
Engineering MECHANICS, Vol. 14, 2007, No. 4, p. 277–287 277

THE DEVELOPMENT OF AUTONOMOUS RACING
ROBOT BENDER

Stanislav Věchet*, Jǐŕı Krejsa**, Vı́t Ondroušek*

Successful use of autonomous mobile robot in outdoor environment is nowadays still
a challenge for developers. Navigation, localization and control issues are generally
independent on the size of the robot, therefore smaller, low budget platforms can
be successfully used for the development of appropriate algorithms. The paper de-
scribes the development of such a platform – autonomous racing wheel robot Bender,
equipped only with odometry IRC sensors and camera, which won the Robotour 2006
competition. Both hardware issues and algorithms description including low and high
level software layers are stated in the paper.

Key words : autonomous robot, navigation, localization, image processing

1. Introduction

Mobile robotics application recently received increasing attention thanks to rapidly de-
veloping advancements in this area. However, successful use of the robots in outdoor envi-
ronment still represents a challenge for developers. Robot races bring one of the possibilities
to compare and test robots ability to cope with real world tasks, while at the same time
strictly defined rules of the race reduce the requirements to fully autonomous behavior of
the robot to reasonable levels, thus keeping necessary cost of the hardware affordable.

DARPA Grand Challenge is a typical example of such event [4]. The essence of problems
to be solved in order to reach the race goal (localization in the map, path planning, etc.) is
in most cases independent on robots size. Small robots cost less, but algorithms developed
for such robots can usually be transferred successfully to their ‘bigger brothers’. This paper
describes the development of such methods implemented on low-budget platform, aimed for
the robotic competition Robotour 2006, held in Prague on October 14th, 2006. The goal
of the competition was for the robot to autonomously drive on the Stromovka park path,
approximately 800 m long, defined on park map which was provided by the competition
organizers in advance.

The text consists of hardware description (chapter 2), and software description (chap-
ter 3), including low level software (communication protocol, etc., chapter 3.1) and high level
software (chapter 3.2) with description of image processing, navigation and localization.

* Ing. S.Věchet, Ph.D., Ing. V.Ondroušek, Brno University of Technology, Institute of Automation and
Computer Science, Technická 2, 616 69 Brno

** Ing. J.Krejsa, Ph.D., Brno University of Technology, Institute of Solid Mechanics, Mechatronics and
Biomechanics, Technická 2, 616 69 Brno

278 Věchet S. et al.: The Development of Autonomous Racing Robot Bender

2. Hardware

Hardware of autonomous racing robot Ben-
der consists of chassis, control electronics, vision
sensor and control computer (notebook).

2.1. Chassis

The chassis is based on the original TAMYIA
Overlander monocoque chassis made of poly-
carbonate with 4-wheel double wishbone sus-
pension and rear 2WD drive. The chassis is
431 mm long and total weight with onboard
computer is 3700 g. It was modified with con-
trol computer base, IRC sensors holders and vi-
sion sensor tower. Original battery pack was re-
placed with LithiumPolymer accumulator which
enables approximately two hours of continuous
ride, depending on the terrain. Nominal speed
of the chassis is 7 km/h. The overall view of the
robot can be seen on figure 1. Main hardware
parameters are listed in table 1.

Fig.1: Overall view of the Bender robot

Device Parameters
Power supply Battery Li-Pol Racing Pack, 8.4 V, 4000 mAh (motor)

Stabilized 5 V (onboard electronic)
IRC sensors 158 segments in 360◦ each

Precision of measuring distance 2.6mm
Steering servodrive Pulse width control, operating voltage range 4.8–6.0 V

Operating speed 0.21 sec/60◦, Stall torque 3.3 kg.cm
Motor type DC motor Mabuchi 540, operating voltage range 3.6–8.4 V,

No-load rev. 22000 RPM at 7.2 V, current at max. efficiency 12 A
Speed controller Speed controller JETI-JES 350, Maximum permanent current 35A,

Supply voltage 7.2–14.4V
Processor ATMEGA8-16AU, 8KB of programmable flash, 512 B EEPROM,

1KB SRAM, Three flexible timers, Serial programmable USART – RS232,
Communication speed 9.6 kHz (optional)

Tab.1: Hardware summary

2.2. Control electronics

The onboard electronics is based on microcontroller ATMEGA8. Basic structure of
the electronics is shown on figure 2. The robot is equipped with odometry readings (two
IRC sensors on front wheels) and camera connected with PC via USB port. Front wheels
steering angle and drive motor revolutions are controlled by standard servomotor and speed
controller. The hardware control unit forms the interface between sensors/actuators and the
PC. For this hardware structure (designed in Laboratory of mechatronics) the possibility of
unlimited extension with whatever other device is characteristic.

All uniboards (unified board) are of the same hardware design, the difference is in its
software, which depends on sensor type connected to the board.

Engineering MECHANICS 279

Fig.2: Electronic hardware structure

2.3. IRC sensor

The maximal speed of the robot and the accuracy in determination of robot position
depend the number of segments on each wheel and the reading frequency used for pulses
reading (generated by moving segments on IRC). Both front wheels have IRC sensor with
158 segments, therefore the precision is 2.3◦ and for given wheel diameter 130mm the position
accuracy is 2.6 mm. The correct distance value obtained from IRC sensors is limited with
the internal timer frequency used for reading the pulses from IRC. The relationship between
timer frequency, numbers of pulses and robots velocity is v = f/p, where v is maximal
velocity which can be measured [m/s], f is timer frequency, p is the number of pulses per
meter. For timer with frequency 4.6 kHz and 387 pulses per meter (for wheel with diameter
130 mm and 158 segments) the maximal velocity which can be measured is 12 m/s. The
device sends the traveled distance to the master in two bytes (see table 2), therefore the
limit for maximal measured distance without reset can not exceed 65535 pulses (because the
slave is unable to send higher number). The maximal distance is s = n/p, where s is maximal
traveled distance without reset [m/s], n is data size, p is number of pulses per meter. For
two bytes (data size 65535 pulses) and 387 pulses per meter the distance is 169.3 m.

2.4. Vision sensor

Bender is equipped with Logitech CCD camera with VGA chip of resolution 640×480px,
capable of 30 fps. In order to extend the view angle the vision system is equipped with
dispersing lens with DPT = −8, positioned in 42 mm prior to the camera objective. The
dispersing lens is covered by reflective layer, however, as the direct sun beams can degrade the
image content the optics is also covered using protective cup. Vision system (camera + lens)
is placed on the tower 810 mm above the surface. The camera is connected to the control
computer via USB port.

2.5. Control computer

Control computer is standard subnotebook HP nc2400 equipped with Intel Core Solo
processor U1400 1.2 GHz, 1 GB of SDRAM with Windows XP Pro. Computer is of com-
pact size (25.0×282.0×213.0mm), weights only 1.29 kg. The capacity of the 6-cell battery

280 Věchet S. et al.: The Development of Autonomous Racing Robot Bender

(5100 mAh, 58 Wh) enables about 6 hours of processing. The computer is equipped with
2 USB ports, the first one connects the camera, the second one connects the onboard elec-
tronics through USB2RS232 adapter. The notebook runs the control software, described in
detail in next chapter.

3. Software

Software consists of two layers – low level layer which controls the steering, main drive
controller and IRC sensors, and high level performing camera image processing, localization
in the map and navigation.

3.1. Low level software

The low level software is a layer between the hardware and the high level software. This
layer is implemented as a software driver (DLL – dynamic link library). The driver enables
the transfer of high level commands to the hardware.

3.1.1. Communication protocol

The communication protocol between PC and hardware is bidirectional. Standard CRC
(Cyclic Redundance Check) is used for capturing errors in communication. The communi-
cation is based on master-slave protocol (PC as the master and robot’s hardware parts as
slaves). Each hardware part is connected as one slave, so there are four slaves: left and
right IRC, steering controller and speed controller. Master sends 13-byte data packet which
consists of start byte, slave ID, data and CRC. The slave answers immediately with the
status message. If the status message contains no errors, it is followed with the data packet
consisting of slave ID, requested data and CRC. The data packet is sent by IRC device only,
as other devices (steering and speed controller) do not have feedback. The data packet sent
from PC is shown on figure 3A.

Fig.3: Master (A) and slave (B) data packet

Device Data byte 7 Data byte 8 Data byte 9 Data byte 10
IRC Action : unused unused unused

1-reset,
0-read distance

Steering controller Steering command value is in range 0 unused
[660–1460], (steering angle [25◦,−25◦])
Low byte High byte

Speed controller 0 0 Speed 1–255 unused

Tab.2: Master data message

Engineering MECHANICS 281

Device Message Data byte 7 Data byte 8
All devices : CRC error 255 255
status messages Data packet without errors 254 255
Device feedback Measured distance Data low Data high
message : IRC only 0–65533 pulses

Tab.3: Slave data message

The start byte has value of 255, slave ID is a unique combination of six bytes used as
a device address. The data bytes depend on the type of the connected device, see table 2.
CRC bytes are used for errors detection and correction in the communication. The structure
of the slave data packet is similar (see figure 3B). The only difference is in the data part.
The data sent to the master contain two bytes only, consisting of requested data or error
message. Table 3 shows the data part for the slave devices.

3.1.2. Communication interface

Communication between PC and hardware units is realized by the standard DLL libraries
which use standard Win API interface for communication by RS232 protocol. We prepared
one library which exports necessary functions for robot control. It’s functions are used in
high level software to transfer the necessary commands to the low level software.

3.2. High level software – control architecture

The highest level of the task to be solved (drive on a priory given path from the initial
to the goal position) repeats two basic routines

– drive on road until the end of segment is reached,
– drive on the cross road until start of the following segment is reached.

The segment is defined as the road from the end of crossroad to the beginning of next
crossroad on the path to be driven in given task.

3.2.1. Driving on segment

Driving on road segment consists of three basic substeps.
– determination of steering angle for current position and step move for given distance,
– localization of the robot in the map,
– determination of the end of the segment (cross road identification).

3.2.2. Keeping robot on the road

Driving on the road requires robot to know where the road is. Such information is
then used for determining the steering angle. Camera image analysis was used for the
estimate of road direction relatively to robot front. A number of algorithms were tested,
the one described below is simple but showed the robustness required in real world task.
Image processing routines return relative distances of road curbs. Steering angle is then
determined as :

SA = SG [50 − CL− (CR − CL)/2] (1)

where SA is steering angle, SG is steering gain (set to 0.015), CL and CR are camera left
and right curb relative distances. To avoid the loss of the road orientation the steering angle
is limited during road driving to ±7 degrees.

282 Věchet S. et al.: The Development of Autonomous Racing Robot Bender

3.2.3. Image processing

Camera image processing routines determine relative distances of road curbs. Such curb
can be both the real road curb or the edge of obstacle on the road. A number of image
processing algorithms were implemented and tested, the best results were reached using
simple method described below.

Fig.4: Sample image to be processed (top), image processing algorithm (bottom)

a) Select image portion : Camera image covers space in range of 1.2 m to infinity. Portion
of the image corresponding to certain range only is selected for further processing. The
range differs in relation to the task to be solved (2.2–3.2 m for steering angle determina-
tion for simple road drive, 2.2–5 m for cross road identification).

b) Process blue channel signal : Blue channel showed up the best contrast between road and
its surroundings, therefore only blue channel signal from selected portion of the image
is used for further processing. For each column of selected data the blue channel pixel
values are summed up and resulting values are linearly transformed in the range of 0–255.

Engineering MECHANICS 283

c) Filtering : Resulting signal is filtered using floating average filter. The length of the filter
can vary in the range of 5–10 for particular camera image resolution.

d) Thresholding : Filtered signal is further processed using thresholding, [1]. Threshold
value is set to half of the range (128).

e) Selecting the part corresponding to obstacle free road : The widest portion of thresholded
signal is considered the obstacle free road. This solves the case of obstacle on the road
when two (or more) possible ways are available.

Image processing algorithm is clearly shown on example in figure 4.

3.2.4. Localization in the map

While driving from the initial to the goal position the map of the path to be passed is
available to the robot. GPS coordinates of the path are incorporated in the map. Con-
sequently, latitude and longitude coordinates are converted into the Cartesian coordinate
system the origin of which is in the initial point of the path, the Y -axis is concurrent with
north direction [3]. For localization purposes the software implementation of odometry and
of the Ackerman steering is used. The Ackerman steering principle [6] defines the geometry
that is applied to the vehicle to enable the correct turning angle of the steering wheels to
be generated when negotiating a curve. These two tasks had to be solved :

a) Forward task : The initial position [P0] and the initial orientation, ωr0, of the robot are
known as well as the distances moved by the front left and front right wheel (information
from IRC; IRCl, IRCr) and steering angle ϕSA. The objective is to calculate the target
position [P1] of the robot and its orientation, ωr1, see figure 5.

– change of the orientation of the robot Δωr :

Δωr =
(IRCl + IRCl) tanϕSA

2 b
, (2)

– change of the robot’s position in the X axis direction Δx :

Δx =
b

tanϕSA
(1 − cos Δωr) , (3)

– change of the robot’s position in the Y axis direction Δy :

Δy =
b

tanϕSA
sin Δωr . (4)

b) Backward task : The initial and target point [P0], [P1] of the robot position are known,
as well as its orientation in the Cartesian coordinate system, ωr0. The objective is to
calculate steering angle ϕSA of the fore-axle wheels, so that the robot will get from the
initial point into the target point. We also calculate the distance L1 moved by the robot,
see figure. 5.

– turning radius R :

R =
Δx2 + Δy2

2Δx
, where Δx = |P0x − P1x| , Δy = |P0y − P1y| , (5)

– change of the orientation of the robot Δωr = ωr0 − ωr1 :

Δωr = arctan
2 ΔxΔy

Δy2 − Δx2
, (6)

284 Věchet S. et al.: The Development of Autonomous Racing Robot Bender

– moved distance L1 :
L1 = ΔωrR . (7)

It is necessary to calculate the new position of the robot on the map (in the way de-
scribed above) repeatedly each time the robot moves the selected number of meters, L. It is
important to select an optimum value of L. If the value of L is set too high the robot is not
able to react quickly enough to an obstacle or it can even drive off the road. On the contrary,
selecting a too small value of L can lead not only to higher computational requirements, but
also to a bigger disprepancy between the calculated and real positions of the robot on the
map. This disprepancy is caused by the persistence of motion due to dynamic effects of the
mass of the robot. The value of L has been experimentally set up to a half-meter.

After every 0.5 m segment moved by the robot its localization on the map is calculated.
Further calculations of the robot ’ts position are based on the position calculated in the
previous step. Every calculation has an error and thus errors accumulate and after certain
distance traveled the calculated position on the map is completely different from reality.
That is why after an experimentally defined segment an ‘odometry reset’ is carried out,
which means that a point of the path is determined and taken as the actual robot ’ts position
on the map.

Fig.5: Calculating the position of the robot

The reset can be used if the following conditions are met :
a) the robot is at every moment of its movement on the road; this is ensured by image

processing module.
b) there is sufficiently precise information about the moved distance of the robot from the

last ‘odometry reset’; information from IRC sensor.
c) the history of particular steering angles from the last ‘odometry reset’ is known as well

as the history of changes of the road direction

New position of the robot in the map is calculated in the following way (see figure 6) :
a) Based on the known values of turning angles and road direction changes, the parameter
ξ is determined.

ξ =
ζ (

∑ |ϕrob| −
∑ |ϕmap|)

Ls
(8)

Engineering MECHANICS 285

where ζ is a coefficient experimentally determined to be equal to 0.3, ϕrob is robot’s
steering angle during single step move, ϕmap is corresponding steering angle determined
from the map and Ls is the traveled distance.

b) Moved distance of the robot on the map, L, is calculated :

L = (1 − ξ) IRCdistance (9)

where IRCdistance is the average value of distances moved by the front left and front
right wheel.

c) New position of the robot in the map is determined using the full travel length L, esti-
mated in previous step projected to the map path.

‘Odometry reset’ is carried out each 10 meters of the road and each time the robot is
4 meters prior to the cross of roads.

Fig.6: Reset robot’s position each 10 meters of the path

3.2.5. Cross roads

When the end of the segment is reached, the position and orientation of the robot is
estimated and robot turns on the crossroad. Turn angle is determined from robot current
orientation and crossroad map information (difference in last segment end and next segment
start orientation). Steering angle is determined for given step move, when steering angle
exceeds robot capabilities the move length is prolonged according to Ackerman steering
model. After the turn the robot moves towards the start of the next segment, checking its
position using the image analysis with portion of the image selected to cover longer distance
from the robot. This approach is only usable for ‘reasonably’ small cross roads – when cross
road form open space the image analysis often fails.

3.2.6. Map module

Control application also contains the map module, which defines the map of the envi-
ronment and path to be taken on given map. The map data can be imported from the

286 Věchet S. et al.: The Development of Autonomous Racing Robot Bender

file in RNDF (Road Network Definition File) format specified by DARPA. Map network
is constituted from segments containing one or several lanes. The lane is represented by
the list of points described by latitude and longitude in WGS84 system. Certain points in
the lane can be marked as check points, used in the path definition. The path to be taken
by the robot can be imported from the MDF file (Mission Definition file), which contains
the sequence of check points. Path can be also input manually in the map module as the
sequence of map segments.

3.3. Tests and competition

Stability of above mentioned algorithms was tested on several test fields, starting from
a simple road, through short circular path to long roads with a number of crossroads in
Lužánky park. We have found that robot in current state is a low cost platform ideal
for further development of both hardware mainly in sensor area and software ů- image
processing, high level algorithms, etc. Relatively small dimensions of the robot enable to
use it in the indoor applications as well as the outdoor ones, however in outdoor the use of
the robot is limited to relatively smooth surfaces.

Robotour 2006 competition was the final test of Bender’s abilities. The task for the
robots was to drive on the park pavements with the goal path definition given one day
before the actual ride. The total length of the path was approximately 800 meters and
contained 7 cross roads. Every robot had 5 attempts to reach the goal, with one attempt
per hour. In the competition of 8 robots which met the homologation criteria Bender proved
its flexibility when it was the only robot which successfully performed given task (reached
the goal point) in its final 5th attempt. The total distance traveled during the competition
was about 2.8 km.

4. Conclusion

Bender successful performance on the competition proved that the robot with limited
sensor equipment (IRC odometry sensors, low resolution camera) is capable of autonomous
motion in an outdoor environment with known map. We have found that simple algorithms
bring higher robustness to the application in question compared to fine tuned complex algo-
rithms which usually offer better performance, but are generally more sensitive to unexpected
disturbances often presented in real world experiments.

However, there is a number of issues to be solved in order to enhance the robot perfor-
mance. Among others we can mention better cross determination, better resistance against
variable light conditions and improved way to overcome the open spaces. Apart from im-
proving the current algorithms the additional sensor equipment might be necessary to solve
mentioned issues.

Acknowledgement

Published results were acquired using the subsidization of the Ministry of Education,
Youth and Sports of the Czech Republic, research plan MSM 0021630518 ‘Simulation mo-
delling of mechatronic systems’.

Engineering MECHANICS 287

References
[1] Heath D., Sarkar S., Sanocki T., Bowyer K.W.: Robust Visual Method for Assessing the

Relative Performance of Edge-Detection Algorithms, Proceedings in IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1338–1359, December 1997

[2] Hu H., Gu G., Brady M.: Navigation and guidance of an intelligent mobile robot, Proceedings
in Second Euromicro Workshop on Advanced Mobile Robots (EUROBOT ’97), October 1997

[3] Schwarz T., Hoenle N., Grossmann M., Nicklas D.: A Library for Managing Spatial Context
Using Arbitrary Coordinate Systems, Proceedings in Second IEEE Annual Conference on
Pervasive Computing and Communications Workshops, pp. 48, March 2004

[4] Seetharaman G., Lakhotia A., Blasch E.P.: Unmanned Vehicles Come of Age: The DARPA
Grand Challenge, Proceedings in Computer, The flagship magazine of the IEEE Computer
Society, December 2006

[5] Šolc F., Žalud L.: Robotika, Brno Faculty of Mechanical Engeneering, 2002
[6] Wu D., Zhang Q., Reid J.F.: Dynamic steering simulator of wheel type tractors, ASAE Paper

983115, ASAE, 1998

Received in editor’s office : January 12, 2007
Approved for publishing : June 7, 2007

