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ON THE PHENOMENON OF FRACTURE
IN LOADING-FREE BODIES

Vratislav Kafka*

The author’s mesomechanical concept is applied to modeling the phenomenon of frac-
ture in bodies that are neither mechanically nor thermally loaded. According to this
model, this phenomenon is caused by rheological redistribution of internal stresses
that result from production. Our analysis takes into account two scales :
(i) The first scale distinguishes between the substructure that remains elastic

throughout the process, and the other substructure that creeps.
(ii) The other scale distinguishes between two microstructures in the creeping sub-
structure : the creep-yielding microstructure and the creep-resistant microstructure.
In the course of the process under discussion, the creep-resistant microstructure is
more and more stressed, and then more and more damaged. Its damage can finally
lead to an overall fracture.
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1. Introduction

Many years ago, Professor A. Farĺık from the Brno University of Technology drew my
attention to his observations of fracture in loading-free bodies, to a phenomenon that was
not easy to explain. The metallic bodies in question, and the conditions in which they
were stored, excluded the possibilities of thermal or mechanical loading; the influence of
irradiation, dehydration or chemical energy was out of question as well. Professor Farĺık
passed away long ago, but his observations still represent an interesting scientific topic.

In isothermal processes, it is generally assumed that fracture is caused by a supply
of mechanical energy to the body. In the case under study, the body – looked upon as
a thermodynamic system – is without any input of energy; on the contrary, there is an
output of dissipated thermal energy into the surrounding medium. This is the essential
difference from the current cases of fracture.

It seems that processes of this kind can well be explained and modeled on the basis
of an analysis on the mesoscale. In our publications [2], [3], [5] a general mesomechanical
model has been elaborated and applied to different materials and bodies. The main idea
consisted in describing a macroscopically homogeneous material as a two-constituent (or
many-constituent) medium, in which the differing constituents have their specific mechanical
properties, volume fractions, and geometric configurations of their microstructures. On
the macroscale, such an approach leads to constitutive equations with tensorial internal
variables.

In the case of metallic materials, a relatively simple model medium has been worked out as
consisting of two material kinds: the first one characterized by easy glide or creep, the other
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one corresponding to resistant barriers that hinder the inelastic deformation process. It is
an essential feature of our mesomechanical approach that the physical nature and microscale
description of these two material constituents need not be specified. It is sufficient to assume
that they exist, and the necessary model parameters are determined from simple macroscopic
experiments performed with specimens of the material in question.

In the current study, this approach is applied to the creep-yielding substructure in
loading-free bodies with internal stresses that resulted from their production.

2. General mathematical model for the creep-yielding material constituent

The basic formulae of the model are similar as they appear in our preceding pa-
pers [2], [5], [3] :

ve σe
ij + vn σn

ij = σ̄ij , (1)

ve εe
ij + vn εn

ij = ε̄ij , (2)

ėe
ij = μ ṡe

ij , εe = � σe = � σ̄ = ε̄ , (3)

ė′eij = ėe
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If the changes of ηe, ηn are taken into account, the differential form of the last equation
reads :
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The density of elastic energy comprised in the whole material is :
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and its part comprised in the e-constituent :
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1
2
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μ

(
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ij se
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]
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The meaning of the symbols is explained in the ‘Nomenclature’ section.

3. Specific mathematical model

The structures of bodies with the observed loading-free fractures can be very different,
but for modeling the gist of the phenomenon a very simple scheme has been chosen and
shown in Fig. 1. It consists of a creep-resistant elastic ring (R) (modeling the creep-resistant
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substructure), and a creep-yielding drawbar (B) (modeling the creep-yielding substructure).
It is assumed that due to some process in the way of production the elastic ring has been
compressed in a way that corresponds to an effect of two opposite forces (P ), leading to
displacements δ. This deformed configuration is assumed to be held fixed by a drawbar B.
After removing the forces P , there remains tensile stress in the drawbar. The ring is assumed
to remain in elastic state throughout the investigated process. The tensile stress in the
drawbar is assumed to be high enough to start its creep. Hence, a time-dependent process
of decreasing δ and of decreasing tensile stress in the drawbar will start after removal of the
forces P. There is no input of energy into the system from the surrounding medium, and the
character of the process is relaxation – the stresses in the ring as well as in the drawbar are
decreasing. Generally, this is not a situation in which fracture is expected. But yet, under
some circumstances fracture can appear even in this case.

The relation between the tensile stress in the bar and the displacement δ is (according
to [6]) linear and given by the following formula :

σ̄11 = C δ , (13a)

and in the process of decreasing δ the decrease of σ̄11 results as follows :

˙̄σ11 = C δ̇ , (13b)

where :

C =
E SR h2

3 π SB r3
. (14)

The constitutive equation for the creep-yielding bar results from the above-presented set
of equations as follows :
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where for simplification of the form the following formal expressions have been defined :

p = vn ηn + ve ηe , q = vn ηn + ve ηe + ηn ηe . (20)

The evolution equations (16) to (19) of the internal variables are not independent due
to the validity of equations (1) and (9), but the above-presented forms are clearer than
combinations of all these equations together.
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Fig.1: Schematic configuration of interactive parts of the body

It is evident from our scheme shown in Fig. 1 that the value of σ̄11 monotonically decreases
with time, which results from the permanent decrease of δ according to equation (13b). The
rates of our symbols are then related as follows :

˙̄σ =
1
3

˙̄σ11 =
1
3

C δ̇ , ˙̄s11 =
2
3

˙̄σ11 =
2
3

C δ̇ . (21)

4. The primary stage of the creep of the drawbar

In our model, the primary stage of creep is described as a process in which the structural
parameters ηe, ηn do not change (η̇e = η̇n = 0), the structure remains essentially undamaged
and the changes of the state of the material are described by changes of the internal stress
variables se

11, sn
11, s′e11, s′n11 only. For a classical process of creep, where σ̄11 is constant

and high enough to cause the creep process, the value of se
11 increases and the value of

sn
11 decreases. For a concrete material (cf. Section 5), the evolution of the values of se

11

and sn
11 at the beginning of the primary stage of creep is shown in Fig. 2. Thus, the stress

in the resistant e-microstructure increases, and the density of its elastic energy W e (cf.
equation (12)) increases as well. Similarly as in our previous paper [3], the end of the
primary stage is characterized by a specific value of W e that is named (W e)EP.

Fig.2: Incipient development of deviatoric stresses in the creep-yielding (n) and
creep-resistant (e) microstructures of the material of the drawbar
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For the process under study, the value of (σ̄11)0 at the beginning of the process is assumed
to be high enough to start the creep, but it monotonically decreases, i.e. ˙̄σ11 < 0 permanently.
It is natural to expect that the end of the primary stage (characterized by (W e)EP) steps in
after a longer time than with ˙̄σ11 = 0.

5. The tertiary stage of the creep of the drawbar

The start of the tertiary stage of creep is characterized by the begin of cumulative damage,
which is described in our model by changes of ηe, ηe and Hn. This is a model approximation
that describes the macroscopic behavior of the process. Microscopic damage formation can
sometimes be observed even prior to the start of the tertiary stage.

Let us assume that the criterion limiting the strength of the barriers can be described in
the simplest way – by von Mises’ criterion :

se
ij se

ij ≤ 2
3

(ce)2 , (22)

where ce is some material constant that need not be determined if the end of the primary
stage is specified by the value (W e)EP. For an active process, we receive by differentiation
of equation (22) :

se
ij ṡe

ij = 0 , (23)

which is the relation that is further used for modeling the development of the tertiary stage
of creep.

In our case of equal elastic constants, the rates η̇e, η̇n are bound by the following simple
equation (cf. [4]) :

η̇n = −vn (ηn)2

ve (ηe)2
η̇e . (24)

With the use of equations (16), (23) and (24) it turns out :
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p sn
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+ η̇e

(
ηn

ηe

vn

ve
s′nij +

ηn

ηe
s′eij

)]
= 0 , (25)

which leads to :

η̇e = − ve ηe

ηn(vn s′n11 + ve s′e11)

(
q

vn
˙̄s11 +

p sn
11 − ηe s′n11
2 Hn μ

)
. (26)

Hence, the differential constitutive equation for the tertiary stage of creep is given by
equation (15), with the evolution equations for the internal tensorial variables given by
equations (16), (17), (18), (19), (24) and (26).

The change of Hn models the cumulative damage in the n-microstructure itself – i.e. a
progressive weakening of its inner bonds. Similarly as in our previous paper [3] the change
of Hn is assumed to be related to the change of ηe by the following form :

Ḣn

Hn = −K
η̇e

ηe
. (27)

The above-presented relations describe the course of the tertiary stage of creep. In its
course the cumulative damage increases and finally is ended by fracture.
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The degree of damage is usually measured by a parameter that increases from zero value
(undamaged material) to unity (complete damage). It has been shown and substantiated
in [2] that such a parameter can be related to our structural parameters as follows :

D =
ηe − (ηe)0

1 + ηe − (ηe)0
, (28)

where (ηe)0 is the value in the virgin undamaged state, ηe the value in the current state.

According to experimental findings, the value of D at real fracture does not reach full
unity but some specific value (D)FR that is lower than unity, but very near to it.

6. Demonstration for a concrete material

The possibility of fracture depends on the concrete structure, material and temperature.
For a demonstration, let us use for the drawbar the material parameters determined in our
paper [3] for one heat (labeled I) of steel 0,5Cr0,5Mo0,3V (Czech Standard ČSN 41 5128) that
was experimentally investigated in [1] at temperature 600 ◦C and 60MPa tensile loading.

It is clear enough that this material cannot be characterized as creep-yielding for current
temperatures, and temperature 600 ◦C is not a commonly met temperature, but the aim
of the current study is not a quantitative description of a concrete technical process, but
a qualitative demonstration of the essence of the process under study. The demonstration
is based on a randomly chosen material, whose model parameters have been determined in
our paper [3]. These parameters are given in Table 1.

vn 0.4363 (Hn)0 814360

ve 0.5637 (W e)EP 0.0818

(ηe)0 10.1233 K 1.4

(ηn)0 0.0373 (D)FR 0.9924

Tab.1: Model parameters of the investigated material

For a constant tensile macroscopic stress σ̄11 = 60MPa, the respective creep curve up to
fracture (confronted with experimental data received in [1]) is shown in Fig. 3. The end of the
primary stage of creep is visualized by symbol �, the end of the tertiary stage – i.e. fracture
– by symbol ∗. Similarly as in our preceding papers – in accordance with experimental
findings published in [7] – the primary stage of creep is assumed to be followed immediately
by the tertiary stage, i.e. by a stage accompanied by internal continuum damage of the
material. Between the primary and the tertiary stages rather a minimum strain-rate than a
secondary state value is generally observed.

In the current study, the main attention is paid to the cases of decreasing values of σ̄11 ac-
cording to Section 3. The decrease of σ̄11 is dependent on the value of C (cf. equations (13b)
and (14)), which in turn depends on the properties of the structure and of the materials.
Three demonstrative examples are shown for three values of C: 0, 0.11 and 0.13 in Fig. 4.
The zero value of C means that σ̄11 is constant. With increasing C, the creep strain at
fracture as well as the time at fracture do increase. This process must not be mistaken for
cases in which different initial stresses remain constant, where the creep-curves can differ.

It is evident that if the value of C is high enough, no fracture will occur at all, as the
drop of σ̄11 will be so quick that the increasing value of D will never reach up to the critical
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Fig.3: The whole experimental and theoretical course of the creep curve
up to fracture under a constant macroscopic loading stress

Fig.4: The effect of the decrease of macroscopic loading stress on
the creep curve of the drawbar; for C = 0, 0.11 and 0.13

value (D)FR. With a good knowledge of the structure of the body, of the material properties
of its parts and of their stress state after production, it is then possible to predict the danger
of the loading-free fracture.

7. Discussion

With the use of our mesomechanical model, the background of the process of fracturing of
loading-free bodies has been described. This process is caused by rheological redistribution
of internal stresses resulting from production. Generally, creep leads to relaxation of stresses,
and our model describes relaxation as well – on the first scale. However, on the second scale
– on the microscale of the creep-yielding substructure, there are two microstructures, where
stress decreases in one of them and increases in the other one. Damage of this last named
microstructure can result in fracture.

If the body under consideration is looked upon as a thermodynamic system, there is no
input of energy from the surrounding medium into the body, which is the essential difference
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from classical fracture process. On the contrary, there is an output of energy resulting from
dissipation of elastic energy in the yielding material. In spite of it, the resulting redistribution
of internal stresses can lead to fracture. With a deep knowledge of the properties of the body
in question, the basic scheme of this approach can be used for a prediction of the danger of
the respective loading-free fracture.

Nomenclature

σ̄ij {ε̄ij} – macroscopic stress {strain} in the drawbar
σe

ij/σn
ij {εe

ij/εn
ij} – mesoscopic stress {strain} in the elastic/inelastic microstructures in

the drawbar – averaged values in the respective material constituent labeled e and n
s̄ij {se

ij , sn
ij} – macroscopic {mesoscopic} deviatoric stress

ēij {ee
ij , en

ij} – macroscopic {mesoscopic} deviatoric strain
δij σ̄ {δij σe, δij σn} – macroscopic {mesoscopic} isotropic part of the stress tensors
δij ε̄ {δij εe, δij εn} – macroscopic {mesoscopic} isotropic part of the strain tensor
δij – Kronecker delta
ε′eij = εe

ij − ε̄ij {ε′nij = εn
ij − ε̄ij} – definition of variables ε′eij {ε′nij}

e′eij {e′nij} – deviatoric parts of ε′eij {ε′nij}
δij ε′e {δij ε′n} – isotropic parts of ε′eij {ε′nij}
σ′e

ij {σ′n
ij } – stresses related to ε′eij {ε′nij} similarly as are σe

ij {σn
ij} related to εe

ij {εn
ij}

s′eij {s′nij} – deviatoric parts of σ′e
ij {σ′n

ij }
δij σ′e {δij σ′n} – isotropic parts of σ′e

ij {σ′n
ij }

i, j – indices that can take on the values 1, 2, 3; their repetition means summation
W – density of elastic energy comprised in the drawbar
W e – density of elastic energy comprised in its e-constituent
(W e)EP – the value of W e at the end of the primary stage of creep in the drawbar
ve, vn, (ve + vn = 1) – volume fractions of the respective material constituents
ηe, ηn – non-negative ‘structural parameters’ that characterize the structure of the ma-

terial of the drawbar; ηe = ηn = 0 correspond to Voigt’s homogeneous strain model,
ηe = ηn = ∞ correspond to Reuss’ homogeneous stress model; generally, an increase
{decrease} of one of these parameters describes a decrease {increase} of connectivity
of the respective substructure

E – Young’s modulus of the material of the drawbar
ν – Poisson’s ratio
μ = (1 + ν)/E – deviatoric elastic compliance
� = (1 − 2 ν)/E – isotropic elastic compliance
t – time
ce – limit value of se

11 at the end of the primary stage of creep of the drawbar
p, q – formal expressions defined by equations (20); used for simplification of the equations
Hn – coefficient of viscosity of the n-constituent of the drawbar
K – coefficient relating the change of Hn to the change ηe

R – creep-resistant ring
B – creep-yielding drawbar
SR – rectangular cross-section of the ring
C – formal expression given by equation (14)
δ – displacements of the upper and lower points of the creep-resistant ring (cf. Fig. 1)
r – radius of the ring
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h – thickness of the ring
SB – cross-section of the drawbar
D – degree of damage of the drawbar
(D)FR – value of D at the point of fracture of the drawbar
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