’ function which represents in our definition of the mathematical model
the response or the stiffness of the subsoil material; because of simplicity we have been
concentrating in this paper exclusively on the functions § depending only on the deflection
function u = a(z), v € Q = (0,1) of the beam (plate strip), thus s(x) = §(u)(z), ie. we
have been discussing only Winkler like one-parametrical models of subsoil. Furthermore, the
response § is in all introduced cases supposed to be a convex and piecewise linear function.
Generally, it can even be a multi-valued function and two corresponding basic cases are as
follows. The first case can appear when the last (it can be even first if it is the only one)
‘layer’ of the subsoil is created by the perfect rigid subsoil, see Fig. 2 and Fig. 6; corresponding
mathematical model has then the form of variational inequality of the first kind, see [6], and
the second case can appear when § is the multi-valued function representing a subgradient
of a given potential or superpotential, see [7],[8], [13], for example.

2.2. Mathematical formulation preliminaries

Some degrees of freedom of the unattached body (beam, plate strip) laying on the elastic
foundation should be left in the mechanical model of the pseudocontact set for better descrip-
tion and more realistic approximation of the genuine situation; corresponding mathematical
and computational model will be then only semi-coercive one, therefore corresponding stiff-
ness matrix K (arising in FE model after discretization, see Part II. Computational Aspects
and Applications) will be singular and only positive semidefinite (assuming that Neumann
boundary conditions, i.e. free ends are given).

In all such cases we have to formulate extra necessary and sufficient conditions to guar-
antee the existence or uniqueness of the solution of the mathematical formulation of the
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Fig.2: Graphs of response functions §

problem (concerning all continuous, discrete, algebraic as well as computational models),
see [11],[15],[18] and [19], for example.

The correct mathematical formulation of the introduced mechanical model design of
pseudocontact problem has the form of either linear or non-linear boundary value problem,
thus we have to use the terms of variational, weak or generalized solution to define the
formulation properly, see [3], [16] for example. These are specified by the means of the terms
of Hilbert spaces H of functions with finite energy, see [4], sets of kinematically admissible
displacements ¥V C H and convex sets of restrictions X C V, see [17]. Furthermore, to
succeed we have to use the apparatus for solving of the non-linear variational equations and
inequalities, see [5],[6]. In the symmetry case, equivalent problem formulation can occur
in the form of more physically and mechanically plausible definition, that is in the form
of a minimization problem of the functional of the total potential energy of the system J
(i.e. potential or superpotential) over the set of kinematically admissible deflections V or IC,
see [6], [7],[17].

2.3. Existence of a solution

The outline of the proof of the existence of the model problem solution has been given
for general (including semi-coercive) situation: we have been using the orthogonal decompo-
sition of the linear space V of the kinematically admissible displacements into convex cone
Ky of null energy functions of the system and its negative polar cone IC?, ,ie. V=Ky GBIC?, .
Then Ky C K and K is a convex cone of all kinematically admissible rigid deflections, while
K% is a corresponding negative polar cone of ‘real’ deflections with non-zero deformation
energy.

On the cone IC% and by the means of the conditions of solvability, we prove the coercive-
ness of the corresponding potential or the ellipticity of the corresponding form. From the
mechanical point of view it means, we are able to force out (through suitable but realistic
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character of given load and/or given boundary conditions) the existence of the non-zero
(active) area of contact zone on the feasible foundation, i.e. put on the set at equilibrium.

The elementary example illustrating the character of semi-coercivity and non-linearity of
the model problem and its main complications, which have to be overcome in the design of
computational model as well as practical examples illustrating some of the computational
aspects will be given in Part IT (further details concerning the model problem approximation,
FEM discretization and algorithm of the numerical solution can be found in [1],[7], [19], for
example).

2.4. Aim of this work

The aim of the presented paper is an illustration of the fundamental differences in the
design and solution methods of the mathematical models of the problem class represented
by linear and non-linear variational equations (or, in limit cases, by variational inequali-
ties). The models correspond to the problems with monotonous operators defined either
on Hilbert spaces V C H or over their subsets of additional restrictions and constraints K
(for corresponding example of layered subsoil with perfectly rigid foundation in depth ), L;
see Fig. 6).

Thus, we are going to describe the methodology of the solution design for problems
range between the two very special limit cases: from linear response functions s = §(u)
(corresponding to classical Winkler’s linear model of ‘bilateral’ subsoil), through piecewise
linear functions (non-linear ‘bilateral’ or ‘unilateral’ subsoil) up to multi-value functions
(Signorini’s model representing ‘perfectly rigid’ subsoil, i.e. limit case of the stiffness co-
efficient ¢ — 400 in Fig.5 or Fig.2f). The problems range can be easily illustrated and
understand by the means of simple manipulations with the values of the stiffness coefficients
of the bilateral subsoil ¢;, ¢ = 1,2 in the definition of the corresponding response function,
see Fig. 2, Fig.4 and Fig. 5.

Note that these two limit cases, Winkler’s model of elastic subsoil defined by linear
response function, see Fig. 2a, and Signorini’s model of unilateral rigid subsoil ‘represented’
by special multi-valued response function, see Fig. 2f, demarcate class of suitable, very useful
models of subsoils, but none of them alone is very convenient for the practical needs, because
they both represent quite non-realistic behavior of subsoil, either the issue of tensile stresses
on some parts of ‘contact’ surface of subsoil or zero deflections of the body (perfectly rigid
subsoil).

From the mathematical point of view we have been discussing the solvability of one suf-
ficiently broad class of the problems having different forms: starting from linear variational
equations through non-linear equations up to variational inequalities, all of them in coer-
cive as well as in semi-coercive cases. All the presented results can also be used as a basic
mathematical apparatus for generalization and design of new mathematical model class of
the pseudointeractive sets within the framework of the theory of coupled thermoelasticity
(thermoelastic beams, plates on subsoil), see [9]. In such a case, and by the means of Rothe
method of discretization in time, we can prove the solvability of the corresponding mathe-
matical model of the evolutional problem via its approximation by the sequence of stationary
problems, solvability of each one can be proved by the approach introduced in this paper,
see also [10].
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3. Linear model of subsoil

The first limit case of the defined class of subsoil models, the standard applied model
of Winkler’s bilateral subsoil (note the response function of subsoil has the form §(u)(z) =
= q(x) u(z), see Fig. 2a) has, as it was mentioned above, very exceptional position between
all models introduced here.

On the one hand, employing this classical and historical approach is very ‘pleasant’,
because the mathematical attitude of the model is quite simple, and it leads to a linear
problem with unique solution (in both continuous and discrete case) regardless chosen type
of classical or non-classical linear boundary conditions (corresponding stiffness matrix K in
FE model is regular and positive definite, for example).

To prove this it is enough to assume that ‘an active’ part of subsoil physically exists
at least on a ‘non-zero’ area of the beam or plate, ie. Ji € I : Q; C Q, ,u(fll) > 0 and
q(x) > qo > 0 for a.e. = € Q; (see Fig. 1), where Q € Q, Q = U;c;Q;, (where Q = (0,1)
for beam) and p = p(x) is £ — measure). Then, with this realistic assumption, we can use
standard approach [5], [6], [16], see below.

On the other hand, the mechanical attitude of this ‘two-sided’ or ‘fixed’ (bilateral) model
is rather problematic, because it can somewhere induce physically non-real tensile stresses
(body and subsoil are bonded in this model, i.e. body behaves like it was firmly embedded
in elastic or rigid environment).

Furthermore, it is easy to prove that any of the following non-linear models belonging to
the defined class of subsoil models can be directly derived from this linear one by means of
an appropriate manipulation with the definition of response function §(.), see Fig.2 for the
conception and illustration; thus standard linear Winkler model Fig. 3 (j is the potential and
R the reaction of the subsoil corresponding to the deflection u) is a special case of general
non-linear model, Fig. 4.

j(u) R(u)

N|_Q
c

Fig.3: Scheme of linear Winkler subsoil model : potential and response function

To be brief, we concentrate in the remaining paragraphs only on the beam problem with
free ends on Winkler bilateral subsoil; variational formulation of the model problem has then
the form of minimization problem of the potential energy functional over the linear space of
kinematically admissible deflections V = H?(Q2), i.e. model problem reads

we HX(Q): Jw) <J) Yo HX(Q) 1)

where

J(v) = % a(v,v) + %s(v, v) — F(v) — Z F; 6, (v) + Z M; D6, (v) (2)



316 Hordk J.V. et al.: Mathematical Model of Pseudointeractive set: 1D Body on Non-Linear . . .

or equivalently (as it can be easily proved from the convexity of functional J, which is the
consequence of the relation D?J(u;v,w) = a(v,w), and a(v,v) > 0 Yu,v,w € H?*()) in
the form of linear elliptic variational equation

a(u,v) + s(u,v) = (F,v) + Z(Fl 0z, (v) + M; D6y, (v) Yve H?(Q) (3)
where
a(u,v) = (EJ D*u, D*v) /EJD2 )D?*v(x)dz , w,v€ H?*(R),
Q
s(u,v) = (8(u) LQQ /q (z)dz , wu,ve H*(Q),
Q

:/f(x)v(x)dx, v€H2(9)7
Q

and f € L,() is a given load, F;, M; are given values of generalized forces in z;,z; €
and 6, D¢ are Dirac distribution and its derivative in z;,z;, Dd(v) = —6(Dv), H*(Q) is
corresponding Sobolev space, see [16], [1] and others.

Remark 1 Slightly generalized, but still linear model of subsoil can be obtained by adding of
another term into the definition of response function. Thus, if we define the response function
in a little more complicated form, i.e. by the relation §(u; D* u)(x) = q(x) u(z)—t(x) D* u(x),
we receive so called two-parametrical Pasternak model of subsoil but mathematically the
corresponding ‘new’ problem remains again linear with all the above mentioned advantages,
and way of solving. Therefore, we leave out the discussion of linear Pasternak model here;
non-linear generalization of Pasternak model will appear in our further coming paper.

Once we have verified validity of the assumptions, the statements concerning the existence
and uniqueness of the linear model problem solution is obvious consequence of the classical
statements concerning the existence and uniqueness of quadratic functional minimum, or
Riesz representation theorem, see [5],[7], and so on.

For the sake of brevity, we do not provide the exact and complete formulations and proofs
of such statements because in the linear case it can be easy seen that it is sufficient to show
the form ((u,v)) = a(u,v) + s(u, v) is equivalent to the standard scalar product on H?(S2).
This equivalence is an easy consequence of the real physical situation, i.e. the consequence
of the following assumptions for the coefficients of the given response function, shape and
material property of the body. Thus we assume that for the stiffness coefficient of the subsoil
material the following relation holds g(z) > 0 for a.e. € Q and 3i € I : q(z) > qo > 0
for a.e. z € Q;, Q; C Q, ,u(Q,) > 0, as well as we take into account consequences of
geometrical (area of cross section) and physical situation (material), i.e. we assume the
relations J(x) > Jo > 0, E(x) > Ep > 0 for a.e. x € Q hold.

Remark 2 If one considers other type of boundary conditions, elastic (Newton) support
instead of free ends, for example, then it is sufficient to change just the form s(.,.) for the
form §(u,v) = s(u,v) + b(u,v), where b = Z}:o b, bi(u,v) = Z] o ks D' u(x;) D' v(x;)
represents work of elastic deflection or slope supportsinx; =0, L, k] > 0 are corresponding
stiffness coefficients of supports, and no statements concerning solvability of the problem

will have to be changed.
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Finally, we remind the functions §(.) and b(.) defining form s(.,.) and both boundary
forms b'(., .) representing energy of Winkler’s model of subsoil and elastic supports (Newton’s
boundary conditions) have the same character and are linearized cases of function from Fig. 4.

Remark 3 Let us take shortly a look at a matrix formulation of the above mentioned matters.
After standard finite element discretization we are able to restate problem (1) in a finite
dimension by using matrices. Let us denote v € R” finite dimensional vector corresponding
to the function vy, € Vi, C H?(Q2) which is the FE approximation of v € H?(Q), and II(v)
approximate values of the potential energy functional J(v) from (2) in a finite-dimensional
space RY . This is determined by matrix expression

1
II(v) :§VTKBV+§VTK5V—VTf.

Algebraic form of the problem (1) reads as follows

II(u) = min II(v) .
velR

Here we have used the following notation : Ky is the stiffness matrix of the beam, Kg is the
stiffness matrix of the given subsoil, and f is vector representing given load. Considering
the above mentioned expression

((u,v)) = a(u,v) + s(u,v)

we are competent to write in matrix formulation
K=Kg + Kg

and K denotes the total stiffness matrix of our system ‘beam + subsoil’.

Matrix K may contain just constant terms, which is the case of linear problem (Winkler
subsoil model). Then we are able to derive necessary and sufficient condition characterizing
a minimization point of the potential 11 in the form

Ku=f

and we can see that we have got a system of linear algebraic equations. When we must
handle with nonlinear problems, then the stiffness matrix K contains terms which depend
on a (still unknown) solution. This leads to a system of nonlinear equations

Ku)u=f.

More details on matrix formulations and methods of their solution will be given in the
second part of this article.

4. Non-linear models of subsoil

An attempt to avoid all drawbacks of the linear models mentioned above, and the effort
to get more physically realistic model of subsoil with possibility to distinguish material
property of surrounding elastic environment in dependence on the direction of deformation
leads to the definition of non-linear bilateral or unilateral subsoil of Winkler’s type where
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response function §(.) is no more linear one but only piecewise linear, see Fig.4 and Fig.5
(analogous approach can be applied to the elastic supports and definitions of their response
functions b(.) or to inner point obstacles).

The exact definition of the corresponding response function can be now set up from
several parts: the first one represents fictitious linear bilateral ‘subsoil’ (firm embedding in
surrounding), and the other ones represent unilateral additions or deductions of stiffness
parts corresponding to added or missing ‘subsoil’ material in dependence on the direction
of stresses and strains.

More general cases of multi-valued response functions §(.) implying formulations of the
model problems in the forms of inclusions or hemivariational inequalities are introduced
in [8], for example, but omitted here.

Variational formulations of the corresponding mechanical models can now be generally
written in the forms of non-linear variational equations, resulting forms representing po-
tential energy will not be henceforth bilinear (neither coercive for unilateral subsoil), and
therefore they can not play the role of the equivalent scalar product as they did in previous
Winkler linear models.

To be able to prove the statements concerning solvability of all these non-linear boundary
value problems, we have to use different approach and apparatus compared with the linear
problems, see [5], for example; furthermore, in semi-coercive cases we need to use special
decomposition of linear spaces of kinematically admissible displacements.

Several examples illustrating such situations have been formulated and discussed in the
following text.

4.1. Bilateral model of subsoil

From the mathematical point of view, the first and natural, and probably the simplest
way of generalization of the linear subsoil model is the following case of non-linear response
function defined by sum of linear and two unilateral parts, i.e. by the relation

$(v)(x) = (o) (x)v(x) + q(+d) (x) vt (z) + G-y (x)v" (7)) ae z€ Q; , (4)
where vt = max{0,v}, v~ = —min{0,v}, see scheme of the corresponding potential on
Fig. 4 (we assume q1, 42, (o), 4(+d), 9(—u) = 0 and define q1 = q(o) F ¢(+a)> ©2 = 9(0) £ U-u)>
for example).

The result of usage such a function in the model definition is that the problem loses
its linearity, regardless the corresponding potential has, considering problems of solvability,
very pleasant property: it still remains convex, differentiable, and its gradient is monotone.

j(u) R(u)

0
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Fig.4: Scheme of non-linear subsoil model of Winkler’s
type: potential and response function
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Mathematical formulation of the model problem with this form (4) of generalized response
function §(.) is formally the same as formulation of the problem (1) (resp. (3)). The only
one but still crucial difference is just in the distinct definition of the response function §(.).
This new definition of the function §(.) claims quite different approach in analysis of the
problem: necessity of usage of suitable statements concerning solvability of the problems
with monotone operators or, in case of symmetry, usage of some of adequate theorems of
variational calculus.

Thus some of convenient statements concerning the studied problem with non-linear
bilateral model of subsoil and its solvability can be now founded on the following non-linear
variant of Lax-Milgram Theorem (or on some suitable variant of fundamental theorem of
variational calculus), see [5] for example.

Theorem 1 Let H is Hilbert space and a : H x H — R! is given form such that following
assumptions of monotonicity and boundness hold, i.e.: o, 3 = konst. > 0 such that

allv—ul% < a(v,v —u) —alu,v —u) Yo,u,w € H ,

la(u, w) — a(v,w)| < Bllu—v||||wleg Yv,u,we H .

Then VF € H* A ur € H : a(ur,v) = (F,v) Yv € H.

It can be now easily proved that under the same assumptions on material and geometrical
coefficients E,J as in the above and in addition to that for q(j)(x) >q; >0,7=o0,+d,—u,
Qo)(x) > q(jy(x), j = +d,—ufor ae. x € Q; and the choice H = H?(f) following statement
holds

Theorem 2 Problem (1) (resp. (3)) for definition of response function §(.) by the relation (4)
has unique solution.

Remark 4 Note, it is not necessary to choose any special types of boundary conditions to
accomplish the proof of the existence and uniqueness of the solution for this non-linear model
problem. It can be easily seen that the statement of the theorem 2 remains valid for all
classical (linear) and non-classical (linear or non-linear) boundary conditions of monotone
type (Newton non-linear conditions given through definition of l;() illustrated on the Fig. 4,
for example), and for all their combinations.

4.2. Unilateral model of subsoil

One can easily verify, that even improved mathematical model defined in previous para-
graph by means of non-linear but still bilateral (bonded) subsoil model represented by piece-
wise linear response function of the form (4) is not quite satisfactory one; it has no ability
to describe complete or at least simplified reality in the sense of possibility of local dis-
connecting of the set beam and subsoil, and it has been enforcing the existence of tensile
stresses upon those potentially unrestrained areas (depending on given load and boundary
conditions).

That is why we have been using new approach; by the means of trivial but still quite
natural manipulation of the form and value of the function representing response of subsoil,
see Fig. 2, i.e. through the stiffness coefficient of the surrounding elastic environment and
by using suitable limiting process q(o), ¢(—u) — 0T one gets at model of single (unilateral)
one-sided real subsoil of Winkler’s type, see scheme of its potential in the Fig. 5.
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Similarly, if we assume that g,y = 0 (unreal part of subsoil is omitted) and q(tq), q(—u) 7
# 0 (only real one-sided subsoils are taken into account), then we get at very interesting
non-linear model of special environment consisting just of the two uncoupled one-sided
subsoil models of previous Winkler’s type, see Fig. 2d.

j(u) . R(u)
\\
/ /\\

u q u

Fig.5: Scheme of unilateral subsoil model of Winkler’s
type: potential and response function

Analogous approach can be used likewise for definition of generalized non-linear and
unilateral inner or boundary elastic supports (Newton non-linear boundary conditions, for
example). In such and similar cases, the free body (beam, plate) can have let some degrees
of freedom depending on the type of boundary conditions (number of d.o.f. = 0,1 or 2 for
beam), thus the choice of the concrete type of boundary conditions plays the crucial role
in suggestion of the correct mathematical model of the pseudointeractive set of body and
unilateral foundation, namely for the proof of its solvability and design of the computational
methods.

Some of the difficulties concerning solution of the suggested one-sided subsoil model can
be illustrated on the following simple example corresponding to the model problem with
given response function of the form §(v)(z) = g(z) vt (z). The resulting operator is then
only monotone one but not strongly monotone one on the entire space H, and corresponding
stiffness matrix K in FE model is singular and only semidefinite one. Thus, the operator
(stiffness matrix K in discrete model) does not fulfill necessary assumption and we can not
use directly Lax-Milgram Theorem (neither in continuous nor in discrete case of the model
problem) neither we can prove coerciveness of the corresponding functional of the entire
potential energy (2) on the entire original space H.

Analyzing the situation, we can easily verify there exist only two chances how we can
get at monotony of the corresponding form (or operator) or coercivity of the corresponding
potential (2); the first one is the choice of suitable type of boundary conditions eliminating
free movement of the body (Dirichlet boundary conditions, for example) while the second
one consists of enforcement of transformation of the semi-coercive problem to the coercive
one (through additional conditions guarantying the existence of the solution of the problem
only on a smaller set of kinematically admissible deflections, i.e. on the suitable proper
subset of the original space V C H?(1Q)).

In the first mentioned case, due to ‘fixing’ type of boundary conditions the problem will be
coercive one and we can apply the standard approach; thus we can use Theorem 1 with new
definition of the linear space of the kinematically admissible displacements H =V C H?(Q),
and then we can prescribe suitable formulae having the property of equivalent norm to
the standard norm ||| g2(q) defined on H?(Q2). This can be realized through a variant of
Friedrichs inequality [16] and the space of kinematically admissible displacements V' (holding
stable homogeneous boundary condition), for example. Note that, in this special situation,
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the problems of modeling (in the sense of theoretical as well as finite-dimensional and com-
putational aspects) are quite analogous to the coercive situation with non-linear bilateral
Winkler subsoil including all difficulties arising just from the non-linearity of the problem.

In the second case which is more realistic and better describing the practical situations
represented in mathematical model by free body in contact with real one-sided subsoil we
suggest to use completely different and new approach. First of all, we simplify the situation
by elimination of rigid displacement R = P*; note as K the cone of kinematically admissible
rigid displacements defined by relation £ = R NV and as Ky its subcone Ky C K where
Ky ={v e K| a(v,v)+ s(v,v) = 0}. Then, the solution of semi-coercive problem can be
found on the negative polar cone IC% to the cone Ky, where the operator corresponding to
the problem behaves like the coercive one.

The concrete form of the cone Ky, depends on the given linear space V, i.e. on the type of
given boundary conditions as well as on the definition of the form 5(.,.), i.e. on the model
subsoil design. For the sake of simplicity, we are going to illustrate suggested way and
method of the proof of the existence of solution for the given mathematical model problem
only through a simple elementary example with one degree of freedom: number of d.o.f. =1,
thus we define V = {v € H2(Q2) | Dv(0) = 0} (for different model given by circle plate and
Sobolev weighted space V, see [14]).

Fundamental tool for our approach is the following best approximation theorem. This
statement gives us possibility of useful and unique decomposition of the space V into the
orthogonal sum of the cone Ky and its polar cone K%, i.e. into the form V = Iy, & /C%.
Thus we remind following general theorems, see [2], for example.

Theorem 3 Let H be Hilbert space and A C H convex closed subset. Then Yx € H
Nyed: lo—ylu<|z—z|nvzeA

The element y € A is equivalently characterized by the inequality

(x—y,z—y)p <0 VzeA.

The element y = Py (x) and operator Py : H — A is said to be best approximation of x
on A and projection of the best approximation on A.

By the means of the best approximation operator defined in the previous theorem, we
can easily prove the statement concerning the unique orthogonal decomposition of Hilbert
space H into two cones, i.e. following theorem, for details see again [2].

Theorem 4 Let H be Hilbert space and A C H given convex closed cone with vertex in 0,
ie. 0€A.

ThenVe € H 3! {y,z} e AXx A®: © =y ® 2z, where (y,z)g = 0.

Furthermore, mappings P, Pyo and elements y = Pp(xz) , 2 = Pyo(«x) are the best
approximation operators, and orthogonal projections of * € H on cone A and its negative
polar cone A°.

Thus, we have prepared everything (apparatus, auxiliary statements, ideas, and so on)
to be able to formulate the necessary and sufficient condition of solvability and to illustrate
the main idea and way of the proof of the statement concerning existence and uniqueness
of the solution of the model problem representing free body lying on the elastic one-sided
subsoil.
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Theorem 5 Let E.,J are given material and geometrical coefficients, and q is given coefficient
of subsoil stiffness of the model problem, and let relations E(x) > Ey > 0, J(z) > Jy > 0
for a.a. x € Q and q(x) > gy > 0 for a.a. x € Q; hold, where measure 1(£;) > 0.

Then the necessary and sufficient condition guarantying the existence of the model prob-
lem solution, i.e. solvability of the problem (1) (resp. problem (3)) on V and with the
function §(.) defined by the relation §(v)(x) = q(x) v (z) has the form

(F.1)+) F >0 (5)

(or in detail [, f(z)de+ Y, F; >0).

If the following relation holds (existence and uniqueness condition)
(F.1)+> Fi>0, (6)

then suggested mathematical model of the problem with elastic one-sided subsoil is correct
one, i.e. problem (1) (resp. problem (3)) with function §(.) defined by 3(v)(z) = q(z)v™ (x)
has exactly one solution.

Proof of the necessity of the condition (5) from the first statement of Theorem 5 is
easy one. It is enough to formulate well known Fuler necessary and sufficient condition
characterizing extreme of convex functional (2), and then use as a test function any rigid
deflection v € Ky, (corresponding cone of kinematically admissible rigid displacements for
the studied model problem is defined by the relation K = RNV = Py, thus we have
Ky = (R!)~ and corresponding rigid deflection has the form v(z) = ¢, ¢ € R, ¢ < 0).

Then, by using of the property of the form s(.,.) with response function defined by
5(v)(z) = q(z) vt (z) we arrive to the condition (5).

Proof of the sufficiency of the condition (5) from the first statement of Theorem 5 requires
to use orthogonal decomposition of the linear space V in the sense of the Theorem 4. Note,
due to character of the chosen model example, we can restrict ourselves only to the symmetry
case of the form a, i.e. to the variational formulation.

Firstly, we define negative polar cone K] to the cone Ky by the relation Kjj = {v € V |
(v,w)g < 0 Vw € Ky}, thus, due to Theorem 4, the decomposition V = Ky, & /Cle, holds.
Next, considering character of the functional (2) we see it is sufficient to prove its coercivity
only on K% , rest of the proof is simple consequence of the well known theorems of variational
calculus, see [5] for example.

Then, through the definition of standard scalar product on H?(2), see [4] or [16] for

example, we can easily prove the cone IC% is characterized just by those functions v € V
which fulfill the condition [, v(x)dz > 0.

Further, for any deflection function v € V holds the decomposition v = p @ v, where
peKy and v € IC%, ie.p(r) =c¢,ce R, c<0and fQT/(x) dx > 0.

Finally, characterization of the cones Iy, and IC@, together with the orthogonality con-
dition imply following, for the proof crucial property of the decomposition

i) c<0; C<Oz>/v(x)dx:0£(l,v)020 , (7)
Q
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ii) v(z)dz >0 ; v)de >0 = ¢=0] . (8)
/ /

Thus, and by means of the following estimation (forces F;, M; are neglected for a while)

J(v) 201\17\372,9—6-02 /((p+17)+)2—p/f(x)dx—/f(x)@dx
Q Q

Q;

we receive with help of Poincaré inequality, see [4], [16], coerciveness of the functional J, i.e.
the existence of a minimum of J on the ng , i.e. the existence of the model problem solution
is proved.

Uniqueness of the problem solution is then consequence of the strict convexity of the
problem potential J on the cone K which is implied by the condition (6).

4.3. Model of unilateral rigid subsoil

Finally, we only briefly mention the last theoretical but from the practical point of view
not very important case, i.e. the other limit case in our demarcated class of subsoil models
defined now by the perfect rigid subsoil in the depth A > 0 from the beam, see Fig. 2f (the
case of A = 0). This restriction to the perfectly rigid subsoil implies substitution of the
linear space V by the corresponding convex set of constraints

M={veV|vz)>A aazecQ AcR, A>0}

and by omitting the form s(.,.) representing elastic subsoil in the definition of the func-
tional J. Thus the effects of perfectly rigid subsoil are included in the mathematical model
only by means of definition of the set M. Corresponding mathematical formulation can
have then the form of the minimization problem (1) but over the convex set M instead of
the linear space V or equivalently form of the inequality of the 15 kind, see [6] for example,
i.e. following form

ueM: alu,v—u) > (F,v—u) +
+ZFi5Ii(v—u)+ZMj5mj(Dv—Du) Yvoe M. 9)
i J

From the mathematical point of view, solvability problem of the minimization problem (1)
with modified functional J over constraint set M, or equivalently solvability problem of
the corresponding variational inequality (9) is quite analogous to the situation analyzed
in previous paragraph (now with modified Theorem 1, i.e. with help of Lions-Stampacchia
Theorem, see [6] for example). Note, we have to use different approach to prove solvability
of the model problem (9) in this case. It is possible to use non-orthogonal decomposition of
the linear space V, see [7],[12], for example.

4.4. Generalization of subsoil model

All introduced subsoil models within the frame of defined class can be generalized by
many natural ways, thus the class of subsoil models can be easy enlarged to cover all stan-
dard and practical applications. For example, one can define the response function as a con-
tinuous piecewise linear function with given restriction A, see Fig.6, where A = 3. L;,
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R(u)

Lo

Fig.6: Graph of function representing subsoil model

corresponding mathematical model can be obtained by combination of the problem (9) with
adding on the corresponding function definition §(.) and form s(.,.). Furthermore, one can
also use general non-linear monotone continuous function and get the analogous results.

Similarly, one can use all generalized definitions of subsoil models in previous as models
for definition of response functions of unilateral elastic supports or inner point obstacles, i.e.
for definition of the functions b(.) and forms b’(.,.).

Finally, essential generalization of the mathematical model representing even possible
failure or damage of the material of supports, obstacles or any part of subsoil can be ob-
tained by means of using multi-value function §(.) in model problem definition; formulation
of the problem leads then to the inclusion problem form, or equivalently to the form of
hemivariational inequality, see [8] for details and theory, or see [10],[13] for application to
the problem of coupled thermoelasticity.

5. Conclusion

Throughout the paper we have considered special class of one—parametrical subsoil mod-
els of Winkler’s type represented by piecewise linear response functions. Methods for analysis
of the solvability for model class problems have been presented, conditions of solvability in
semi-coercive cases have been given. Thus, all introduced non-linear mathematical models
are correct ones, the statements concerning the existence and uniqueness (under additional
conditions) of their solutions have been formulated, and their proofs have been discussed.

Next, in the second part of our paper Part II. Computational Aspects and Applications,
the FE approximation and corresponding discrete model as well as numerical methods used
for building of the computational model and some illustrative examples and applications
will be given.

Finally, in similar way, we can take into account ‘direct’ generalization of Winkler’s
models, i.e. two-parametrical subsoil models of Pasternak’s type. Parameters in Pasternak’s
model are not coupled ones, thus they can be generalized independently, and standard
Pasternak response function §(u; D?>u(x)) = q(x)u(z) — t(z) D? u(x) can be analogically
rewrite in the following generalized form

309w (D2 0) 9 (z) = gla) u(z) - tla) (D*u(@)D | 0,j =01+, -,

where the notation f(© = 0 and f() = f have been used. Regarding another way of
generalization, see [8] for example. Thus, corresponding mathematical models (generalized
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Pasternak) can be analyzed by using analogical approach as mentioned above and all pre-
sented methods can be applied to obtain completely analogous results. The gentle reader will
be able to familiarize with some variants of these models and analogous class of non-linear
response functions in our following papers.
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