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FUZZY-RANDOM ANALYSIS OF STEEL STRUCTURES

Zdeněk Kala*

The uncertainty of stochastic computations for which input random quantities are
introduced in the subjective manner is presented in this paper. To obtain a cor-
rect stochastic computation, it is necessary to have exclusively objective statistical
information based on experiments including the correlation matrix at the disposal.
If this information is not available, the vague (fuzzy) uncertainty is to be quantified
by applying the so-called fuzzy analysis. In the present paper, these problems are
demonstrated on the example of an analysis of fuzzy uncertainty of probability assess-
ment of the reliability of a steel member under compression. The output is a fuzzy
set of failure probability. The single crisp control output of failure probability was
obtained with use of the defuzzification centre of gravity method. The value obtained
was by 200 percent higher than that obtained by the classical stochastic computation.
In conclusion, the applicability possibilities of the complex fuzzy-random uncertainty
analysis at the probability assessment of the reliability of structures by the SBRA
method.
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1. Introduction

Recently, we have frequently met the methods which assess the structure reliability by ap-
plying the probability computation. A correct probability computation requires exclusively
objective statistical information based on very numerous experiments. All the input random
quantities including the correlation matrix are to be exactly determined in the stochastic
analysis.

Of course, it is not possible to guarantee the exclusively objective statistical information
because each building structure is (apart from exceptions) unique.

In difficult operation conditions, the extensive and exacting measurements are either
totally impossible or their information quality is very low so that they are inapplicable
although the necessary robustness has been ensured [14].

If an expert finds an input random quantity in a subjective manner, a stochastic compu-
tation becomes a vaguely (fuzzy) uncertain one. The results of the stochastic computation
are devaluated due to inaccurate information on input random quantities. The stochastic
computation model becomes so a source of fuzzy uncertainty which, in complex systems,
can predominate over the stochastic uncertainty significantly. The aim of the present paper
is an analysis of the influence of fuzzy uncertainties on the fuzzy uncertainty of the output
random quantity.

The vagueness as a concomitant phenomenon of all complex, hard to describe systems
and eventually processes in which the human factor figures are most commonly formalized by
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means of the apparatus of fuzzy sets, founded by professor Lotfi A. Zadeh of the University
of Berkeley. For the first time, the term ‘fuzzy’ was used by Lofti Zadeh in 1962 [22].
In 1965, L. Zadeh published his pioneer, today still classic paper entitled ‘Fuzzy sets’ [23].
The Zadeh’s theory of fuzzy sets generalizes the theory of crisp sets, which was founded
by the German mathematician George Cantor (1845–1918). Within the theory of crisp
sets, an element belongs, or does not, into a set. If the valuation set is allowed to be the
interval 〈0, 1〉, we used term fuzzy set [23], see Fig. 1.

Fig.1: Fuzzy number a0 Fig.2: Random number

In the Zadeh’s theory of fuzzy sets a fuzzy set is defined as a class attributing the
uncertainty to elements by means of their partial membership in the form of so-called degree

of membership. The number plotted on the horizontal axis expresses the value which is
inaccurate, i.e., ‘maybe a0’.

The fuzzy number a0 in Fig. 1 is a convex normalized fuzzy set of the real line R. The
degree of membership to a set is presented on the vertical axis : 1 means the full pertinence
to the set, 0 means the non-pertinence to a set at all. The transition area within an inter-
val (1, 0) determines the area of partial membership of an element in a set. The degree of
membership is often characterized as a possibility of the phenomenon that element x belongs
to the set X .

A fuzzy number expresses the uncertainty whatever the cause may be. Qualitatively
different information is expressed by the probability function determining the occurrence
frequency of a mass phenomenon, see Fig. 2.

The many typical problems of structural design are characterized both by fuzzy and
random uncertainty [1]. Using fuzzy-random variables and fuzzy random functions, it is
possible to mathematically describe the uncertainty characterized by fuzzy randomness [11].
Basic terms and definitions related to fuzzy randomness have been introduced, inter alia,
by [15, 21].

The topic of the present paper is an analysis of fuzzy-random uncertainties of the
load-bearing capacity of a member under compression. The initial beam curvature is con-
sidered to be a fuzzy-random quantity. The other quantities for which the input random
quantities are known from experiments are considered to be random quantities.

2. Fuzzy-random initial imperfections

The curvature shape of the axis of hot-rolled steel beam approximates, according to the
experimental research results [2] to one half-wave of the sine function. The variability of
this initial imperfection is represented by the variability of the maximum amplitude e of the
sine function, see Fig. 3. Bilaterally simply supported members with cross-section IPE180,
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with length L = 1.93 m manufactured of the steel grade S235, under axial compression were
solved. The results of sensitivity analyses [5] have shown that the load-carrying capacity of
a strut with IPE180 cross-section is the most sensitive to the initial imperfection e due to
nondimensional slenderness λ̄ = 1.0 .

However, the opinions of experts on the adequate density function imperfection e differ
considerably. The published results of experimental research are often incomplete of eval-
uated, based on a little number of samples [2]. The most frequently met functions are the
Gauss [13] and the lognormal [16] ones.

The Gaussian density function supposes the imperfections e to be both positive and
negative. The lognormal density function supposes only positive values. Consideration of
rectangular density and/or histograms within the framework of the SBRA method [8] is
another variant. A standard assumption is the fact that 95 % of realizations of amplitude e
lie within the tolerance limits of the standard [25]. Nevertheless, the experimental research
results [2, 10] show that neither this binding condition is always to be fulfilled.

Fig.3: Initial imperfection Fig.4: Used models of amplitude e

The pieces of information on initial imperfection being necessary for the failure probabil-
ity analysis are exacting both by the method of their objective obtaining and requirements
of their quality.

Let us imagine that we would measure a large quantity of data on initial imperfection
experimentally. Let be the curvature shape approximated by one half-wave of the sine
function. Thus, it can be supposed for statistical characteristics of the random quantity e :

1) Mean value and skewness are equal to zero, i.e., positive and negative values of e occur
in the same frequency.

2) Standard deviation is determined, based on the consideration that 95 % of realizations
lie within the tolerance limits of the standard [25].

3) Kurtosis is a fuzzy number.

Kurtosis is a typical fuzzy characteristic, the signification of which is highly underesti-
mated. Most frequently, the values of skewness and kurtosis are determined by the choice
of density function. The kurtosis of the lognormal density function in Fig. 4 is equal to
ke = 45.2 . The Gaussian density function has the value of kurtosis ke = 3.0 . Kurtosis of
the rectangular density function is ke = 1.8 .
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When assessing the experimental data, kurtosis is the fourth statistical characteristic,
and therefore it is loaded by a statistical error larger than mean value, standard deviation
and skewness. It is rather a pity that the values of kurtosis are published less than the other
three quantities.

Fig.5: Fuzzy number of kurtosis

For the imperfection e the Hermite four-parametric density function has been assumed
which enables to take also the influence of skewness and kurtosis into consideration. The
Hermite density function is available in the programme Statrel 3.10. The fuzzy number
of kurtosis is presented in Fig. 5. A symmetrical membership function has been chosen
which is identical in shape with the Gaussian distribution. The kurtosis ke = 3.0 (Gauss
density function) is attributed to the maximum degree of membership (truth 100 %). The
determination of the membership function in Fig. 5 was carried out in a subjective manner,
based on consultations with experts who were co-authors of published experimental research
results [9, 18].

Fig.6: Fuzzy number of standard deviation

Further on, the fuzzy number of standard deviation was assessed, see Fig. 6. Fuzzy
standard deviation was assessed, based on the extension principle for ten so-called α-cuts
[1, 12, 3, 19]. The general dependence between kurtosis and standard deviation of initial
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imperfection is shown in Fig. 7. The standard deviation and kurtosis values of the Hermit
density fulfil the condition that 95 % of imperfection e realization lie within the tolerance
limits of the standard [25]. These are determined by ±0.3 %, i.e., for the strut L = 1.93 m,
Δ = ±5.792 mm.

Fig.7: The dependence between the standard deviation
and kurtosis of the Hermite density function

The yield point fy can be mentioned among further imperfections of the IPE180 profile
geometrical characteristics. The histogram and Gauss density functions with statistical
characteristics in compliance with [9] were considered. For the Young’s modulus E, the
mean value 210 GPa and the standard deviation 12.6 GPa were supposed, based on two
independent research works [2, 17]. The tenth random quantity is the load action applied
for the fuzzy-random failure probability analysis. The clear arrangement survey of input
random quantities is presented in Tab. 1.

Symbol Distribution Mean value Standard deviation Kurtosis
1. h Gauss 180 mm 0.8 mm 3
2. b Gauss 91 mm 0.9 mm 3
3. t1 Gauss 5.3 mm 0.22 mm 3
4. t2 Gauss 8 mm 0.37 mm 3
5. E Gauss 210 GPa 12.6 GPa 3
6. fy Histogram 297.3 MPa 16.8 MPa 3
9. e Hermite 0 Fuzzy Fuzzy
10 F Gauss 190 kN 19 kN 3

Tab.1: Input quantities

The amplitude e of the initial sinusoidal curvature is a fuzzy-random quantity. The fuzzy
number of Hermite density function is generally sketched in Fig. 8. The full line represents
the density functions the degrees of membership of which are 0, 1 and 0. The limit density
function for kurtosis ke = 1.8 is the rectangular density function. All the density functions
in Fig. 8 comply with the conditions that 95 % of imperfection e is within the tolerance limits
〈−5.792, 5.792〉mm.
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Fig.8: Fuzzy-random initial imperfection e

3. Computational model

The load-carrying capacity of the axially compressed member was designated as the
force F at which the axial stress, in the most stressed section, is equal to the yield strength.
Initial curvature and buckling were assumed in the direction perpendicular to the web. Initial
imperfection in the form of the sine function was introduced. Based on these assumptions,
the stress σx of the strut can be defined acc. to the relation :

σx =
F

A
+

F e

Wz (1 − F
Fcr

)
= fy ⇒ F (1)

where A is the cross-sectional area, F is axial member force, Wz is the section modulus to
the z-axis. Fcr is the Euler critical force, which, for a bilaterally hinged strut, is defined as :

Fcr =
π2 E Iz
L2

cr

. (2)

A strut of non-dimensional slenderness ratio defined acc. to EUROCODE 3 [24] was
analysed. The critical length for a bilaterally hinged strut is Lcr = 1.93 m. The evaluation
of the load-carrying capacity according to (1) does not take into consideration the influence
of residual stresses. Integration would require the utilization of FEM. The limit state is
then defined upon attaining the design relative strain [7], which can then be consequently
generalized even for the analysis of the uncertainty of the behaviour of welded joints.

4. Fuzzy-random analysis

The fuzzy analysis was evaluated according to the general extension principle [1, 12, 3].
Let • be an arithmetic operation (e.g. addition, division) and Z1, Z2 ⊆ R be fuzzy numbers.
The extension principle then allows the extension of operation • to the operation •© with
fuzzy numbers in the following manner :

(Z1 •©Z2) =
∨

z=x•y

(
Z1(x) ∧ Z2(y)

)
. (3)
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The result of operation •© is a fuzzy number Z1 •©Z2, consisting of elements z = x • y with
a membership function that is given by the minimum of membership values of operators x
into fuzzy number Z1 and y into fuzzy number Z2. The extension principle in the form of
α-cuts was used for the analysis.

4.1. Fuzzy analysis of random load-carrying capacity

In Fig. 9 there are presented the density functions of load-carrying capacity computed
for the kurtosis from the interval ke ∈ {1.8, 4.2}. The density functions present the ap-
proximations of relative frequency histograms. Each density function was determined for
200 thousand runs of the Monte Carlo method. Analogously as in Fig. 8, significant density
functions the degrees of membership of which are 0, 3 and 4.2 are set off by full lines.

Fig.9: Set of load-carrying capacity density functions

A degree of membership is attributed to each density function from Fig. 9. Graphically,
it is transparently feasible to set off only the fuzzy number of statistical characteristics.
Fig. 10 shows the fuzzy number of mean value of load-carrying capacity. The fuzzy number
of standard deviation of the load-carrying capacity is presented in Fig. 11. The skewness or
kurtosis fuzzy numbers could be represented in a similar way.

Fig.10: Fuzzy number of mean value of load-carrying capacity
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Fig.11: Fuzzy number of standard deviation of load-carrying capacity

4.2. Fuzzy analysis of failure probability

The fuzzy number of failure probability is presented in Fig. 12. The failure probability is
defined as a probability saying that the loading is greater than the load-carrying capacity.
The probability analysis was assessed by using the Monte Carlo method. So many runs of
the method were applied that the failure would appear for 100 times minimum.

Fig.12: Fuzzy failure probability

The single crisp control output can be obtained by applying the so-called defuzzification

methods. We have developed several methods which defuzzify fuzzy rules into a crisp control
output. The most widespread and physically appealing of all the defuzzification methods

is the centre of area or centre of gravity method, see Fig. 12. It is given by the algebraic
expression :

Pf =
∫
μ(x)xdx∫
μ(x) dx

(4)

where μ(x) denotes the membership function of failure probability. Quantity x means failure
probability for all x ∈ (0,∞).

In Fig. 12 there is also presented the value 6.3E−5 which would be obtained by the sto-
chastic analysis if the kurtosis were considered to be a singleton by value 3 (Gauss density
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function). Provided that the reference value of failure probability is 7.2E−5, the failure prob-
ability 11.75E−5 is then higher, and therefore the structure is not satisfactory. Compared
with this, the purely stochastic value 6.3E−5 is satisfactory.

5. Fuzzy SBRA as a strong tool for complex uncertainty analysis

In recent years, the frequency of discussions about possibilities of application of probabil-
ity computation in design activity increases. The method SBRA [8] belongs among the very
effective and elaborated methods for evaluating the engineering reliability of structural sys-
tems. Some histograms of input random quantities are determined in a subjective manner,
and can cause the vague uncertainty of solution.

If the same ‘stochastic’ computation is set to more experts, the fuzzy number of subjective
solutions coming into consideration is the output. The uncertainty of histograms of system
imperfections is a typical example [6]. The stochastic computation model becomes so the
source of vague (fuzzy) uncertainty which, in complex systems, can significantly predominate
over the stochastic uncertainty.

The specialists have been made familiar with this method satisfactorily. Now it is nec-
essary to attempt at decreasing the vague (fuzzy) uncertainties of the SBRA method.

The histograms of random quantities for which there is not satisfactorily information
based on experiments can be substituted by a fuzzy set of histograms. With the knowledge
of fuzzy and stochastic uncertainty, it is possible to assess the complex fuzzy-random un-

certainty analysis, e.g., how it has been presented in foregoing paragraphs. Let the fuzzy
random modification of the SBRA method be named by the abbreviation SBRA. The fuzzy
set of histograms is to be determined in a subjective manner according to the opinions
of a large number of experts. The degree of membership is attributed according to the
frequency of opinions appearing, see Fig. 13.

Fig.13: Fuzzy set of histogram of long term load action

An example of a fuzzy set of long term load actions can be seen in Fig. 13. Another appli-
cation of the fuzzy analysis can take place in assessing the existing structures, as far as their
residual service life is concerned [20]. The fuzzification process is rather very complicated
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in all the cases mentioned and it should be object of future analyses. The problems can
be expected at the fuzzification of uncertainties of the correlation matrix of input random
quantities. However, larger attention will have to be paid to this problem. As it has been
shown in [6], the correlation negligence can lead to an error as high as 300 percent.

It can be mentioned for the completeness’ sake that besides the uncertainty of the stochas-
ticity type, also other uncertainty types can be distinguished when solving the complex sys-
tems [14]. They are : fuzzitivity (vagueness), non-specificity (bad limitation), and conflict
which are examined within the framework of five theories, within which there has been cre-
ated a method for their quantification (classical sets theory, fuzzy sets theory, probability
theory, possibility theory, and Dempter-Shafer theory).

6. Conclusion

The asymmetric distribution of membership function of the failure probability is the
cardinal information following from the fuzzy computation, see Fig. 12. We have obtained
an asymmetric output distribution although the input membership function of kurtosis is
symmetric, see Fig. 5. In Fig. 12 there is a large quantity of precious information at our
disposal.

– Single crisp control output is 11.75E−5,
– Support of fuzzy failure probability is the interval (0.16E−5, 38.7E−5),
– Kernel of failure probability is equal to 6.3E−5.

Stochastic solution : Supposing that the amplitude e has a Gauss density function, all
the quantities given in Tab. 1 are random ones; therefore a classical stochastic computation
is concerned. The failure probability 6.3E−5 (singleton) is the output of this computation.
The Gauss density function is probably the most logical choice, provided that we were forced
to decide only for one (crisp) density function.

Fuzzy-random solution : The fuzzy number of initial random imperfection e is the input
characteristic. The lack of exclusively objective statistical information on the kurtosis is the
reason of introduction of a fuzzy number (see Fig. 5). The output is represented by a fuzzy
number again. Provided that we want to obtain the single crisp control output the output
fuzzy set is to be defuzzified. The value 11.75E−5 was obtained by the defuzzification of
fuzzy failure probability.

Comparison of stochastic and fuzzy random solution : When comparing the defuzzified
value 11.75E−5 with the value of classical stochastic analysis 6.3E−5, the difference is
200 percent!

The possibility of vague (fuzzy) uncertainty must be admitted in stochastic analysis
SBRA. The computation model is always the source of vague (fuzzy) uncertainty which, in
complex systems, can predominate over the stochastic uncertainty significantly. Provided
that there is the exclusively objective statistical information not at the disposal, the fuzzy
set of histograms – the so-called F-SBRA – can be defined, based on large quantity of
experiments.

The probabilistic computation cannot be applied in design practice without creating
generally valid standards including related instruments for probability design. The fuzzy
random analysis can be a strong instrument which will help to create these standards.
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[16] Sadovský Z., Páleš D.: Third-moment Identification of Structural Element Resistance by Form,

Building Research Journal, 1999, Vol. 47, No. 3, pp. 197–213
[17] Guedes Soares C.: Uncertainty Modelling in Plate Buckling, Structural Safety, 1988, (5),

pp. 17–34
[18] Strauss A., Kala Z., Bergmeister K., Hoffmann S., Novák D.: Technologische Eigenschaften von
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