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APPLICATION OF THE DIFFERENTIAL QUADRATURE
METHOD TO THE LONGITUDINAL VIBRATION

OF NON-UNIFORM RODS

A. M. A. Al Kaisy*, Ramadan A. Esmaeel*, Mohamed M. Nassar**

Differential Quadrature Method (DQM) has a very wide applications in the field of
structural vibration of various elements such as beams, plates, cylindrical shells and
tanks. One of the most advantages of the DQM is its simple forms for nonlinear for-
mulations using the Hadamard product. In this paper the free vibration of a general
non-uniform rod were studied. The non-dimensional natural frequency and the nor-
malized mode shapes of the non-uniform rod of free and clamped boundary conditions
were obtained by using 15 point DQ method and compared to those of references [8]
and [9]. Results shows good agreement with the previous analytical solutions. The
effect of the varying cross section area on the vibration were studied. This work
reflects the power of the DQM in solving non-uniform problems.
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1. Introduction

The method of differential quadrature discretizes any derivative at a point by a weighted
linear sum of functional values at its neighbouring points.The basic procedure in the DQM
is the determination of weighting coefficients. Based on the idea of integral quadrature the
differential quadrature method was first introduced by Richard Bellman 1972 [1]. Bellman
used two procedures to obtain the weighting coefficients. The first procedure used a simple
functions as test functions but unfortunately when the sampling points are relatively large
(say 13) the coefficient matrix become ill conditioned. The second procedure is similar to
the first one with the exception that the coordinates of grid points should be chosen as the
roots of the Nth order Legendre polynomial. Most early researches was based on the first
procedure because the grid points can be chosen arbitrarily. The details of the DQ method
can be found in reference [2].

1.1. Treatment of boundary conditions

All the boundary value problems contains a number of boundary conditions which must
be satisfied. When there is one boundary condition at each boundary point there is no
problems, but if there is more than one boundary condition at each boundary point, four
counted methods for the treatment of boundary conditions in the DQM. The first method is
the so called δ-technique proposed by Bert et al. [3], which restricts the boundary condition
at boundary points and derivative boundary conditions at the δ points, which have very
small distance δ away from the boundary. And so this approach can not satisfy derivative
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boundary conditions exactly at boundary points. The solution accuracy depends on the
proper choice of δ. If the value of δ is small enough, the approach produce good results
in some situations such as clamped condition, however, failed to work well in the other
situations such as simply-supported and free edges. On the other hand, too small values
for δ will cause ill-conditioned matrices.

The second method which introduced by Wang and Bert [4] can be referred as Modifying
Weighing Coefficient Matrices (MWCM). This method depends on imposing the derivative
boundary conditions into the weighing coefficient matrices. MWCM gives the most accurate
results in treating simply supported boundary conditions but it fails to treat other boundary
conditions such as clamped and free.

The third method introduced by Shu and Du [5] can be referred as Substituting Bound-
ary conditions into Governing Equations (SBCGE). This method substitutes the boundary
conditions directly into the governing equation and the derivative boundary conditions can
be coupled to provide the values of the function values at to points optimally adjacent to
the first and last points. This method works well at any type of boundary conditions, and so
this method treats the drawbacks of the previous methods. Although SBCGE is an efficient
method in treating boundary conditions, it suffers some lack of generality and consumes
much time and effort in preparing the modified matrices.

The fourth method introduced by Shu and Du [6] can be referred as Coupling Boundary
Conditions with Governing Equations (CBCGE). By this method the vibration problem
can be transformed into a general boundary value problem. This method works efficiently
with any combinations of boundary conditions, but it gives less accurate results than those
obtained by (SBCGE).

2. Differential quadrature method

The main idea of the DQM is that the derivative of a function at a sample point can
be approximated as a weighted linear summation of the value of the function at all of the
sample points in the domain. Using this approximation, the differential equation is reduced
to a set of algebraic equations. The number of equations depends on the selected number
of sample points.

dm

dxm

⎡
⎢⎢⎣

f(x1)
f(x2)

...
f(xN )

⎤
⎥⎥⎦ ∼= [

Cm
ij

]
⎡
⎢⎢⎣

f(x1)
f(x2)

...
f(xN )

⎤
⎥⎥⎦ , i, j = 1, 2, . . . , N , (1)

where f(xi) is the value of the function at the sample point xi and Cm
ij are the weighting

coefficients of the mth-order differentiation attached to these functional values. Quan et
al. [7] introduced a Lagrangian interpolation polynomial to overcome the numerical ill-con-
ditions in determining the weighting coefficients Cm

ij

f(x) =
N∑

i=1

M(x)
(x − xi)M1(xi)

f(xi) , (2)

where

M(x) =
N∏

j=1

(x − xj) ,
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M1(xi) =
N∏

j=1

(xi − xj) for i = 1, 2, . . . , N .

Substituting equation (2) into equation (1) yields

C1
ij =

M1(xi)
(xj − xi)M1(xj)

for i, j = 1, 2, . . . , N and i �= j . (3)

C1
ii = −

N∑
j=1, j �=i

C1
ij for i = 1,2, . . . , N . (4)

After the sample points have been selected, the coefficients of the first order weighting matrix
can be obtained from equations (3) and (4). The number of the test functions must exceed
the highest order of the derivative in the governing equations; that is N > m. Higher order
coefficient matrices can be obtained from the first order weighting matrix as follows

C2
ij =

N∑
k=1

C1
ik C1

kj for i, j = 1, 2, . . . , N , (5)

C3
ij =

N∑
k=1

C1
ik C2

kj for i, j = 1, 2, . . . , N , (6)

C4
ij =

N∑
k=1

C1
ik C3

kj for i, j = 1, 2, . . . , N . (7)

Fig.1: Configuration of a non-uniform axially vibrating rod

3. Formulation of the problem of vibration of a non-uniform rod

Non-uniform rods are rods with varying cross section. The longitudinal vibration of
a non-uniform rod is governed by the differential equation [8]

∂

∂x̄

[
E A(x̄)

∂u

∂x̄

]
= � A(x̄)

∂2u

∂t2
. (9)

Assume that the solution of equation (9) to be in the form

u(x̄, t) = W (x̄) ei ω̄ t . (10)
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Substituting equation (10) into equation (9) we get

E A(x̄)
d2W

dx̄2
+ E

dA(x̄)
dx̄

dW

dx̄
+ � A(x̄) ω̄2 W = 0 . (11)

Equation (11) can be transformed to a non-dimensional form as follows,

d2W

dx2
+

1
S(x)

dS(x)
dx

dW

dx
+ Ω2 W = 0 (12)

with the non-dimensional coefficients

x =
x̄

L
, S(x) =

E A(x̄)
E A0

, Ω2 =
� ω̄2 L2

E
,

where L is the length of the rod, E is the modulus of elasticity, A0 is the rod cross section at
the position x = 0, � is the mass density and Ω is the non-dimensional frequency. It should
be noted that if S(x) = 1, equation (12) reduces to the equation of the uniform rod.

Applying the Differential Quadrature discretization to the non-dimensional governing
equation (12)

N∑
j=1

Bij Wj +
1

S(x)
dS(xi)

dx

N∑
j=1

Aij Wj + Ω2 Wi = 0 , (13)

where Aij and Bij are the weighting coefficients matrices of the first and second order
respectively.

To complete the formulation we have to discuss the boundary conditions. The solution
will be obtained for two types of boundary conditions which are clamped-clamped and
clamped-free. For clamped-clamped (C-C) we have

W (0) = W (1) = 0 , (14)

for camped-free (C-F)

W (0) = 0 and
dW (1)

dx
= 0 . (15)

The boundary conditions equations (14) and (15) can be represented in the Differential
Quadrature form as

W1 = WN = 0 , (16)

W1 = 0 and
N∑

j=1

ANj Wj = 0 . (17)

For the two sets of boundary conditions we can use the MWCM approach developed by
Wang and Bert [5] which modified the weighting coefficient matrices to include the boundary
conditions.

By this procedure equation (13) and equation (16) can be written in the form

N−1∑
j=2

B̄
(CC)
ij Wj +

1
S(xi)

dS(xi)
dx

N−1∑
j=2

Ā
(CC)
ij Wj + Ω2 Wi = 0 (18)



Engineering MECHANICS 307

and equation (13) and equation (17) can be written in the form

N−1∑
j=2

B̄
(CF)
ij Wj +

1
S(xi)

dS(xi)
dx

N−1∑
j=2

Ā
(CF)
ij Wj + Ω2 Wi = 0 , (19)

where Ā
(CC)
ij and B̄

(CC)
ij are the first and second order modified weighting coefficient matri-

ces containing the clamped-clamped boundary conditions and Ā
(CF)
ij and B̄

(CF)
ij are those

containing the clamped-free boundary conditions respectively.

Equation (18) and (19) can be written in the following compact form(
B̄(CC) �W

)
+

(
S ◦ Ā(CC)

)
�W + Ω2 �W = 0 , (20)(

B̄(CF) �W
)

+
(
S ◦ Ā(CF)

)
�W + Ω2 �W = 0 , (21)

where ◦ denotes the Hadamard product and S is an N×N matrix whose columns are identical
and each column consists of the values of the term (1/S(xi)) dS(xi)/dx at each discrete point.

Equations (20) or (21) can be reduced to a set of linear equations, eigenvalue problem,
which can be solved using standard eigen solver.

It should be noted that the modified matrices are completely different from the original
weighting coefficient matrices. For example to include the C-C boundary conditions the first
order coefficient must be in the form

Ā
(CC)
ij =

⎡
⎢⎢⎣

0 A1,2 · · · A1,N−1 0
0 A2,2 · · · A2,N−1 0
...

...
...

...
0 AN,2 · · · AN,N−1 0

⎤
⎥⎥⎦ ,

Ā
(CF)
ij =

⎡
⎢⎢⎢⎢⎣

0 A1,2 · · · A1,N−1 A1,N

0 A2,2 · · · A2,N−1 A2,N

...
...

...
...

0 AN−1,2 · · · AN−1,N−1 AN−1,N

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎦ ,

(22)

and B̄
(CC)
ij can be obtained simply by the relation

B̄
(CC)
ij = Aij Ā

(CC)
ij . (23)

For more details see [5].

4. Results and discussion

4.1. Choice of Sampling Points

Choosing the number and type of sampling points has a great effect on the accuracy of
the DQM results. Equal spacing sampling points used in earlier papers gives some inaccurate
results. It is found that the optimal selection of the sampling points in the vibration problems
is the normalized Chebyshev-Gauss-Lobatto points,

xi =
1
2

[
1 − cos

(
i − 1
N − 1

π

)]
, i = 1, 2, . . . , N . (24)
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But there are various types of grid distribution which gives an acceptable results, for more
details see ref. [2].

In order to study our results, calculations by using 15 points DQ have been done for
both uniform C-C, C-F rod (S(x) = 1) and a non-uniform C-C, C-F rod under three sets
of area variations. The exact natural frequencies of these cases are introduced as found in
paper [8]. The relative difference typed in tables (1) and (2) is to represent the accuracy
of the DQ method and this relative difference is equal to (Present-Reference)/Reference.
Examining tables (1) and (2) it is quite clear that the results are in excellent agreement
with the previous data.

To complete the picture of the longitudinally vibrating non-uniform rod, the first four
normalized mode shapes are plotted for the two set of area variations and boundary condi-
tions. It should be noticed that the normalized mode shapes of the non-uniform rod suffers
the evanescent behaviour which is a common feature of the mode shapes of the non-uniform
rods and beams.

Rod type Ω1 Ω2 Ω3 Ω4

Uniform [present] 1.5708 4.7124 7.8540 10.9956

Non-uniform [9] 1.1656 4.6042 7.7899 10.9499

Non-uniform [present] 1.1656 4.6042 7.7899 10.9499

Relative difference % 0.0000 0.0000 0.0000 0.0000

Tab.1: Non-dimensional frequency for a non uniform C-F rod
whose area variation is of the form S(x) = (x + 1)2

Rod type Ω1 Ω2 Ω3 Ω4

Uniform [present] 3.1416 6.2832 9.4248 12.5664

Non-uniform [8] 2.9782 6.2031 9.3716 12.5265

Non-uniform [present] 2.9782 6.2031 9.3716 12.5265

Relative difference % 0.0000 0.0000 0.0000 0.0000

Tab.2: Non-dimensional frequency for a non uniform C-C rod
whose area variation is of the form S(x) = sin2(x +1)

Tables 3 and 4 demonstrates the previously discussed boundary conditions and its effect
on the natural frequency and compares these frequencies to those obtained from a uniform
rod. Table 3 demonstrates the accuracy of the C-F rod with area variation S(x) = (x + 1)4

and show that the method gives an acceptable results. Table 4 shows that the DQ method
gives an exact results for the non-uniform rod with C-F ends with area variation S(x) =
= (x + 1)2.

Rod type Ω1 Ω2 Ω3 Ω4

Uniform [present] 1.5708 4.7124 7.8540 10.9956

Non-uniform [8] — 4.4875 7.7217 10.9016

Non-uniform [present] 0.8250 4.6004 7.8910 10.9497

Relative difference % — 2.5159 2.1925 0.4412

Tab.3: Non-dimensional frequency for a non uniform C-F rod
whose area variation is of the form S(x) = (x + 1)4
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Fig.2: First four mode shapes for a non-uniform C-C rod
whose area variation is of the form S(x) = (x+1)4

Fig.3: First four mode shapes for a non-uniform C-F rod
whose area variation is of the form S(x) = (x+1)2

Rod type Ω1 Ω2 Ω3 Ω4

Uniform [present] 1.5708 4.7124 7.8540 10.9956

Non-uniform [8] 1.5176 4.7021 7.8483 10.9916

Non-uniform [present] 1.5176 4.7021 7.8483 10.9916

Relative difference % 0.0000 0.0000 0.0000 0.0000

Tab.4: Non-dimensional frequency for a non uniform C-F rod
whose area variation is of the form S(x) = sin2(x +1)

5. Conclusion

From the above discussion it can be demonstrated that the DQ method is an efficient
method in solving the vibration of non-uniform elements such as beams and rods. The effort
in solving this problem in [8] or [9] is much greater than the computational effort by the
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present method. Very good accuracy is obtained by a very few grid points (15 points in
our case). The power of the DQ method is its ease in treating the various combinations of
boundary conditions.
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