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IMPLEMENTATION AND TESTING OF THREE
ENGINEERING MODELS OF TURBULENCE

Adam Jirásek*

This article deals with the implementation and testing of three eddy-viscosity models
of turbulence. One model is a model using Boussinesq hypothesis, two other models
are EARSM and EARSM with curvature corrections. Outlined is a brief description
of the theory behind both Boussinesq hypothesis and EARSM models of turbulence.
The models and their implementation were then evaluated in the case of flow around
the RAE 2822 airfoil and around the M6 wing, comparing computational data to each
other and to the experimental data.
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1. Introduction

The turbulence models are an important part of the Computational Fluid Dynamics,
CFD, used to model the turbulent flow. This can be used during early stage of the de-
sign prior to manufacturing of the model and wind tunnel test. This stage can be and
usually is extended and run simultaneously with the experimental testing. The next task
is a post-design analysis of the unexpected behavior observed during wind tunnel or flight
test. Especially demanded is the analysis of the off-design conditions [1]. Every task has
its own specifics and requires in some ways different approaches and need an analyst with
relevant skills to carry out the computations and being confident enough to interpret the
results.

The CFD user is at the beginning facing a large number of uncertainties and is questioning
basic processes such as a mesh generation, if given, the choice of the numerical scheme and

Fig.1: Example of a conceptual design calculations, wing-body configuration
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very often the choice of the model of turbulence. Even after spending longer time in CFD
one is usually asking a question which model of turbulence is the best or which model should
be used in some particular problem. This question, however does not have a unique answer
and uncertainty always remains. There is simply no universal model suited for all types of
flows. Rather then trying to answer this question it is better to try to understand the way
how the turbulence models are derived, be aware of their possible limitations and in the
light of this knowledge make an appropriate interpretation of a result.

This article describes three different eddy-viscosity engineering turbulence models – one
based on Boussinesq hypothesis, one Explicit Algebraic Reynolds Stress Model, EARSM,
and one EARSM corrected for high curvature flows. These models represent two typical
approaches in modeling of the turbulent flow with two-equations models of turbulence. The
models were implemented and used in 2D and 3D flow. Their results were compared to each
other and to the experimental data.

2. Turbulence modeling

This paragraph gives a brief description of a turbulence modeling of two-equation mod-
els. For detailed description the reader is referred to [2]. Concerning two-equation models of
turbulence there are two main streams. The first is a direction leading to the eddy-viscosity
models based on Boussinesq hypothesis. The second direction goes towards more compli-
cated models called Algebraic Reynolds stress models or more specifically Explicit Algebraic
Reynolds stress models.

The development of turbulence models can start at the transport equation for Reynolds
stress

dui uj

dt
= Pij − εij + Πij + Dij . (1)

Defining the variable turbulent energy k = ui ui/2 and taking the half of the trace of
system (1) the equation for Reynolds stress is reduced to the equation for the turbulent
energy k

dk
dt

= Pk − ε+ Dk . (2)

It includes the production of turbulent energy Pk, the dissipation rate ε and the diffusion Dk

and is the equation for turbulent energy k used in one and more equations turbulence models.
To solve the problem of the modeling of the Reynolds stresses ui uj, Boussinesq [3] formulated
hypothesis which is today referred to as the Boussinesq hypothesis. This approximation
assumes that the axis of Reynolds-stress tensor τi are coincident with those of strain-rate
tensor Sij . He then formulated well known relation between the Reynolds stress tensor and
the strain-rate tensor which is analogous to the relation valid in laminar flow

τij = −ui uj = 2 νT Sij −
2
3
k δij (3)

where νT is called the kinematic eddy viscosity. The νT is in one and more equations models
of turbulence a function of the turbulent energy k and other additional parameters. The
turbulence models which use the equation (3) are then called the eddy viscosity models
based on Boussinesq hypothesis. For overview of these models see for example [2, 4].

The assumption of the linear relation between strain-rate and Reynolds stress (3) gives
good results in the flow where the Knudsen number is Kn = lmfp/L � 1. The lmfp is the
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mean free path and L is the characteristic length scale of the mean flow. In certain types
of flows this assumption is, however, no more valid. It is in the flows with sudden changes
in mean strain-rate, flow over curved surfaces, flow in duct with secondary motion, flow in
rotating fluid, three-dimensional flows and flows with boundary layer separation.

More accurate description of the Reynolds stress tensor can be obtained using the
stress-transport models which are referred to as a second-order closure or second-moment
closure models. They are usually derived from the equation (1). It can be also transformed
to the equation for anisotropy aij .

aij ≡ ui uj

k
− 2

3
δij . (4)

Including terms for the pressure strain-tensor Πij and the dissipation rate εij the equation (1)
can have form

k

(
daij

dt
−D(a)

ij

)
=
(
Pij −

ui uj

k
P
)
−
(
εij −

ui uj

k
ε

)
+ Πij . (5)

This is a system of the differential equations for anisotropy aij and the turbulence models
which are based on this equation are called the Differential Reynolds Stress Models (DRSM).
The modeling of Reynolds stress tensor is not needed because its value is obtained directly
from the solution. What arises is a need of the modeling of additional terms such as pres-
sure strain-tensor Πij and the dissipation rate εij Using quasi-linear models for Πij and
dissipation rate anisotropy eij = εij/ε− 2/3 δij the equation (5) can be reformulated to

τ

(
daij

dt
−D(a)

ij

)
= A0

[(
A3 +A4

P
ε

)
aij +A1 S̃ij −

(
aik Ω̃kj − Ω̃ik akj

)
+

+A2

(
aik S̃kj − S̃ik akj −

2
3
akl S̃lk δij

)] (6)

which is an equation of Reynolds stress models* and model constants A(0−4). With the
assumption that the anisotropy in flow-field varies slowly the left hand side of equation (6)
can be neglected and the equation (6) takes the form

0 = A0

[(
A3 +A4

P
ε

)
aij +A1 S̃ij −

(
aik Ω̃kj − Ω̃ik akj

)
+

+A2

(
aik S̃kj − S̃ik akj −

2
3
akl S̃lk δij

)]
.

(7)

The models which are using this equation are called the Algebraic Reynolds Stress Models,
ARSM. The equation (7) is then reformulated as an explicit one using a suitable model for
anisotropy. It can have a form

a = β1 S̃ + β2

(
S̃2 − 1

3
Π
�S I
)

+ β3

(
Ω̃2 − 1

3
Π
�Ω I
)

+ β4

(
S̃ Ω̃ − Ω̃ S̃

)
+

+ β5

(
S̃2 Ω̃ + Ω̃ S̃2

)
+ β6

(
S̃ Ω̃2 + Ω̃2 S̃ − 2

3
IV I

)
+

+ β7

(
S̃2 Ω̃2 + Ω̃2 S̃2 − 2

3
V I
)

+ β8

(
S̃ Ω̃ S̃2 + S̃2 Ω̃ S̃

)
+

+ β9

(
Ω̃ S̃ Ω̃2 + Ω̃2 S̃ Ω̃

)
+ β10

(
Ω̃ S̃2 Ω̃2 + Ω̃2 S̃2 Ω̃

)
(8)

* The Reynolds Stress Models can be defined in terms of the strain-rate tensor S also.
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and is a basis for the Explicit Algebraic Reynolds Stress Models, EARSM. The Reynolds
stress ui uj is then a function of the anisotropy aij . For more details see for example
Wilcox [2].

There is another important difference in behavior of the models based on Boussinesq
hypothesis and the EARSM models. The production of turbulent energy in Boussinesq
hypothesis based models is a function of Pk ≈ S2 meanwhile in the EARSM the dependency
is Pk ≈ S. The models with Pk ≈ S2 therefore use limiters for production Pk which is active
mainly in the vicinity of shock wave. These limiters, however, must be used with care. Kozel
et al. [5] showed the strong dependency of turbulent energy on the choice of limiter giving
rise to rather large differences in solution. The EARSM does not need any limiter.

2.1. Kok TNT k−ω model of turbulence

The TNT k−ω was developed by Kok [6]. It is based on the classical k−ω model [2] with
two equations for the turbulent energy k and the specific dissipation rate ω

∂ρ k

∂t
+
∂ρ k ui

∂xi
=

∂

∂xi

[
(μ+ σk μT)

∂k

∂xi

]
− β∗ ρω k + Pk , (9)

∂ρω

∂t
+
∂ρω ui

∂xi
=

∂

∂xi

[
(μ+ σω μT)

∂ω

∂xi

)
− β ρω2 + Pω + CD . (10)

The TNT variant contains the term CD called the cross-diffusion term which makes the
model to a certain extent insensitive to free stream levels of turbulence. The Reynolds
stress is then calculated

ρ τij = 2μTSij −
2
3
ρ k δij (11)

with dynamic eddy viscosity μT = ρ k/ω. For more details on the model including definition
of terms Pk and Pω and model constants see [6].

2.2. EARSM model

The EARSM model of turbulence proposed in [7] formulates an expression for the
Reynolds stress tensor in terms of the strain-rate S and the extra anisotropy tensor a(ex)

ρ τij = ρ k

(
2Ceff

μ S̃ij −
2
3
δij − a

(ex)
ij

)
= 2μeff

T Sij −
2
3
ρ k δij − ρ k a

(ex)
ij . (12)

The multiplier Ceff
μ in equation (12) is a function strain-rate tensor S and rotation Ω

Ceff
μ = −1

2
(β1 + ΠΩ β6) . (13)

The definition of extra anisotropy a(ex) is taken from equation (8)

a(ex) = β3

(
Ω̃2 − 1

3
Π
�Ω I
)

+ β4

(
S̃ Ω̃ − Ω̃ S̃

)
+

+β6

(
S̃ Ω̃2 + Ω̃2 S̃− Π

�Ω S̃ − 2
3
IV I

)
+ β9

(
Ω̃ S̃ Ω̃2 − Ω̃2 S̃ Ω̃

) (14)



Engineering MECHANICS 183

where the S̃ and Ω̃ are normalized strain-rate and rotational tensors defined as S̃ = τ S and
Ω̃ = τ Ω. The turbulent time scale is defined

τ = max
(
k

ε
, Cτ

√
μ

ρ ε

)
. (15)

The definition of invariants Π
�S, Π

�Ω and IV and coefficients β1−9 as well as model constants
used in the EARSM is given in [7]. The model in this implementation is combined with
standard k−ω turbulence model [2]. Another interesting EARSM implementation with very
good features in separated flow was recently published in [8].

2.3. Curvature Corrections of the EARSM model

The assumption of a weak equilibrium which simplifies the equation (6) to equation (7)
becomes inaccurate in the flow-field with high curvature. This assumption can be addition-
ally imposed in a general curvilinear system. The advection of the anisotropy is defined in
a curvilinear system as

da
dt

= Tt dTaTT

dt
T −

(
aΩ(r) − Ω(r) a

)
(16)

where T is a transformation matrix of the orthogonal system (t,n, s) to curvilinear system
(t̂, n̂, ŝ) and

Ω(r) =
dTT

dt
T . (17)

The correction is then implemented into the EARSM models by replacing the term Ω∗ in
Eq. (6) for the term Ω where

Ω∗ = Ω − τ

A0
Ω(r) (18)

with A0 being a model constant. Several models extending the EARSM models to flows
with high curvature have been developed, see for example [9, 10, 11, 12]. The model used
in this work was developed in [13] and is a strain-rate based coordinate system. Since the
anisotropy tensor is a function of strain-rate tensor and tensor of rotation the equation (16)
can be expressed in terms of the S and SΩ

dS
dt

= TT dTSTT

dt
T −

(
SΩ(r) − Ω(r) S

)
. (19)

The curvature correction Ω(r) is then found as a solution of the equation (19) in sense of
minimizing the variations of S.

3. Flow solver

The flow solver is structured multiblock solver for Euler and Navier-Stokes equation based
on upwind flux vector splitting scheme of van Leer [14, 15] with third order accurate MUSCL
interpolation of the variables on the cell faces. The time integration is based on Runge-Kutta
scheme of Jameson, Schmidt and Turkel [16, 17]. It is equipped with a local low-speed pre-
conditioner based on entropy, implicit residual smoothing, multigrid with bilinear restriction
and prolongation operators, full multigrid and dual-time-stepping [18, 17, 19, 20, 21]. All cal-
culations were performed using the W multigrid at three-level grids or double W cycle at
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four-level grids. The values of CFL number varied from CFL = 2 to CFL = 3.5 depending
mainly on the turbulence model. One million grid case with k−ω TNT model (M6 test
case) took on the ordinary PC computer with Pentium processor at frequency 2 GHz about
14 hours to a fully converged solution. EARSM model added between 30 % and 40 % in the
computational time depending on the computational case and curvature corrections almost
doubled the amount of the computational time compared to the k−ω TNT model.

The boundary conditions used for the external aerodynamics cases are non-slip boundary
condition on the wall and the characteristics boundary conditions at a far-field boundary.
The transition to turbulence was prescribed by putting the value of the production of tur-
bulent energy Pk = 0.

4. Test cases

The flow solver was tested in the case of two airfoils and the M6 wing.

4.1. Case1: RAE 2822 airfoil

The first test case is the flow around the RAE 2822 airfoil at angle of attack α∞ = 2.79◦,
Mach number M∞ = 0.73 and Reynolds number Re = 6.5×106 with transition of the
boundary layer at 3 % of chord [22]. The mesh around the airfoil is a hyperbolic mesh with
high orthogonality on the surface of the airfoil [23]. Figure 2 shows a closer view on the grid.
Hyperbolic grid generation enables also direct control of the cell size and mesh cell growth
in a wall normal direction which is important especially in the boundary layer. Moitra [24]

Fig.2: Detail of computational mesh, the RAE 2822 airfoil

Fig.3: Isolines of Mach number, the RAE 2822 airfoil
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defined the rules for the mesh generation for the flow around 2D high lift systems. The
mesh around RAE 2822 airfoil follows his recommendation in most of areas but the trailing
edge. The mesh around trailing edge is rather coarse which certainly affects the solution
as discussed later. The isolines of Mach number for all three models are shown in figure 3.
The similarity of the solutions is apparent. The difference takes place in the area of shock
wave boundary layer interaction where both EARSM models predict small area of the flow
separation – see friction coefficient in figure 4(b). The EARSM models predict also the
different development of the friction coefficient in the flow-field downstream of the shock
wave. All models predicts sudden increase of the friction at the very end of profile which is
a consequence of poor grid resolution around trailing edge. The geometry with sharp trailing
edge plays also an important role [25]. Figure 5 shows comparison of the velocity profiles
in three positions. It shows the discrepance between the computational and experimental
data increases in the regions of adverse pressure gradient. The EARSM models show better
effect of adverse pressure gradient compared to the TNT k−ω model, however it is still
insufficient.

Fig.4: Pressure and friction coefficient, the RAE 2822 airfoil

Fig.5: Velocity profiles in three positions of the chord, the RAE 2822 airfoil
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4.2. Case2: AS2809 airfoil

The second case is the flow over the AS2809 profile tested at the Aeronautical Research
and Test Institute, VZLÚ. The airfoil was calculated using the Kok TNT model at Mach
number M = 0.771, angle of attack α∞ = 3.12◦ and Reynolds number Re = 2.18×106. The
isolines of Mach number are shown in figure 6. The problem with prediction of the intensity
of shock wave is very possibly caused by the low value of Reynolds number which have a
strong effect on the shock-wave boundary layer interaction. The airfoil was calculated with
fixed transition and does not take to account the length of the transitional area which at
these values of Reynolds number certainly plays an important role. It can be expected that
using some model for transition would improve the result. Nevertheless the prediction of
pressure distribution on the airfoil is still fairly good.

Fig.6: AS2809 airfoil, M = 0.771, α∞ = 3.12◦, Re = 2.18×106

Fig.7 Isolines of pressure coefficient on the surface, the M6 wing



Engineering MECHANICS 187

Fig.8 Pressure coefficient compared to the experimental data, the M6 wing

4.3. Case3: M6 wing

The third case is a flow around the M6 wing at Mach number M∞ = 0.83 and angle
of attack α∞ = 3.04◦. The Reynolds number is Re = 11.6×106. The isolines of pressure
coefficient on the wing surface show very similar patterns for all three models of turbulence.
As in previous case there is not much variability between different turbulence models. The cp
coefficient in the cuts in different spanwise positions of the wing show good agreement with
the experimental data. The differences between different turbulence models are marginal.
The EARSM predicts better the flow expansion behind the shock wave especially in the
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positions around end of the wing. This might be caused by better behavior of the EARSM
models in vicinity of the shock waves. The disagreement with experimental data is visible
in the cut in 99 % of the span. Although some differences between different models of
turbulence are visible they are marginal compared to the gap between computational results
and experimental data. Figure 9 shows streamlines restricted on the wing surface around the
wing ending arc. The EARSM without curvature corrections tend to predict flow separation
on the ending arc closer to the upper side of the wing. The pattern of TNT model is similar
to the EARSM with curvature corrections.

Fig.9: Streamlines of the flow around ending arc of the M6 wing

5. Conclusion

This article compare three different eddy viscosity models of turbulence, the k−ω TNT
based on Boussinesq hypothesis, the k−ω EARSM model and its extension to high curvature
flows. The three turbulence models were used to calculate the flow around two airfoils and
flow around the M6 wing and the computational results were compared to experimental
data. The three different turbulence models give very similar results. The EARSM model
showed certain improvement over the k−ω TNT model especially in regions containing shock
wave. It is due to better modeling of the production of turbulent energy in the vicinity of
shocks. The consequence is also a better stability of EARSM model. Unfortunate is an
additional computational expense. Curvature corrections did not introduce any substantial
difference in the solutions. It is because the test cases where the EARSM with curvature
corrections was tested have rather small areas of highly curved flows. However, in cases
of highly curved flow such as a flow over delta wings, the curvature corrections may have
a substantial effect. Curvature corrections added the substantial computational expense and
unfortunately contribute to certain un-stability of the flow solver. The agreement with the
experimental data for airfoils and the M6 wing was very good. In more difficult cases the
choice of the model can, however, be a decisive factor determining the quality of the results.
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